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SEQUENCES OF CONTRACTIONS AND

CONVERGENCE OF FIXED POINTS

Luc Barbet and Khadra Nachi

Abstract. Stability of fixed points of contraction mappings has been studied by Bonsall
(cf. [2]) and Nadler (cf. [4]). These authors consider a sequence(Tn) of maps defined on
a metric space(X,d) into itself and study the convergence of the sequence of fixed points
for uniform or pointwise convergence of(Tn), under contraction assumptions of the maps.

We will first considerk-contractionsTn which are only defined on a subsetXn of the
metric space. We note that, in general, we cannot apply their results by using an extension
theorem of contractions (cf. [1]). In this general setting, pointwise convergence cannot
be defined (except when allXn are a same subset). We then introduce a new notion of
convergence and we obtain a convergence result for the fixed points which generalizes
Bonsall’s theorem.

Secondly, after introducing another notion of convergence which generalizes uniform
convergence, we obtain a stability result when only the limit map is a contraction. Some
other results of stability of fixed points, which generalize Nadler’s theorems, can be found
in [3].
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§1. Introduction

We are interested in the convergence of a sequence of fixed points corresponding to a given
sequence of contraction mappings(Tn : Xn → X)n∈N which converges (in some senses to
be defined) to a contraction mappingT∞ : X∞ → X, where allXn (n ∈ N := N∪ {∞}) are
nonempty subsets of a metric space(X,d). Recall that, given a constantk ∈ (0,1), a map
T : Y ⊂ X → X is a k-contraction mapping ifd(Tx,Ty) ≤ kd(x,y) for all x,y ∈ Y. The
existence of the fixed points will be an assumption; for instance, the contraction mapping
principle of Banach guarantees the existence of a unique fixed point of each contraction
mapping of a complete metric space into itself. Thus we are only interested in stability
properties.

Many results have been given when each mapTn is defined on the whole metric spaceX.
It was proved by Bonsall that pointwise convergence of a sequence ofk-contraction mappings
(Tn : X→X)n∈N to ak-contraction mappingT∞ : X→X implies convergence of the sequence
of fixed points associated to(Tn)n∈N to the fixed point ofT∞ whereX is supposed to be a
complete metric space (cf. [2]). Nadler proved a similar result under uniform convergence
on the domainX of a sequence of mappings to a contraction mapping (cf. [4]).

Our main purpose is to generalize these two classical results when considering a sequence
of contraction mappings(Tn : Xn→ X)n∈N which converges to a contraction mappingT∞ :
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X∞ → X. Since the domainsXn ⊂ X are assumed to be different, pointwise and uniform
convergence cannot be defined. It will be necessary to introduce and study two new notions
of convergence for this type of problem.

We note that another important stability result can be obtained for a sequence of con-
traction mappings but without a uniform Lipschitz constant as considered by Bonsall. When
the metric spaceX is locally compact and eachTn is akn-contraction mapping fromX into
itself (∀n∈N), convergence of the fixed points is a consequence of pointwise convergence of
the contraction mappings (cf. [4]). A generalization of this theorem of Nadler can be found
in [3].

§2. Stability and generalization of pointwise convergence

Let us introduce a first notion of convergence as follows (whereGr is the symbol of graph):

(G) Gr(T∞)⊂ liminf Gr(Tn) :

∀x∈ X∞, ∃(xn)n∈N ∈Πn∈NXn : xn→ x andTnxn→ T∞x.

We will say thatT∞ is a(G)-limit of the sequence(Tn)n∈N when property(G) is satisfied by
the family(Tn)n∈N.

We can remark that a(G)-limit map of a sequence(Tn)n∈N is not necessarily unique.
ConsiderXn := R (n∈N) and the family(Tn : R→ R)n∈N of mappings defined byTnx := nx

1+nx
for x ∈ R andT∞x := 1 for x ∈ R∗, T∞0 := 0. It is clear thatT∞ is a (G)-limit of (Tn). Let
T ′∞ : R→ R be defined byT ′∞x := T∞x if x 6= 0 andT ′∞0 := 1

2. ThenT ′∞ is also a(G)-limit of
(Tn); indeed, the pointx= 0 is the limit of the sequence(xn)n∈N∗ := (1

n)n∈N∗ such that(Tnxn)
converges toT ′∞0.

