Fifteenth International Conference Zaragoza-Pau on Mathematics and its Applications Jaca, September 10–12th 2018

Semigroup theory for the Stokes operator with Navier boundary condition on L^p spaces

C. Amrouche¹, M. Escobedo², A. Ghosh^{1,2}

SUMMARY

We consider the motion of a viscous incompressible fluid given by non-stationary Navier-Stokes equation with slip boundary condition in a bounded domain

$$\begin{cases} \frac{\partial \boldsymbol{u}}{\partial t} - \Delta \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \nabla \boldsymbol{\pi} = \boldsymbol{0}, & \text{div } \boldsymbol{u} = 0 & \text{in } \Omega \times (0, T); \\ \boldsymbol{u} \cdot \boldsymbol{n} = 0, & 2[(\mathbb{D}\boldsymbol{u})\boldsymbol{n}]_{\boldsymbol{\tau}} + \alpha \boldsymbol{u}_{\boldsymbol{\tau}} = \boldsymbol{0} & \text{on } \Gamma \times (0, T); \\ \boldsymbol{u}(0) = \boldsymbol{u}_{0} & \text{in } \Omega. \end{cases}$$
(1)

Here Ω is a bounded domain in \mathbb{R}^3 with boundary Γ . The initial velocity \boldsymbol{u}_0 and the (scalar) friction coefficient α are given functions; The external unit normal vector on Γ is denoted by $\boldsymbol{n}, \mathbb{D}\boldsymbol{u} = \frac{1}{2} \left(\nabla \boldsymbol{u} + \nabla^T \boldsymbol{u} \right)$ denotes the strain tensor and the subscript τ denotes the tangential component **i.e.** $\boldsymbol{v}_{\tau} = \boldsymbol{v} - (\boldsymbol{v} \cdot \boldsymbol{n})\boldsymbol{n}$ for any vector field \boldsymbol{v} . The functions \boldsymbol{u} and π describe respectively the velocity and the pressure of the fluid.

The boundary condition in (1) was introduced by H. Navier (in [1]) which is in recent years widely studied because of its significance in real world in different model for simulation of flows and fluid-solid interaction problems (cf. [2]).

The well-posedness of the above system imposing minimal regularity on α will be discussed. We use semigroup theory to first study the weak and strong solutions for the associated Stokes operator. Resolvent estimate uniform with respect to α is deduced which enables us to have bounds on the solution \boldsymbol{u} of (1) independent of α . Finally we study the behaviour of the solution of (1) with respect to the friction coefficient, in particular what happens if α goes to ∞ .

Keywords: Navier-Stokes equation, slip boundary condition, semigroup theory, dependence on friction coefficient

References

- C.L.M.H. NAVIER. Sur les lois d'équilibre et du mouvement des corps élastiques. Mem. Acad. R. Sci. Inst. 6, France, vol. 7, 375–393 (1827).
- [2] D. IFTIMIE, F. SUEUR. Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions. Arch. Ration. Mech. Anal. 199(1), 145–175, 2011.

$^{1}LMAP$

Université de Pau et des Pays de l'Adour email: cherif.amrouche@univ-pau.fr

²Departamento de Matemáticas Universidad del País Vasco email: miguel.excobedo@ehu.eus