Multiplicative Lie triple higher derivations on generalized matrix algebras

Mohammad Ashraf, Mohd Shuaib Akhtar, Bilal Ahmad Wani Al Baba

SUMMARY

Let N be the set of nonnegative integers and $G=(A, M, N, B)$ be a 2 -torsion free generalized matrix algebra over a commutative ring R. In the present paper, under some lenient assumptions on G , it is shown that if ? = ?nn?N is a se- quence of mappings ?n : G ? G (not necessarily linear) satisfying ?n([[a,b],c]) =
$[[? \mathrm{r}(\mathrm{a}), ? \mathrm{~s}(\mathrm{~b})], ? \mathrm{t}(\mathrm{c})]$ for all $\mathrm{a}, \mathrm{b}, \mathrm{c}$? G , then for each n ? $\mathrm{N}, ? \mathrm{n}=\mathrm{dn}+? \mathrm{n} ; \mathrm{r}+\mathrm{s}+\mathrm{t}=\mathrm{n}$ where $\mathrm{dn}: \mathrm{G}$? G is an additive mapping satisfying $\mathrm{dn}(\mathrm{ab})=\mathrm{dr}(\mathrm{a}) \mathrm{ds}(\mathrm{b}) \mathrm{r}+\mathrm{s}=\mathrm{n}$ for all a,b ? G, i.e., $\mathrm{D}=\mathrm{dnn}$?N is an additive higher derivation on G and ?n: G ? $\mathrm{Z}(\mathrm{G})$ (where $\mathrm{Z}(\mathrm{G})$ is the center of G) is a map vanishing at every sec- ond commutator $[[a, b], c]$.
${ }^{1}$ Department of Mathematics
Aligarh Muslim University Aligarh -202002(India)
E-mails : mshuaibakhtar@gmail.com

