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Semigroup theory for the Stokes operator with Navier
boundary condition on Lp spaces
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SUMMARY

We consider the motion of a viscous incompressible fluid given by non-stationary Navier-
Stokes equation with slip boundary condition in a bounded domain

∂u

∂t
−∆u + (u · ∇)u +∇π = 0, div u = 0 in Ω× (0, T );

u · n = 0, 2[(Du)n]τ + αuτ = 0 on Γ× (0, T );

u(0) = u0 in Ω.

(1)

Here Ω is a bounded domain in R3 with boundary Γ. The initial velocity u0 and the (scalar)
friction coefficient α are given functions; The external unit normal vector on Γ is denoted by
n, Du = 1

2

(
∇u +∇Tu

)
denotes the strain tensor and the subscript τ denotes the tangential

component i.e. vτ = v − (v · n)n for any vector field v. The functions u and π describe
respectively the velocity and the pressure of the fluid.

The boundary condition in (1) was introduced by H. Navier (in [1]) which is in recent
years widely studied because of its significance in real world in different model for simulation
of flows and fluid-solid interaction problems (cf. [2]).

The well-posedness of the above system imposing minimal regularity on α will be dis-
cussed. We use semigroup theory to first study the weak and strong solutions for the
associated Stokes operator. Resolvent estimate uniform with respect to α is deduced which
enables us to have bounds on the solution u of (1) independent of α. Finally we study the
behaviour of the solution of (1) with respect to the friction coefficient, in particular what
happens if α goes to ∞.
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