L¹-CONTRACTION AND STRONG CONVERGENCE OF APPROXIMATIONS FOR A PSEUDOMONOTONE SPDE Aleksandra Zimmermann

Abstract. We prove an L^1 -contraction principle to the problem

	$(du - \operatorname{div}(\nabla u ^{p-2}\nabla u + F(u)) dt = H(u) dW$	in $\Omega \times Q_T$,
{	u = 0	on $\Omega \times (0, T) \times \partial D$,
	$u(0,\cdot) = u_0 \in L^2(D)$	in $\Omega \times D$,

for a cylindrical Wiener process W(t) in $L^2(D)$ with respect to a filtration (\mathcal{F}_t) satisfying the usual assumptions, $p \ge 2$ and $F : \mathbb{R} \to \mathbb{R}^d$ locally Lipschitz continuous. We consider the case of multiplicative noise with $H : L^2(D) \to HS(L^2(D))$, $HS(L^2(D))$ being the space of Hilbert-Schmidt operators, satisfying appropriate regularity conditions. Moreover, we discuss conditions for strong convergence of approximate solutions and adapt the argument of Gyöngy and Krylov.

Keywords: stochastic evolution equation, contraction principle, pathwise uniqueness, strong convergence.

AMS classification: 35K92, 35K55, 60H15.

§1. Introduction

Let (Ω, \mathcal{F}, P) be a complete, countably generated probability space (for example the classical Wiener space), $D \subset \mathbb{R}^d$ be a bounded Lipschitz domain, T > 0, $Q_T := (0, T) \times D$ and $p \ge 2$. For separable Hilbert spaces \mathcal{U}, \mathcal{H} , we denote the space of Hilbert-Schmidt operators from \mathcal{U} to \mathcal{H} by $HS(\mathcal{U}; \mathcal{H})$. We are interested in

$$\begin{cases} du - \operatorname{div}(|\nabla u|^{p-2}\nabla u + F(u)) \, dt = H(u) \, dW & \text{in } \Omega \times Q_T, \\ u = 0 & \text{on } \Omega \times (0, T) \times \partial D, \\ u(0, \cdot) = u_0 \in L^2(D) & \text{in } \Omega \times D, \end{cases}$$
(1)

for $F : \mathbb{R} \to \mathbb{R}^d$ locally Lipschitz continuous. $H : L^2(D) \to HS(L^2(D))$ satisfies the following assumption: For an orthonormal basis $(e_n)_{n \in \mathbb{N}}$ of $L^2(D)$ and $u \in L^2(D)$,

$$H(u)(e_n) := \{x \mapsto h_n(u(x))\}$$

where, for all $n \in \mathbb{N}$, $h_n : \mathbb{R} \to \mathbb{R}$ is a continuous function such that

$$(H1) \sum_{n=0}^{\infty} |h_n(\lambda) - h_n(\mu)|^2 \le C_1 |\lambda - \mu|^2$$

holds for a constant $C_1 \ge 0$. W(t) is a cylindrical Wiener process with values in $L^2(D)$ with respect to a filtration (\mathcal{F}_t) satisfying the usual assumptions. More precisely: Let $(e_n)_{n\in\mathbb{N}}$ be an orthonormal basis of $L^2(D)$ and $(\beta_n(t))_{n\in\mathbb{N}}$ a sequence of independent, real-valued \mathcal{F}_t -Brownian motions. We (formally) define

$$W(t) := \sum_{n=1}^{\infty} e_n \beta_n(t).$$
⁽²⁾

It is easy to see that the sum on the right-hand side of (2) does not converge in $L^2(D)$. It has to be understood in the following sense (see, e.g. [3]): For $u = \sum_{n=1}^{\infty} u_n e_n$ and $v = \sum_{n=1}^{\infty} v_n e_n$

$$(u,v)_U := \sum_{n=1}^{\infty} \frac{u_n v_n}{n^2}$$

is a scalar product on $L^2(D)$. Let U be the linear space obtained by completion of $L^2(D)$ with respect to the norm $\|\cdot\|_U$ induced by $(\cdot, \cdot)_U$. It follows immediately that $(U, (\cdot, \cdot)_U)$ is a Hilbert space and (ne_n) is an orthonormal basis of U. Since

$$W(t) = \sum_{n=1}^{\infty} e_n \beta_n(t) = \sum_{n=1}^{\infty} \frac{1}{n} (n e_n) \beta_n(t),$$
(3)

W(t) can be interpreted as *Q*-Wiener process with covariance Matrix $Q = \operatorname{diag}(\frac{1}{n^2})$ and values in *U*. Since $Q^{\frac{1}{2}}(U) = L^2(D)$, for all square integrable and predictable $\Phi : \Omega \times (0, T) \rightarrow$ $HS(L^2(D))$ the stochastic integral with respect to the cylindrical Wiener process W(t) is welldefined.