We now give a sufficient condition for uniqueness of the(G)-limit map.

Proposition 1. Let (X,d) be a metric space,(Xn)n∈N a family of nonempty subsets of X and
(Tn : Xn→ X)n∈N a sequence of k-Lipschitz mappings. If T∞ : X∞→ X is a(G)-limit of (Tn)
then T∞ is the unique one (defined on X∞) .

Proof. Assume thatT∞ : X∞→ X andT ′∞ : X∞→ X are(G)-limit maps of the sequence(Tn).
For any pointx∈ X∞, there exist two sequences(xn) and(yn) in ΠnXn converging tox such
that(Tnxn) converges toT∞x and(Tnyn) converges toT ′∞x. From the Lipschitz condition, the
sequence(d(Tnxn,Tnyn)) converges to 0 and since for alln we have

d(T∞x,T ′∞x)≤ d(T∞x,Tnxn)+d(Tnxn,Tnyn)+d(Tnyn,T
′

∞x)

we deduce thatT∞x = T ′∞x.

The following statement is our first stability result.

Theorem 2. Let (X,d) be a metric space,(Xn)n∈N a family of nonempty subsets of X and
(Tn : Xn→ X)n∈N a family of mappings satisfying property(G) and such that, for all n∈ N,
Tn is a k-contraction from(Xn,d) into (X,d). If, for all n ∈ N, xn is a fixed point of Tn then
the sequence(xn)n∈N converges to x∞.
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Proof. Let xn be a fixed point ofTn for eachn∈ N. Since property(G) holds andx∞ ∈ X∞,
there exists a sequence(yn)n∈N such thatyn ∈ Xn (∀n∈N), yn→ x∞ andTnyn→ T∞x∞. Thus,
by the contraction condition we get:

d(xn,x∞)≤ d(Tnxn,Tnyn)+d(Tnyn,T∞x∞)
≤ kd(xn,yn)+d(Tnyn,T∞x∞)
≤ kd(xn,x∞)+kd(x∞,yn)+d(Tnyn,T∞x∞).

We conclude that(xn)n∈N converges tox∞ from the following error estimate:

d(xn,x∞)≤ (1−k)−1(kd(x∞,yn)+d(Tnyn,T∞x∞)).

When all the subsetsXn are equal to the spaceX, we obtain, as a consequence, the theorem
of Bonsall (cf. [2]):

Corollary 3. Let X be a nonempty complete metric space and let(Tn : X→X)n∈N be a family
of contraction mappings with the same Lipschitz constant k< 1 and such that the sequence
(Tn)n∈N converges pointwise to T∞. Then, for all n∈ N, Tn has a unique fixed point xn and
the sequence(xn)n∈N converges to x∞.

Let us point out some properties. The first one says that the(G)-limit map T∞ : X∞→ X
is ak-contraction as soon as each mapTn : Xn→ X is ak-contraction. More generally:

Proposition 4. Let (X,d) be a metric space,(Xn)n∈N a family of nonempty subsets of X and
(Tn : Xn→ X)n∈N a family of mappings satisfying property(G) and such that, for any n∈ N,
Tn is kn-Lipschitz with(kn)n∈N a bounded (resp. convergent) sequence. Then T∞ is k-Lipschitz
with k := supn∈N kn (resp. k:= lim kn).

Proof. Given two pointsx andy in X∞, by (G) there exist two sequences(xn) ∈ ΠnXn and
(yn) ∈ ΠnXn converging respectively tox andy and such that the sequences(Tnxn), (Tnyn)
converge respectively toT∞x andT∞y. For anyn∈N, we deduce from the Lipschitz condition
that

d(T∞x,T∞y)≤ d(T∞x,Tnxn)+d(Tnxn,Tnyn)+d(Tnyn,T∞y)
≤ d(T∞x,Tnxn)+knd(xn,yn)+d(Tnyn,T∞y).

Since limsupknd(xn,yn)≤ kd(x,y), we conclude thatd(T∞x,T∞y)≤ kd(x,y).

When all the subsetsXn (n∈ N) are equal to a nonempty subsetM of X, we can compare
the notion of(G)-convergence with the pointwise convergence for a sequence of maps(Tn :
M → X) to a mapT∞ : M → X. We will prove that property(G) is more general than the
pointwise convergence but these two notions are equivalent when the sequence(Tn)n∈N is
equicontinuous onM.

