Topology of plane curves and "arithmetic" of double covers of \mathbb{P}^{2}

Hiroo Tokunaga ${ }^{1}$

Abstract

SUMMARY Let C be a reduced plane algebraic curve $\subset \mathbb{P}^{2}$. The combinatorics of C (or The combinatorial type of C means that roughly speaking, Data on \bullet the degrees of irreducible components, - how irreducible components intersects, \bullet the topological types of singularities and so on. One of naive questions is:

Problem: What can we say about the topology of $\left(\mathbb{P}^{2}, C\right)$ just from the combinatorics of C ?

Since the topology of $\left(\mathbb{P}^{2}, C\right)$ is not necessarily determined by the combinatorics of C, the above question is subtle. To consider the above problem, various topological invariants have been used. In this talk, we introduce a new point of view "arithmetic" of double covers and explain how it works through some examples.

[^0]
[^0]: ${ }^{1}$ Tokyo Metropolitan University, Japan