Due to the term -div F(u) the equation (1) is pseudomonotone. Therefore the classical results of well-posedness in [10] do not apply to (1). In order to show existence and uniqueness of solutions to (1), one can use an implicit time discretization. Well-posedness of (1) is the subject of a forthcoming research article.

In this contribution, we want to present some partial results: Firstly, we prove an L^1 -contraction principle which, in particular, implies pathwise uniqueness of (1).

Further results are devoted to the question of strong convergence of approximate solutions (u_N) for (1), e.g., the approximate solutions constructed from an implicit Euler scheme. In the deterministic case, the a-priori estimates provide only weak convergence of (u_N) and strong convergence is obtained by a compactness argument. In the case of a stochastic PDE with multiplicative noise we apply Skorokhod's theorem: We change the probability space in order to pass to the limit in all nonlinear expressions. The solution obtained in this way is a martingale solution on a different stochastic basis $(\hat{\Omega}, \hat{\mathcal{F}}, (\hat{\mathcal{F}}_l), \hat{P})$ with respect to a different, $\hat{\mathcal{F}}_l$ -Wiener process $\hat{W}(t)$.

The argument of Gyöngy and Krylov (see [4]) is based on a result from Yamada and Watanabe (see [12]) and states, roughly speaking, that existence of a martingale solution together with pathwise uniqueness of an SPDE implies the convergence in probability of the (Euler) approximation on any probability space (Ω, \mathcal{F}, P) . Recall that (1) is called pathwise unique, if whenenver $(\hat{\Omega}, \hat{\mathcal{F}}, (\hat{\mathcal{F}}_t), \hat{P}, \hat{W}(t), u^1), (\hat{\Omega}, \hat{\mathcal{F}}, (\hat{\mathcal{F}}_t), \hat{P}, \hat{W}(t), u^2)$ are solutions to (1) with respect to the same initial value u_0 , then $u_1(t) = u_2(t)$ a.s. in $\hat{\Omega}$ for any $t \in [0, T]$. The crucial step in the argument of Gyöngy and Krylov is the construction of two martingale solutions u^i , i = 1, 2 without changing the quantities $(\hat{\Omega}, \hat{\mathcal{F}}, (\hat{\mathcal{F}}_t), \hat{P}, \hat{W}(t))$. To this end, one can adapt a direct martingale identification argument developed in [9], [2] and avoid the use of the martingale representation theorem. The ideas of [9], [2] have been generalized and applied to stochastic differential equations in [6] and [7]. In [5], the direct martingale representation argument has been applied in combination with the Gyöngy-Krylov argument to degenerate parabolic SPDEs. Recently, the technique of [5] has been adapted to the stochastic isentropic Euler equations (see [1]).

§2. L^1 contraction principle

Proposition 1. Assume that W(t) is a cylindrical Wiener process in $L^2(D)$ with respect to the stochastic basis $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$ and u_1, u_2 are solutions to (1) with respect to the initial values u_{01} and u_{02} in $L^2(D)$ respectively on $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$. Then, we have

$$E \int_{D} |u_1(t) - u_2(t)| \, dx \le \int_{D} |u_{01} - u_{02}| \, dx \tag{4}$$

for all $t \in [0, T]$.

Proof. For $\delta > 0$, let η_{δ} be an approximation of the absolute value, i.e.

$$\eta_{\delta}(r) = \begin{cases} -r & \text{if } r < -2\delta, \\ \frac{r^2}{2\delta} & \text{if } -2\delta \le r \le 2\delta \\ r & \text{if } r > 2\delta. \end{cases}$$

Using the Itô formula, it follows that

$$I_1 = I_2 + I_3 + I_4 + I_5 \tag{5}$$

for all $t \in [0, T]$ a.s. in Ω , where

$$I_{1} = \int_{D} \eta_{\delta}(u_{1} - u_{2})(t) \, dx - \int_{D} \eta_{\delta}(u_{01} - u_{02}) \, dx,$$

$$I_{2} = -\int_{0}^{t} \int_{D} (|\nabla u_{1}|^{p-2} \nabla u_{1} - |\nabla u_{2}|^{p-2} \nabla u_{2}) \cdot \nabla(u_{1} - u_{2}) \eta_{\delta}^{"}(u_{1} - u_{2}) \, dx \, ds,$$

$$I_{3} = -\int_{0}^{t} \int_{D} (F(u_{1}) - F(u_{2})) \cdot \nabla(u_{1} - u_{2}) \eta_{\delta}^{"}(u_{1} - u_{2}) \, dx \, ds,$$

$$I_{4} = \int_{0}^{t} (\eta_{\delta}^{'}(u_{1} - u_{2}), H(u_{1}) - H(u_{2}) \, dW)_{2},$$

$$I_{5} = \frac{1}{2} \int_{0}^{t} \eta_{\delta}^{"}(u_{1} - u_{2}) ||H(u_{1}) - H(u_{2})||_{HS(L^{2}(D))}^{2} \, ds.$$
(6)