It is clear that pointwise convergence implies property(G). The converse is false. Con-
sider the family(Tn : R+→ R)n∈N defined by:Tnx := nx

1+nx andT∞x := 1 for all x∈ R+. The
mapT∞ is a(G)-limit of (Tn) but pointwise convergence is not satisfied. The problem arises
at the pointx := 0; we can take the sequence(xn) := (1/

√
n)n∈N∗ to verify that property(G)

is satisfied at this point.
In the next result, a sufficient condition is given in order that the two notions of conver-

gence become equivalent.
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Proposition 5. Let M be a nonempty subset of a metric space(X,d), (Tn : M→X)n∈N a fam-
ily of mappings satisfying property(G) and such that the sequence(Tn)n∈N is equicontinuous
on M. Then the sequence(Tn)n∈N converges pointwise to T∞.

Proof. Assume that the sequence(Tn)n∈N is equicontinuous onM and converges toT∞ in the
sense of(G). Given x ∈ M, there exists a sequence(xn)n∈N ⊂ M such that the sequences
(xn) et (Tnxn) converge respectively tox and T∞x. Since(Tn) is equicontinuous we have
d(Tnxn,Tnx)→ 0 and thusd(Tnx,T∞x)→ 0. We conclude that the sequence(Tn) converges
pointwise toT∞.

The existence of a fixed point for a(G)-limit mapping is characterized by the following
result when it is a contraction.

Corollary 6. Let (X,d) be a metric space,(Xn)n∈N a family of nonempty subsets of X and
(Tn : Xn→ X)n∈N a family of mappings satisfying property(G) and such that, for any n∈ N,
Tn is a k-contraction from(Xn,d) into (X,d). Assume that, for any n∈ N, xn is a fixed point
of Tn. Then:

T∞ admits a fixed point⇐⇒ (xn) converges andlim xn ∈ X∞

⇐⇒ (xn) admits a subsequence converging to a point of X∞.

Proof. From Theorem 2, we only have to prove the sufficient condition. Consider a subse-
quence(xs(n)) of (xn) such that limxs(n) = x∞ ∈ X∞. By (G), there exists a sequence(yn) in
X such thatyn ∈ Xn, yn→ x∞ andTnyn→ T∞x∞. Since, for anyn∈ N, we have

d(x∞,T∞x∞)≤ d(x∞,xs(n))+d(Ts(n)xs(n),Ts(n)ys(n))+d(Ts(n)ys(n),T∞x∞)

≤ d(x∞,xs(n))+kd(xs(n),ys(n))+d(Ts(n)ys(n),T∞x∞)

we deduce thatx∞ = T∞x∞.

Remark1. Under the assumptions of Corollary 6, and if:

(i) liminf Xn⊂ X∞ (i.e., the limit of any convergent(zn) ∈Πn∈NXn is in X∞) then:

T∞ admits a fixed point⇐⇒ (xn) converges.

(ii) limsupXn⊂ X∞ (i.e., any cluster point of any(zn) ∈Πn∈NXn is in X∞) then:

T∞ admits a fixed point⇐⇒ (xn) admits a convergent subsequence.

Under a compactness assumption, the existence of a fixed point of the(G)-limit map can
be obtained from the existence of fixed points of the contraction mappingsTn:

Theorem 7. Let (Xn)n∈N be a family of nonempty subsets of a metric space(X,d) and(Tn :
Xn→ X)n∈N a family of mappings satisfying property(G) and such that, for any n∈ N, Tn

is a k-contraction. Assume thatlimsupXn ⊂ X∞ and ∪
n∈N

Xn is relatively compact. If, for any

n∈ N, Tn admits a fixed point xn then the(G)-limit map T∞ admits a fixed point x∞ and the
sequence(xn)n∈N converges to x∞.
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Proof. Let xn be the fixed point ofTn for n∈ N. From compactness condition, there exists a
convergent subsequence(xs(n)). From the above remark,T∞ admits a fixed pointx∞ and by
Theorem 2 the sequence(xn) converges tox∞.

Let us remark that a variant of Theorem 7 can be proved under the following assumptions:
limsupTn(Xn)⊂ X∞ and ∪

n∈N
Tn(Xn) is relatively compact.

