L^{1}-CONTRACTION AND STRONG CONVERGENCE OF APPROXIMATIONS FOR A PSEUDOMONOTONE SPDE

Aleksandra Zimmermann

Abstract. We prove an L^{1}-contraction principle to the problem

$$
\begin{cases}d u-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u+F(u)\right) d t=H(u) d W & \text { in } \Omega \times Q_{T}, \\ u=0 & \text { on } \Omega \times(0, T) \times \partial D, \\ u(0, \cdot)=u_{0} \in L^{2}(D) & \text { in } \Omega \times D,\end{cases}
$$

for a cylindrical Wiener process $W(t)$ in $L^{2}(D)$ with respect to a filtration $\left(\mathcal{F}_{t}\right)$ satisfying the usual assumptions, $p \geq 2$ and $F: \mathbb{R} \rightarrow \mathbb{R}^{d}$ locally Lipschitz continuous. We consider the case of multiplicative noise with $H: L^{2}(D) \rightarrow H S\left(L^{2}(D)\right), H S\left(L^{2}(D)\right)$ being the space of Hilbert-Schmidt operators, satisfying appropriate regularity conditions. Moreover, we discuss conditions for strong convergence of approximate solutions and adapt the argument of Gyöngy and Krylov.
Keywords: stochastic evolution equation, contraction principle, pathwise uniqueness, strong convergence.
AMS classification: $35 \mathrm{~K} 92,35 \mathrm{~K} 55,60 \mathrm{H} 15$.

§1. Introduction

Let (Ω, \mathcal{F}, P) be a complete, countably generated probability space (for example the classical Wiener space), $D \subset \mathbb{R}^{d}$ be a bounded Lipschitz domain, $T>0, Q_{T}:=(0, T) \times D$ and $p \geq 2$. For separable Hilbert spaces \mathcal{U}, \mathcal{H}, we denote the space of Hilbert-Schmidt operators from \mathcal{U} to \mathcal{H} by $H S(\mathcal{U} ; \mathcal{H})$. We are interested in

$$
\begin{cases}d u-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u+F(u)\right) d t=H(u) d W & \text { in } \Omega \times Q_{T}, \tag{1}\\ u=0 & \text { on } \Omega \times(0, T) \times \partial D, \\ u(0, \cdot)=u_{0} \in L^{2}(D) & \text { in } \Omega \times D,\end{cases}
$$

for $F: \mathbb{R} \rightarrow \mathbb{R}^{d}$ locally Lipschitz continuous. $H: L^{2}(D) \rightarrow H S\left(L^{2}(D)\right)$ satisfies the following assumption: For an orthonormal basis $\left(e_{n}\right)_{n \in \mathbb{N}}$ of $L^{2}(D)$ and $u \in L^{2}(D)$,

$$
H(u)\left(e_{n}\right):=\left\{x \mapsto h_{n}(u(x))\right\},
$$

where, for all $n \in \mathbb{N}, h_{n}: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function such that

$$
\text { (H1) } \sum_{n=0}^{\infty}\left|h_{n}(\lambda)-h_{n}(\mu)\right|^{2} \leq C_{1}|\lambda-\mu|^{2}
$$

holds for a constant $C_{1} \geq 0 . W(t)$ is a cylindrical Wiener process with values in $L^{2}(D)$ with respect to a filtration $\left(\mathcal{F}_{t}\right)$ satisfying the usual assumptions. More precisely: Let $\left(e_{n}\right)_{n \in \mathbb{N}}$ be an orthonormal basis of $L^{2}(D)$ and $\left(\beta_{n}(t)\right)_{n \in \mathbb{N}}$ a sequence of independent, real-valued $\mathcal{F}_{t^{-}}$ Brownian motions. We (formally) define

$$
\begin{equation*}
W(t):=\sum_{n=1}^{\infty} e_{n} \beta_{n}(t) \tag{2}
\end{equation*}
$$