Since η_{δ} is convex, it follows that $I_2 \leq 0$ for all $t \in [0, T]$, a.s. in Ω . Moreover, $E[I_4] = 0$ for all $t \in [0, T]$. Therefore, from (5) and (6) it follows that

$$E[I_1] \le E[I_3] + E[I_5]. \tag{7}$$

Since, for any $t \in [0, T]$, $\eta_{\delta}(u_1 - u_2)(t)$ converges to $|(u_1 - u_2)(t)|$ for $\delta \to 0^+$ a.e. in $\Omega \times D$, and $|\eta_{\delta}(u_1 - u_2)(t)| \le |(u_1 - u_2)(t)|$ for all $\delta > 0$ a.s. in $\Omega \times D$, it follows that

$$\lim_{\delta \to 0^+} E[I_1] = E \int_D |u_1(t) - u_2(t)| \, dx - E \int_D |u_{01} - u_{02}| \, dx \tag{8}$$

for any $t \in [0, T]$. For any $\delta > 0$ we have

$$\eta_{\delta}^{\prime\prime}(u_1 - u_2) = \frac{1}{2\delta} \chi_{\{|u_1 - u_2| \le 2\delta\}}$$

a.s. on $\Omega \times Q_T$, thus for $L \ge 0$ being the Lipschitz constant of F we have

$$|E[I_3]| \leq \frac{1}{2\delta} E \int_{\{|u_1 - u_2| \leq 2\delta\}} |F(u_1) - F(u_2)| |\nabla(u_1 - u_2)| \, dx \, ds$$

$$\leq \frac{L}{2\delta} E \int_{\{|u_1 - u_2| \leq 2\delta\}} |u_1 - u_2| |\nabla(u_1 - u_2)| \, dx \, ds$$

$$\leq LE \int_{\{|u_1 - u_2| \leq 2\delta\}} |\nabla(u_1 - u_2)| \, dx \, ds.$$
(9)

Simirlarly, by (*H*1)

$$|E[I_{5}]| \leq \frac{1}{2\delta} E \int_{\{|u_{1}-u_{2}| \leq 2\delta\}} \sum_{n=1}^{\infty} |h_{n}(u_{1}) - h_{n}(u_{2})|^{2} dx ds$$
$$\leq \frac{C_{1}}{2\delta} E \int_{\{|u_{1}-u_{2}| \leq 2\delta\}} |u_{1} - u_{2}|^{2} dx ds$$
$$\leq 2\delta C \tag{10}$$

where $C \ge 0$ is a constant not depending on $\delta > 0$. Thus from (9) it follows that

$$\lim_{\delta \to 0^+} E[I_3] = E \int_{\{u_1 = u_2\}} |\nabla(u_1 - u_2)| \, dx \, ds = 0 \tag{11}$$

and from (10) it follows that $\lim_{\delta \to 0^+} E[I_5] = 0$.

§3. Pathwise uniqueness and strong convergence

If u_1 and u_2 are solutions to (1) with respect to the same initial value $u_0 \in L^2(D)$ and $\mu_{1,2}$ is the joint law of (u_1, u_2) on $L^2(0, T; L^2(D)) \times L^2(0, T; L^2(D))$, by Proposition 1 it follows that

$$\mu_{1,2}(\{(\xi,\zeta)\in L^2(0,T;L^2(D))\times L^2(0,T;L^2(D))\,|\,\xi=\zeta\})=\int_{\Omega\times\Omega}\chi_{\{u_1=u_2\}}\,dP\otimes dP=1,$$

hence the support of $\mu_{1,2}$ is contained in the diagonal of $L^2(0, T; L^2(D)) \times L^2(0, T; L^2(D))$. The concept of pathwise uniqueness is linked to the concept of existence of strong solutions via the following Lemma (see [4], Lemma 1.1, p.144 and 145):

Lemma 2. Let V be a Polish space equipped with the Borel σ -algebra. A sequence of V-valued random variables (X_n) converges in probability if and only if for every pair of subsequences X_n and X_m there exists a joint subsequence (X_{n_k}, X_{m_k}) which converges for $k \to \infty$ in law to a probability measure μ such that

$$\mu(\{(w, z) \in V \times V \mid w = z\}) = 1.$$

§4. Assumptions and convergence results

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$ be the original stochastic basis for (1) and W(t) the corresponding cylindrical \mathcal{F}_t -Wiener process in $L^2(D)$. Assume now that (u_N) is a sequence of square-integrable, left-continuous and \mathcal{F}_t -adapted stochastic processes on (Ω, \mathcal{F}, P) with values in $L^2(D)$ which is tight in $L^2(0, T; L^2(D))$ satisfying

$$E\int_0^T \|\nabla u_N\|^p \, dt \le C \tag{12}$$

for all $N \in \mathbb{N}$, $p \ge 2$ and some constant $C \ge 0$. Let (u_M) and (u_L) be a pair of subsequences of (u_N) . Since (u_M, u_L, W) is tight on