Let us introduce another notion of convergence which is weaker than(G)-convergence as
follows:

(G−) Gr(T∞)⊂ limsupGr(Tn) :

∀x∈ X∞, ∃(xn)n∈N ∈Πn∈NXn, ∃s∈ S : xs(n)→ x andTs(n)xs(n)→ T∞x,

whereS denotes the set of all increasing mapss : N→ N.
Convergence of the sequence of fixed points to a fixed point of a(G−)-limit map T∞

does not necessarily hold. Consider the family(Tn : R→ R)n∈N given byTnx := (−1)n and
T∞x := 1. It is clear that the sequence(Tn) converges toT∞ in the sense of(G−). The sequence
of fixed points corresponding to(Tn) is the divergent sequence((−1)n).

The map defined byT ′∞x :=−1 for x< 0 andT ′∞x := 1 for x≥ 0 proves that a(G−)-limit is
not necessarily unique and the Lipschitz property is not preserved in general (this(G−)-limit
is discontinuous).

We shall establish in the next result that a fixed point of a(G−)-limit map is then a cluster
point of the sequence of fixed points associated with(Tn).

Theorem 8. Let(Xn)n∈N be a family of subsets in a metric space(X,d) and(Tn : Xn→X)n∈N
a family of k-contraction mappings satisfying property(G−). If, for any n∈ N, xn is a fixed
point of Tn then x∞ is a cluster point of the sequence(xn)n∈N.

Proof. By property(G−), there exists a sequence(yn) ∈ ΠnXn which has a subsequence
(ys(n)) such thatys(n) → x∞ andTs(n)ys(n) → T∞x∞. Since each mapTs(n) is a k-contraction,
we have:

d(xs(n),x∞)≤ d(Ts(n)xs(n),Ts(n)ys(n))+d(Ts(n)ys(n),T∞x∞)

≤ kd(xs(n),ys(n))+d(Ts(n)ys(n),T∞x∞)

≤ (1−k)−1(kd(x∞,ys(n))+d(Ts(n)ys(n),T∞x∞)).

Thus(xs(n)) converges tox∞ the fixed point ofT∞.

§3. Stability and generalization of uniform convergence

When the constants of contraction are not uniform, it was remarked by Nadler that point-
wise convergence of(Tn : X→ X) is not a sufficient condition to get a stability result as in
Bonsall’s theorem. First, Nadler proved that, under a uniform convergence assumption of
(Tn : X → X)n∈N to a contractionT∞ : X → X, any sequence of fixed points corresponding
to (Tn) converges to the fixed point of the limit map. Let us note that later on, this author
obtained a stability result assuming that the metric spaceX is locally compact and that the
sequence of contractions(Tn : X→ X)n∈N converges pointwise to a contractionT∞ : X→ X.
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In this paper, we are interested in giving a generalization of the first result of Nadler (cf.
[4, Theorem 1]); some generalizations of the second one are obtained in [3].

Let us introduce a second convergence property as follows:

(H) ∀(xn)n∈N ∈Πn∈NXn, ∃(yn)n∈N ⊂ X∞ : d(xn,yn)→ 0 andd(Tnxn,T∞yn)→ 0.

We will say thatT∞ is a (H)-limit of (Tn)n∈N when property(H) is satisfied by the family
(Tn)n∈N.

The following proposition discloses a relationship between the two notions of conver-
gence(G) and(H).

Proposition 9. Let (Xn)n∈N be a family of nonempty subsets of a metric space(X,d) such
that X∞ ⊂ liminf Xn. Let(Tn : Xn→X)n∈N be a family of mappings such that T∞ is continuous
on X∞. If T∞ is a (H)-limit of (Tn)n∈N then T∞ is a (G)-limit of (Tn)n∈N.

Proof. Let x∈X∞; by the inclusionX∞ ⊂ liminf Xn there exists a sequence(xn) in X such that
xn∈Xn andxn→ x. By property(H) we can find a sequence(yn) in X∞ satisfyingd(xn,yn)→
0 andd(Tnxn,T∞yn)→ 0. Thusyn→ x and (by continuity ofT∞) we getT∞yn→ T∞x. We
conclude thatTnxn→ T∞x and then property(G) holds.

