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A NUMERICAL METHOD FOR SIMULATING

TURBULENT SHEAR FLOWS WITH LOW

REYNOLDS k− ε MODELS

Y. Bentaleb, E. Schall, B. Koobus, A. Dervieux and M. Amara

Abstract. We present a new numerical model for the simulation of turbulent flows. New
numerics rely on a 3D upwind compressible solver which applies to (possibly unstruc-
tured) tetrahedrizations. Accuracy in boundary layers is increased by a new type of tetra-
hedrization. The Reynolds-Averaged Navier-Stokes (RANS) equations are solved using
a mixed element-volume method for the spatial discretization and an implicit scheme is
applied to advance the equations in time. Two low Reynolds numberk−ε RANS models
are implemented with this numerical technique. A linear model, the low Reynolds number
k− ε turbulence model of Goldberget al., and a nonlinear one using a cubic relation be-
tween the strain and vorticity tensors and the stress tensor, as originally proposed by Craft
et al. These models are applied to the study of a turbulent flow past a backward-facing
step. The results obtained are compared to experimental data.

Keywords: Low Reynolds turbulence modeling, linear and nonlineark− ε, mixed ele-
ment-volume method.

§1. Introduction

The prediction of complex three-dimensional turbulent shear flows remains a grand challenge
for computational fluid dynamics (CFD). Such flows take place over simple to complex 3D
geometries for many practical situations. A new family of tools are studied for the prediction
of such flows. The ingredients are: (i) low dissipation numerics applying to unstructured
meshes, (ii) statistical turbulence modeling, typically of Reynolds Average Navier-Stokes
(RANS) type, (iii) hybridisation with Large Eddy Simulation (LES).

This paper focuses on (i) and (ii), but with the perspective of improving type (iii) ap-
proaches. Indeed we start from a numerical methodology which already applies to type (iii).
In [1], an implicit mixed-element-volume numerical method applying to unstructured meshes
and able to predict compressible and incompressible flows is associated with an hybridisation
of a LES model and a high Reynolds lineark−ε. In this paper, we consider the same numer-
ical techniques as in [1] and introduce two kinds of improvements, a numerical treatment of
thin boundary layers, and two low Reynolds RANS models. Three specific requirements for
selecting the turbulence closure are accounted for: (a) it should be the best possible model to
predict complex turbulent flows of practical interest; (b) it must be wall-distance-free, thus
applicable to complex 3D geometries in conjunction with unstructured grid based solver;
(c) it should represent correctly normal stresses anisotropy. For (c) we consider a nonlinear
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stress-strain relation. This relation goes back at least to the proposal of Pope [2]. The in-
troduction of nonlinear terms up to cubic level makes the Reynolds stresses a more general
function of mean velocities and vorticities [3]. In this work, the turbulence closure models for
RANS equations used in the computations are the linear low Reynoldsk−ε model proposed
by Goldberget al. [4] and a nonlinear extension formulated by Battenet al. [5]. Preliminary
experiments on a turbulent flow past a backward-facing step are presented. After Section 2 in
which the turbulence models under study are described, we devote Section 3 to the numerical
standpoint. Section 4 is a discussion of numerical experiments. Some concluding remarks
are given in Section 5.

§2. Eddy-viscosity models for Reynolds stresses

2.1. Low-Reynolds numberk− ε model

In order to model accurately the turbulent flow down to the wall, a standardk−ε model must
be locally adapted according to parameters indicating the grid point position in a possible
boundary layer. For complex geometries these parameters must be as much wall distance
free as possible. Goldberget al. proposed in [4] a low Reynolds number extension designed
to improve prediction of adverse pressure gradient flows, including separated and reattaching
flows. In addition, the model, compared with the other low Reynolds models proposed in
the literature, has the advantage to be wall-distance-free, it also invokes a simple boundary
condition for ε. Transport equations fork andε write:
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with E being the extra source term andTt the realizable time scale :
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whereτ = k̃/ε̃ is the turbulence time scale. The eddy-viscosityµt is defined with a damping
function fµ in order to enable a correct behavior in near-wall regions.
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The boundary conditions have a crucial influence on the quality of practical simulations. For
the turbulent quantities, they are defined ask̃w = 0 andε̃w = 2ν1 k̃1/y2