$$L^{2}(0,T;L^{2}(D)) \times L^{2}(0,T;L^{2}(D)) \times C([0,T];U),$$

according to Prokhorov's theorem we can extract a joint subsequence $\mu^j := (u_{M_j}, u_{L_j}, W)$ which converges in law to some probability measure μ . Applying the theorem of Skorokhod of [11], Theorem 1.10.4 and Addendum 1.10.5, p.59 to (u_{M_j}, u_{L_j}, W) we find a probability space $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{P})$, a sequence of measurable functions

$$\Phi_j: (\hat{\Omega}, \hat{\mathcal{F}}) \to (\Omega, \mathcal{F}), \ j \in \mathbb{N}$$

such that $P = \hat{P} \circ \Phi_j^{-1}$ for all $j \in \mathbb{N}$ and measurable functions $u_{\infty}^1, u_{\infty}^2, W_{\infty}$ having the following properties:

i.) $\hat{u}_{M_j} := u_{M_j} \circ \phi_j \to u_\infty^1$ in $L^2(0, T; L^2(D))$ for $j \to \infty$ a.s. in $\hat{\Omega}$,

ii.)
$$\hat{u}_{L_i} := u_{L_i} \circ \phi_j \to u_{\infty}^2$$
 in $L^2(0, T; L^2(D))$ for $j \to \infty$ a.s. in $\hat{\Omega}_j$

- *iii.*) $W_j := W \circ \phi_j \to W_\infty$ in C([0, T]; U) for $j \to \infty$ a.s. in $\hat{\Omega}$.
- $iv.) \ \mathcal{L}(u_{\infty}^{1},u_{\infty}^{2},W)=\mu.$

The following Lemma is a direct consequence of (14), (12), the Vitali theorem and the equality of laws of W and W_j for all $j \in \mathbb{N}$:

Lemma 3. We have the following convergence results for $j \rightarrow \infty$:

i.)
$$\hat{u}_{M_j} \rightarrow u_{\infty}^1$$
 and $\hat{u}_{L_j} \rightarrow u_{\infty}^2$ in $L^2(\hat{\Omega}; L^2(0, T; L^2(D)))$

- *ii.*) $W_j \rightarrow W_{\infty}$ in $L^2(\hat{\Omega}; C([0, T]; U))$
- *iii.*) $W_j(t) W_j(s) \rightarrow W_{\infty}(t) W_{\infty}(s)$ in $L^2(\hat{\Omega}; U)$ for all $t \in [0, T], 0 \le s \le t$

Aleksandra Zimmermann

iv.) For all $t \in [0, T]$, $0 \le s \le t$ and all $\psi \in C_b(L^2(0, s; L^2(D))^2 \times C([0, T]; L^2(D))^2 \times C([0, s]; U))$

$$\lim_{j \to \infty} \psi(\hat{u}_{M_j}, \hat{u}_{L_j}, B_{M_j}, B_{L_j}, W_j) = \psi(u_{\infty}^1, u_{\infty}^2, B_{\infty}^1, B_{\infty}^2, W_{\infty})$$
(13)

in $L^2(\hat{\Omega})$.

Assume that there exist B^1_{∞} , B^2_{∞} in $L^2(\hat{\Omega}; C([0, T]; L^2(D)))$ such that

$$\lim_{j \to \infty} B_{M_j} = B^1_{\infty}, \ \lim_{j \to \infty} B_{L_j} = B^2_{\infty}$$
(14)

in $L^2(\hat{\Omega}; C([0, T]; L^2(D)))$. Moreover, assume that for i = 1, 2, the function $u_{\infty}^i : \hat{\Omega} \times [0, T] \to L^2(D)$ is a stochastic process with $u_{\infty}^i(0) = u_0$ and there exists $G^i \in L^{p'}(\hat{\Omega} \times Q_T)^d$ such that

$$u_{\infty}^{i}(t) = B_{\infty}^{i}(t) + u_{0} + \int_{0}^{t} \operatorname{div}(G^{i} + F(u_{\infty}^{i})) \, ds \tag{15}$$

holds in $L^2(D)$ a.s. in $\hat{\Omega}$ for all $t \in [0, T]$. Let us denote the augmentation of the filtration $\sigma(W_j(s))_{0 \le s \le t, t \in [0,T]}$ by (\mathcal{F}_t^j) . It is a direct consequence of Skorokhod's theorem and [3], Theorem 4.4, p. 89 that $W_j(t)$ is a *Q*-Wiener process in *U* with respect to (\mathcal{F}_t^j) , thus a cylindrical \mathcal{F}_t^j -Wiener process in $L^2(D)$ for all $j \in \mathbb{N}$. Moreover $\hat{u}_{M_j} = u_{M_j} \circ \phi_j$, $\hat{u}_{L_j} = u_{L_j} \circ \phi_j$ are left-continuous, \mathcal{F}_t^j -adapted processes with values in $L^2(D)$ and therefore the stochastic integrals