It is easy to see that a(G)-limit is not necessarily a(H)-limit of the sequence: consider
the family of mappings(Tn : R+ → R)n∈N defined byTnx := nx

1+nx and T∞x := 1 for any
x∈R+. We know thatT∞ is a(G)-limit of (Tn). But property(H) is not satisfied: for the null
sequence(xn) we get|Tn0−T∞yn|= 1 for any sequence(yn) converging to 0.

When all the subsets are equal to the whole space, we obtain the following comparison
with uniform convergence.

Proposition 10. Let(Tn : M→X)n∈N be a family of mappings where M is a nonempty subset
of a metric space(X,d).

(a) If (Tn)n∈N converges uniformly to T∞ on M then T∞ is a (H)-limit of (Tn)n∈N.

(b) The converse holds when T∞ is uniformly continuous on M.

Proof. Property (a) is obvious. To prove the second one we assume that the limit map is
uniformly continuous onM and that the convergence of(Tn) to T∞ is not uniform. Thus, there
exists a sequence(xn) in M such that(d(Tnxn,T∞xn)) does not converge to 0. If property(H)
holds we can find a sequence(yn) in M satisfyingd(xn,yn)→ 0 andd(Tnxn,T∞yn)→ 0. By
uniform continuity of the limit mapT∞, we getd(T∞yn,T∞xn)→ 0 and thend(Tnxn,T∞xn)→ 0
which leads to a contradiction. This completes the proof.

To show that the converse is not true in the general case, we can consider the space
X := (0,+∞) and the sequence(Tn : X→X)n∈N∗ defined byTnx := n

1+nx. Then(Tn) converges
in the sense of(H) to T∞ : X→X defined byT∞x := 1

x (∀x> 0). Indeed, for any sequence(xn)
in X and for the sequence(yn) := (xn + 1

n)n∈N∗ we have|xn−yn| → 0 and|Tnxn−T∞yn| → 0.
But this convergence is not uniform because sup

x∈X
|Tnx−T∞x|= sup

x>0

1
x(1+nx) = +∞.
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Remark2. (i) The uniqueness of a(H)-limit is not a direct consequence of its existence.
Let us consider the sequence(Tn)n∈N∗ given byTnx := x/n and the null mapT∞ defined on
[0,1]. It is obvious that(Tn) converges uniformly toT∞ on [0,1] and then property(H) is
satisfied. Consider another mapT ′∞ defined on[0,1] by T ′∞x : = 0 if x ∈ [0,1[, T ′∞1 := 1.
ThenT ′∞ is also a(H)-limit of (Tn): for any sequence(xn) in [0,1], there exists a sequence
(yn) := (xn−xn/n)⊂ [0,1[ such that|xn−yn| → 0 and|Tnxn−T ′∞yn|= xn/n→ 0.

(ii) If (Tn) is a sequence of k-Lipschitz maps and ifX∞ ⊂ liminf Xn then(Tn) has at most
one continuous(H)-limit. This is a consequence of propositions 1 and 9.

We now give our second result of stability.

Theorem 11. Let (X,d) be a metric space,(Xn)n∈N a family of nonempty subsets of X and
let (Tn : Xn→ X)n∈N a family of mappings satisfying the property(H) and such that T∞ is a
k∞-contraction. If, for any n∈N, xn is a fixed point of Tn then the sequence(xn)n∈N converges
to x∞.

Proof. By property (H), there exists a sequence(yn) in X∞ such thatd(xn,yn) → 0 and
d(Tnxn,T∞yn)→ 0. From the following inequalities:

d(xn,x∞)≤ d(Tnxn,T∞yn)+d(T∞yn,T∞x∞)
≤ d(Tnxn,T∞yn)+k∞d(yn,x∞)

we get
d(xn,x∞)≤ (1−k∞)−1(d(Tnxn,T∞yn)+k∞d(yn,xn)).

We immediately deduce the convergence of(xn) to x∞.

When all the domains are equal to the whole spaceX, Nadler’s theorem is a direct conse-
quence (cf. [4, Theorem 1]):

Corollary 12. Let (X,d) be a metric space,(Tn : X→ X)n∈N a sequence of mappings which
converges uniformly to a contraction mapping T∞ : X→ X. If, for any n∈ N, xn is a fixed
point of Tn then the sequence(xn)n∈N converges to x∞.
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