1 where “1” denotes
the centroid of the first cell away from walls. There is no ambiguity in the definition ofy1,
compared to low Reynolds models which involve explicit wall distance in the entire domain.
In this regard, the model preserves the wall-distance-free attribute.
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2.2. Nonlinear stress-strain relationship

In the class of linear Eddy-Viscosity Models (EVM), the Reynolds stresses are expressed in
terms of the mean strain rate (Boussinesq assumption), in the same way as the viscous stress
for Newtonian isotropic fluid, through the use of an isotropic eddy viscosity in place of the
molecular viscosity. Several deficiencies in the prediction of the turbulence quantities are
attributed to these models, including streamline curvature effects, misrepresentation of the
normal stresses (predicted as isotropic), and inability to capture the secondary flows.

A nonlinear formulation of the previous model is proposed by Battenet al. [5], which as-
sumes that the Reynolds stresses are a general function of mean velocities and vorticities [3]:
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rotation tensor, respectively. The constants of the model can be found in [5].

§3. Numerical methodology

One of the important purposes of the present study is the increase of accuracy in highly
stretched boundary layers for a numerical technology which applies to tetrahedrizations.

By highly stretched boundary layer, we mean a flow region limited by a wall where mesh
stretching needs to be as high as tens of thousands.

Variational methods applying to general (possibly unstructured) tetrahedrizations have
a convergence theory well established for basic models thanks, in particular, to hilbertian
analysis, but extension to nonlinearities, especially when they involve spatial derivatives of
unknowns is delicate. This is why, in today’s state of the art, numerical approximations
for highly stretched boundary layers use quasi-cartesian meshes on those regions, in order
to enjoy finite-difference convergence mechanisms (uniform convergence of unknowns and
derivatives). In order to realize this program for tetrahedra, we have adapted to boundary lay-
ers a method introduced by Gourvitchet al. [6]. In their paper, these authors were looking for
high order accurate (up to sixth-order) schemes for acoustics. They manage to get a numeri-
cal tetrahedrization-based scheme which reduces to the usual finite volume method on cubes
for a particular tetrahedrization. The central idea is to split cubes into six orthogonal tetrahe-
dra. By orthogonal tetrahedron we mean a tetrahedron such that three edges are orthogonal
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Figure 1: Splitting of a cube in orthogo-
nal tetrahedra: view of the cube after two
tetrahedra have been taken off [6].

Figure 2: Construction of dual cells for an
orthogonal tetrahedron.

to each other (see Fig.1). This splitting is completed by a particular decomposition of the
tetrahedrization in dual control volumes introduced in [7] which relies on the center of the
smallest sphere containing the tetrahedron (see Fig.2). The proposed improvement consists
in using in the boundary layer a mesh relying on parallelepipeds split into orthogonal tetrahe-
dra and to apply the above dual cell construction. This improvement is introduced in amixed
finite-volume finite-element approximation[8] solving the compressible Euler equations. The
convective fluxes use Roe’s flux splitting with Turkel’s low Mach preconditioner and produce
accurate approximation of incompressible flow as far as a Mach number less than 0.1 is spec-
ified. For what concerns the time-advancing procedure, a fully implicit scheme is employed.
The time discretization is based on a second-order backward difference scheme. The non-
linear flow equations derived from the time-discretization are solved by a defect-correction
(Newton-like) method [9].

§4. Test case : The backward-facing step

We consider an incompressible flow over a three-dimensional backward-facing step, mea-
sured experimentally by Driver and Seegmiller [10]. This flow has been studied by many
authors and we refer to the recent state of art paper of Kimet al. [11]. The Reynolds num-
ber based on the step heightH is equal to 37422, and the freestream Mach number to 0.1.
The computational domain extends from−4H upstream (inlet) to 32H downstream (outlet)
from the step which is located atx = 0. The grid is composed of two parts which contain
(35×101×3) and(221×161×3) nodes respectively, 51 points are used in the recirculation
region downstream of the step, and the grid is clustered in they direction near walls (Fig. 3).
Separate one-dimensional finite element code, which resolves a turbulent channel flow case,
was preliminary validated by the Comte-Bellot experimental data [12] and used to specify
the inflow and outflow. It uses the reference velocity and experimental skin friction velocity.
Dirichlet conditions are applied at the upstream boundary, and the numerical flux splitting
of Steger-Warming is used at outflow where the far-field part is obtained with these separate
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Figure 3: Reduced-aspect ratio cells near the step corner.