$$B_{M_j}(t) := \int_0^t H(u_{M_j}) \, dW_j, \ B_{L_j}(t) := \int_0^t H(u_{L_j}) \, dW_j, \ t \in [0, T]$$

are well-defined. Note that by assumption (15)

$$B_{\infty}^{i}(t) = u_{\infty}^{i}(t) - u_{0} - \int_{0}^{t} \operatorname{div}(G^{i} + F(u_{\infty}^{i})) \, ds \tag{16}$$

for all $t \in [0, T]$. The right-hand side of (16) can not be written as a nice operator applied to $u_{\infty}^{i}(t)$. Therefore, it is in general not clear if B_{∞}^{i} is adapted to $\sigma(u_{\infty}^{1}(s), u_{\infty}^{2}(s), W_{\infty}(s))_{0 \le s \le t}$, $t \in [0, T]$ thus we define $(\mathcal{F}_{t}^{\infty})$ to be the augmentation of the filtration

$$\sigma(u_{\infty}^{1}(s), u_{\infty}^{2}(s), B_{\infty}^{1}(s), B_{\infty}^{2}(s), W_{\infty}(s))_{0 \le s \le t}, \ t \in [0, T].$$

§5. Martingale identification argument

Lemma 4. For $i = 1, 2, B^i_{\infty}(t)$ is a \mathcal{F}^{∞}_t -martingale with quadratic variation process

$$\ll B^{i}_{\infty} \gg_{t} = \int_{0}^{t} \boldsymbol{H}(u^{i}_{\infty}) \circ \boldsymbol{H}^{*}(u^{i}_{\infty}) \, ds \tag{17}$$

for all $t \in [0, T]$, where we use the notation

$$H(u) := H(u) \circ Q^{1/2}, \ u \in L^2(D).$$

Proof. Let (e_l) be an orthonormal basis of $L^2(D)$. We fix $t \in [0,T]$, $0 \le s \le t$, $\psi \in C_b(L^2(0,s;L^2(D))^2 \times C([0,T];L^2(D))^2 \times C([0,s];U))$ and $n, m \in \mathbb{N}$. Moreover, for $u \in L^2(D)$, and $B(r) \in L^2(D)$, $r \in [0,T]$ we define

$$(B, e_n, e_m)(r) := (B(r), e_n)_2(B(r), e_m)_2,$$
$$\Lambda(s, t, u, e_n, e_m) := \left(\left[\int_s^t \mathbf{H}(u) \circ \mathbf{H}^*(u) \, dr \right](e_n), e_m \right)_2$$

Since $B_{M_j}(t)$ and $B_{L_j}(t)$ are stochastic integrals, from the convergence results of Lemma 3 and Assumption (14) it follows that

$$0 = \lim_{j \to \infty} E[(B_{M_j}(t) - B_{M_j}(s), e_n)_2 \psi(\hat{u}_{M_j}, \hat{u}_{L_j}, B_{M_j}, B_{L_j}, W_j)]$$

= $E[(B_{\infty}^1(t) - B_{\infty}^1(s), e_n)_2 \psi(u_{\infty}^1, u_{\infty}^2, B_{\infty}^1, B_{\infty}^2, W_{\infty})],$ (18)

$$0 = \lim_{j \to \infty} E[(B_{L_j}(t) - B_{L_j}(s), e_n)_2 \psi(\hat{u}_{M_j}, \hat{u}_{L_j}, B_{M_j}, B_{L_j}, W_j)]$$

= $E[(B_{\infty}^2(t) - B_{\infty}^2(s), e_n)_2 \psi(u_{\infty}^1, u_{\infty}^2, B_{\infty}^1, B_{\infty}^2, W_{\infty})],$ (19)

for $j \to \infty$. Moreover,

$$0 = E[((B_{M_j}, e_n, e_m)(t) - (B_{M_j}, e_n, e_m)(s) - \Lambda(s, t, \hat{u}_{M_j}, e_n, e_m))\psi(\hat{u}_{M_j}, \hat{u}_{L_j}, B_{M_j}, B_{L_j}, W_j)] \rightarrow E[((B_{\infty}^1, e_n, e_m)(t) - (B_{\infty}^1, e_n, e_m)(s) - \Lambda(s, t, u_{\infty}^1, e_n, e_m))\psi(u_{\infty}^1, u_{\infty}^2, B_{\infty}^1, B_{\infty}^2, W_{\infty})],$$
(20)

$$0 = E[((B_{L_j}, e_n, e_m)(t) - (B_{L_j}, e_n, e_m)(s) - \Lambda(s, t, \hat{u}_{L_j}, e_n, e_m))\psi(\hat{u}_{M_j}, \hat{u}_{L_j}, B_{M_j}, B_{L_j}, W_j)] \rightarrow E[((B_{\infty}^2, e_n, e_m)(t) - (B_{\infty}^2, e_n, e_m)(s) - \Lambda(s, t, u_{\infty}^2, e_n, e_m))\psi(u_{\infty}^1, u_{\infty}^2, B_{\infty}^1, B_{\infty}^2, W_{\infty})].$$
(21)

for $j \to \infty$.

Lemma 5. $W_{\infty}(t)$ is a \mathcal{F}_t^{∞} -martingale.

Proof. By definition of (\mathcal{F}_t^{∞}) , W_{∞} is adapted to (\mathcal{F}_t^{∞}) . We fix $t \in [0, T]$, $0 \le s \le t$, $\psi \in C_b(L^2(0, s; L^2(D))^2 \times C([0, T]; L^2(D))^2 \times C([0, s]; U))$ and $h \in U$. Since \hat{u}_{M_j} and \hat{u}_{L_j} are \mathcal{F}_t^j -adapted and B_{M_j} , B_{L_j} are stochastic integrals with respect to W_j for all $j \in \mathbb{N}$, we have

$$E[(W_j(t) - W_j(s), h)_U \psi(\hat{u}_{M_j}, \hat{u}_{L_j}, B_{M_j}, B_{L_j}, W_j)] = 0$$
(22)

for all $j \in \mathbb{N}$. Using the convergence results of Lemma 3, we may pass to the limit with $j \to \infty$ in (22) and find that

$$E[(W_{\infty}(t) - W_{\infty}(s), h)_{U}\psi(u_{\infty}^{1}, u_{\infty}^{2}, B_{\infty}^{1}, B_{\infty}^{2}, W_{\infty})] = 0.$$
(23)

Lemma 6. $W_{\infty}(t)$ is a \mathcal{F}_t^{∞} -Wiener process.

Remark 1. In particular, Lemma 6 implies that $W_{\infty}(t)$ is a cylindrical Wiener process in $L^2(D)$ with increments W(t) - W(s), $0 \le s \le t \le T$, independent of \mathcal{F}_s^{∞} .

Proof. From Lemma 5 it follows that $W_{\infty}(t)$ is a \mathcal{F}_t^{∞} -martingale with $W_{\infty}(0) = 0$. According to [3], Theorem 4.4, p. 89 it is left to show that

$$\ll W_{\infty} \gg_t = tQ$$
 for all $t \in [0, T]$. (24)

Let (g_l) be an orthonormal basis of U. We fix $t \in [0, T]$, $0 \le s \le t$, $\psi \in C_b(L^2(0, s; L^2(D))^2 \times C([0, T]; L^2(D))^2 \times C([0, s]; U))$ and $n, m \in \mathbb{N}$. Since $\ll W_j \gg_t = tQ$ for all $t \in [0, T]$ and all $j \in \mathbb{N}$, from the convergence results of Lemma 3 it follows that

$$0 = E[((W_j, g_n, g_m)(t) - (W_j, g_n, g_m)(s) - ((t - s)Q(g_n), g_m)_U)\psi(\hat{u}_{M_j}, \hat{u}_{L_j}, B_{M_j}, B_{L_j}, W_j)] \rightarrow E[((W_{\infty}, g_n, g_m)(t) - (W_{\infty}, g_n, g_m)(s) - ((t - s)Q(g_n), g_m)_U\psi(u_{\infty}^1, u_{\infty}^2, B_{\infty}^1, B_{\infty}^2, W_{\infty}))]$$
(25)

for $j \to \infty$, where

$$(W, g_n, g_m)(r) := (W(r), g_n)_U (W(r), g_m)_U$$

for $W(r) \in U$, $r \in [0, T]$, thus (24) holds true.

Corollary 7. For i = 1, 2, the process

$$M_{i}(t) := \int_{0}^{t} H(u_{\infty}^{i}) \, dW_{\infty}, \ t \in [0, T]$$
(26)

is a \mathcal{F}_t^{∞} -martingale with quadratic variation process

$$\ll M_i \gg_t = \int_0^t (H(u^i_\infty) \circ Q^{1/2}) \circ (H(u^i_\infty) \circ Q^{1/2})^* ds$$

for all $t \in [0, T]$.

Remark 2. For $i = 1, 2, u^i : \hat{\Omega} \times [0, T] \to L^2(D)$ is assumed to be a stochastic process. By definition of (\mathcal{F}_t^{∞}) we get that u^i is \mathcal{F}_t^{∞} -adapted and by Lemma 3 it follows that u^i is square integrable. From [8], Remark 1.1., p.45 it follows that u^i is a.s. equal to a predictable process, thus the stochastic integral in (26) is well-defined.