calculations. No-slip conditions are imposed on the walls, and slip conditions are applied to
the lateral side of the computational domain. The computation is considered to be converged
when the normalized residual of total energy was less than 0.05%.

4.1. Some results

The RANS closure models used for the backward-facing step computations which are pre-
sented hereafter were preliminary validated with the turbulent channel flow case experi-
mented by Comte-Bellot [12]. In Figs. 4 and 5 are depicted the streamwise velocity and
Reynolds shear stress predictions which show overall satisfactory results. The so-called “1D
profile” represents the separate one-dimensional calculation.

For the backward-facing step mesh, the computed values ofy+ along the step-side wall
reported in Fig. 6 shows that the first off-wall grid point is always located belowy+ = 1.
The inlet streamwise velocity profiles are depicted in Fig. 7. Lower wall static pressure
and skin-friction coefficients are presented in Figs. 8 and 9. TheCp is well predicted in
the recirculation region with the nonlinear model, while the linear one fails in the correct
restitution of the negative peak. However both models overpredict theCp downstream the
reattachment point. A good qualitative job is obtained in theCf prediction, although the level
is underpredicted in the separated region. This is consistent with many results obtained in
other works for differentk− ε models. The reattachment length is presented in the literature
as a critical parameter to assess the performance of a turbulent simulation for this test-case.
Many CFD results based on eddy-viscosity models have reported a reattachment that occurs
up to 30% upstream than measurements. In our calculations, satisfactory results are obtained.
The predicted reattachment lengths as well as the experimental one are listed in table 1. The
linear model overpredicts the reattachment length by 5.7%, while nonlinear model predic-
tion is within 2.2% of the measurement. In this regard, the nonlinear model shows better
performance than the linear one. As far as the turbulence anisotropy is concerned, Figs. 10
and 11 show that near the wall atx/H = 4, the linear model gives unrealistic results since

ṽ′′v′′ > ũ′′u′′ . As expected, the nonlinear model recovers at least the qualitatively correct
behavior of the normal Reynolds stresses.

Model Linear model [4] Nonlinear model [5] Experiment [10]
Reattachment point(x/H) 6.62 6.40 6.26

Table 1: Predicted and experimental reattachment point.
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Figure 4: Streamwise velocity profiles in tur-
bulent channel flow.ure f = 10.5m/s.

Figure 5: Reynolds shear stress profiles in
turbulent channel flow.uτ = 0.39m/s.

Figure 6: Distribution ofy+ along the step-
side wall.

Figure 7: Streamwise velocity profiles at
x/H =−4, ure f = 44.2m/s.

Figure 8: Wall static pressure distribution

along the step-side wall.Cp = 2(p̄−pre f )
ρre f u2

re f
.

Figure 9: Skin-friction distribution along
the step-side wall.Cf = 2τw/ρre fu2

re f .
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Figure 10: Normal Reynolds stress̃u′′u′′ at
x/H = 4.

Figure 11: Normal Reynolds stress̃v′′v′′ at
x/H = 4.

§5. Conclusions

A Reynolds-Averaged Navier-Stokes numerical model based on a mixed element-volume for-
mulation for unstructured meshes is extended to low Reynolds formulation and evaluated on a
recirculating flow. A particular tetrahedrization is combined with a specific dual cell partition
in order to increase thin boundary layer resolution. The new model exhibits promising capa-
bility in predicting near-wall turbulent flows with good accuracy. The results show an overall
good agreement with the experimental data, particularly for the skin-friction distribution and
reattachment point predictions, with global better predictions for the non-linear eddy viscos-
ity model, specially when normal Reynolds stresses are considered. Further developments
and tests will be carried out to improve the predictions for different flow configurations.
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