Lemma 8. For i = 1, 2 we have the cross quadratic variation process

$$\ll W_{\infty}, B^{i}_{\infty}, \gg_{t} = \int_{0}^{t} Q \circ H^{*}(u^{i}_{\infty}) \, ds.$$
⁽²⁷⁾

Proof. Since, for any square-integrable and predictable $\phi \in L^2(\hat{\Omega} \times (0, T); HS(L^2(D)))$ and any *Q*-Wiener process W(t) we have

$$\int_{0}^{t} (\phi \circ Q^{1/2}) \circ (\phi \circ Q^{1/2})^{*} ds = \ll \int_{0}^{t} \phi \, dW \gg_{t}$$
$$= \ll \int_{0}^{t} \phi \, dW, \int_{0}^{t} \phi \, dW \gg_{t}$$
$$= \int_{0}^{t} \phi \, d \ll W, \int_{0}^{t} \phi \, dW \gg_{s},$$
(28)

 L^1 -contraction and strong convergence of approximations for a pseudomonotone SPDE

and from (28) it follows that

$$\ll W, \int_0^t \phi \, dW \gg = \int_0^t Q^{1/2} \circ (\phi \circ Q^{1/2})^* \, ds = \int_0^t Q \circ \phi^* \, ds.$$
(29)

Therefore, for all $j \in \mathbb{N}$ and $t \in [0, T]$ we have

$$\ll W_j, B_{M_j} \gg_t = \int_0^t Q \circ H^*(\hat{u}_{M_j}) \, ds \tag{30}$$

and

$$\ll W_j, B_{L_j} \gg_t = \int_0^t Q \circ H^*(\hat{u}_{L_j}) \, ds.$$
(31)

We choose orthonormal bases (g_l) of U and (e_l) of $L^2(D)$, fix $t \in [0, T]$, $0 \le s \le t$, $\psi \in C_b(L^2(0, s; L^2(D))^2 \times C([0, T]; L^2(D))^2 \times C([0, s]; U))$ and $n, m \in \mathbb{N}$. Using the convergence results of Lemma 3 and Assumption 14 from (30) and (31) it follows that

$$0 = E[((B_{M_j}, W_j, e_n, g_m)(t) - (B_{M_j}, W_j, e_n, g_m)(s) - \int_s^t (Q \circ H^*(\hat{u}_{M_j})(e_n), g_m)_U \, dr)\psi_j]$$

$$\to E[((B_{\infty}^1, W_{\infty}, e_n, g_m)(t) - (B_{\infty}^1, W_{\infty}, e_n, g_m)(s) - \int_s^t (Q \circ H^*(u_{\infty}^1)(e_n), g_m)_U \, dr)\psi_{\infty}] \quad (32)$$

for $j \to \infty$ and

$$0 = E[((B_{L_j}, W_j, e_n, g_m)(t) - (B_{L_j}, W_j, e_n, g_m)(s) - \int_s^t (Q \circ H^*(\hat{u}_{L_j})(e_n), g_m)_U \, dr)\psi_j]$$

$$\to E[((B_{\infty}^2, W_{\infty}, e_n, g_m)(t) - (B_{\infty}^2, W_{\infty}, e_n, g_m)(s) - \int_s^t (Q \circ H(u_{\infty}^2)(e_n), g_m)_U \, dr)\psi_{\infty}] \quad (33)$$

for $j \to \infty$, where

$$\psi_j := \psi(\hat{u}_{M_j}, \hat{u}_{L_j}, B_{M_j}, B_{L_j}, W_j), \ \psi_{\infty} := \psi(u_{\infty}^1, u_{\infty}^2, B_{\infty}^1, B_{\infty}^2, W_{\infty})$$

and

$$(B, W, e_n, g_m)(r) := (B(r), e_n)_2 (W(r), g_m)_U$$

for $r \in [0, T]$ and $W(r) \in U$, $B(r) \in L^2(D)$.

Lemma 9. For i = 1, 2 and all $t \in [0, T]$ we have

$$\ll \int_0^{\infty} H(u^i_{\infty}) \, dW_{\infty} - B^i_{\infty} \gg_t = 0, \tag{34}$$

Proof. For i = 1, 2 from Lemmas 4-6 and Corollary 7 it follows that

$$\ll \int_{0}^{t} H(u_{\infty}^{i}) dW_{\infty} - B_{\infty}^{i} \gg_{t}$$

$$= \ll \int_{0}^{t} H(u_{\infty}^{i}) dW_{\infty} \gg_{t} -2 \ll \int_{0}^{t} H(u_{\infty}^{i}) dW_{\infty}, B_{\infty}^{i} \gg_{t} + \ll B_{\infty}^{i} \gg_{t}$$

$$= 2 \int_{0}^{t} (H(u_{\infty}^{i}) \circ Q^{1/2}) \circ (H(u_{\infty}^{i}) \circ Q^{1/2})^{*} ds - 2 \int_{0}^{t} H(u_{\infty}^{i}) d\ll W_{\infty}, B_{\infty}^{i} \gg_{s}$$
(35)

207

where, according to Lemma 8

$$\int_{0}^{t} H(u_{\infty}^{i}) d \ll W_{\infty}, B_{\infty}^{i} \gg_{s}$$

=
$$\int_{0}^{t} H(u_{\infty}^{i}) \circ Q^{1/2} \circ (Q^{1/2})^{*} \circ H^{*}(u_{\infty}^{i}) ds = \int_{0}^{t} (H(u_{\infty}^{i}) \circ Q^{1/2}) \circ (H(u_{\infty}^{i}) \circ Q^{1/2})^{*} ds \quad (36)$$

Now, (34) follows from (35) and (36).

Corollary 10. From Lemma 9 it follows that for i = 1, 2

$$B^i_{\infty}(t) = \int_0^t H(u^i_{\infty}) \, dW_{\infty}, \ t \in [0,T].$$

§6. Conclusion

If, in addition, $G^i = |\nabla u^i_{\infty}|^{p-2} \nabla u^i_{\infty}$ in $L^{p'}(\hat{\Omega} \times Q_T)^d$ holds true for i = 1, 2, from Assumption (15) it then follows that u^1_{∞} and u^2_{∞} satisfy

$$u_{\infty}^{i}(t) = u_{0} + \int_{0}^{t} \operatorname{div}(|\nabla u_{\infty}^{i}|^{p-2} \nabla u_{\infty}^{i} + F(u_{\infty}^{i})) \, ds + \int_{0}^{t} H(u_{\infty}^{i}) \, dW_{\infty}$$
(37)

and we have constructed two martingale solutions to (1) with respect to the same stochastic basis $(\hat{\Omega}, \hat{\mathcal{F}}, (\mathcal{F}^{\infty})_t, \hat{P})$ and the same \mathcal{F}_t^{∞} -Wiener process $W_{\infty}(t)$. From Proposition 1 it follows that $u_{\infty}^1(t) = u_{\infty}^2(t)$ as elements of $L^2(D)$ a.s. $\hat{\Omega}$ for all $t \in [0, T]$. Recall that the joint subsequence (u_{M_j}, u_{L_j}) which was extracted from (u_N) on the original probability space (Ω, \mathcal{F}, P) converges in law on $L^2(0, T; L^2(D)) \times L^2(0, T; L^2(D))$ to a probability measure $\mu = (\mu_1, \mu_2)$ and by Skorokhod's theorem we have $\mu_1 = \mathcal{L}(u_{\infty}^1), \mu_2 = \mathcal{L}(u_{\infty}^2)$. Therefore, the support of μ is contained in the diagonal of $L^2(0, T; L^2(D)) \times L^2(0, T; L^2(D))$ and from Lemma 2 it follows that (u_N) converges in probability.

References

- [1] BERTHELIN, F., AND VOVELLE, J. Stochastic isentropic euler equations. Preprint, 2016. http://math.univ-lyon1.fr/~vovelle/publications.html.
- [2] BRZEŹNIAK, Z., AND ONDREJÁT, M. Weak solutions to stochastic wave equations with values in Riemannian manifolds. *Comm. Partial Differential Equations* 36, 9 (2011), 1624–1653.
- [3] DA PRATO, G., AND ZABCZYK, J. Stochastic equations in infinite dimensions, vol. 44 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1992.
- [4] GYÖNGY, I., AND KRYLOV, N. Existence of strong solutions for Itô's stochastic equations via approximations. *Probab. Theory Related Fields* 105, 2 (1996), 143–158.
- [5] HOFMANOVÁ, M. Degenerate parabolic stochastic partial differential equations. *Stochastic Process. Appl. 123*, 12 (2013), 4294–4336.

- [6] HOFMANOVÁ, M., AND SEIDLER, J. On weak solutions of stochastic differential equations. Stoch. Anal. Appl. 30, 1 (2012), 100–121.
- [7] HOFMANOVÁ, M., AND SEIDLER, J. On weak solutions of stochastic differential equations II. Stoch. Anal. Appl. 31, 4 (2013), 663–670.
- [8] IKEDA, N., AND WATANABE, S. Stochastic differential equations and diffusion processes. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989.
- [9] ONDREJÁT, M. Stochastic nonlinear wave equations in local Sobolev spaces. *Electron. J.* Probab. 15 (2010), no. 33, 1041–1091.
- [10] PARDOUX, E. Équations aux dérivées partielles stochastiques non linéaires monotones. Ph.d. thesis, University Paris Sud, 1975.
- [11] VAN DER VAART, A. W., AND WELLNER, J. A. Weak convergence and empirical processes. Springer Series in Statistics. Springer-Verlag, New York, 1996.
- [12] WATANABE, S., AND YAMADA, T. On the uniqueness of solutions of stochastic differential equations i,ii. J. Math. Kyoto Univ. 11 (1971), 155–167, 553–563.

Aleksandra Zimmermann University of Duisburg-Essen Faculty of Mathematics 45117 Essen aleksandra.zimmermann@uni-due.de