It is easy to see that the sum on the right-hand side of (2) does not converge in $L^{2}(D)$. It has to be understood in the following sense (see, e.g. [3]): For $u=\sum_{n=1}^{\infty} u_{n} e_{n}$ and $v=\sum_{n=1}^{\infty} v_{n} e_{n}$

$$
(u, v)_{U}:=\sum_{n=1}^{\infty} \frac{u_{n} v_{n}}{n^{2}}
$$

is a scalar product on $L^{2}(D)$. Let U be the linear space obtained by completion of $L^{2}(D)$ with respect to the norm $\|\cdot\|_{U}$ induced by $(\cdot, \cdot)_{U}$. It follows immediately that $\left(U,(\cdot, \cdot)_{U}\right)$ is a Hilbert space and $\left(n e_{n}\right)$ is an orthonormal basis of U. Since

$$
\begin{equation*}
W(t)=\sum_{n=1}^{\infty} e_{n} \beta_{n}(t)=\sum_{n=1}^{\infty} \frac{1}{n}\left(n e_{n}\right) \beta_{n}(t), \tag{3}
\end{equation*}
$$

$W(t)$ can be interpreted as Q-Wiener process with covariance Matrix $Q=\operatorname{diag}\left(\frac{1}{n^{2}}\right)$ and values in U. Since $Q^{\frac{1}{2}}(U)=L^{2}(D)$, for all square integrable and predictable $\Phi: \Omega \times(0, T) \rightarrow$ $H S\left(L^{2}(D)\right)$ the stochastic integral with respect to the cylindrical Wiener process $W(t)$ is welldefined.

Due to the term - div $F(u)$ the equation (1) is pseudomonotone. Therefore the classical results of well-posedness in [10] do not apply to (1). In order to show existence and uniqueness of solutions to (1), one can use an implicit time discretization. Well-posedness of (1) is the subject of a forthcoming research article.
In this contribution, we want to present some partial results: Firstly, we prove an L^{1}-contraction principle which, in particular, implies pathwise uniqueness of (1).
Further results are devoted to the question of strong convergence of approximate solutions $\left(u_{N}\right)$ for (1), e.g., the approximate solutions constructed from an implicit Euler scheme. In the deterministic case, the a-priori estimates provide only weak convergence of (u_{N}) and strong convergence is obtained by a compactness argument. In the case of a stochastic PDE with multiplicative noise we apply Skorokhod's theorem: We change the probability space in order to pass to the limit in all nonlinear expressions. The solution obtained in this way is a martingale solution on a different stochastic basis $\left(\hat{\Omega}, \hat{\mathcal{F}},\left(\hat{\mathcal{F}_{t}}\right), \hat{P}\right)$ with respect to a different, $\hat{\mathcal{F}}_{t}$-Wiener process $\hat{W}(t)$.
The argument of Gyöngy and Krylov (see [4]) is based on a result from Yamada and Watanabe (see [12]) and states, roughly speaking, that existence of a martingale solution together with pathwise uniqueness of an SPDE implies the convergence in probability of the (Euler) approximation on any probability space (Ω, \mathcal{F}, P). Recall that (1) is called pathwise unique, if whenenver $\left(\hat{\Omega}, \hat{\mathcal{F}},\left(\hat{\mathcal{F}_{t}}\right), \hat{P}, \hat{W}(t), u^{1}\right),\left(\hat{\Omega}, \hat{\mathcal{F}},\left(\hat{\mathcal{F}_{t}}\right), \hat{P}, \hat{W}(t), u^{2}\right)$ are solutions to (1) with respect
to the same initial value u_{0}, then $u_{1}(t)=u_{2}(t)$ a.s. in $\hat{\Omega}$ for any $t \in[0, T]$. The crucial step in the argument of Gyöngy and Krylov is the construction of two martingale solutions u^{i}, $i=1,2$ without changing the quantities $\left(\hat{\Omega}, \hat{\mathcal{F}},\left(\hat{\mathcal{F}_{t}}\right), \hat{P}, \hat{W}(t)\right)$. To this end, one can adapt a direct martingale identification argument developed in [9], [2] and avoid the use of the martingale representation theorem. The ideas of [9], [2] have been generalized and applied to stochastic differential equations in [6] and [7]. In [5], the direct martingale representation argument has been applied in combination with the Gyöngy-Krylov argument to degenerate parabolic SPDEs. Recently, the technique of [5] has been adapted to the stochastic isentropic Euler equations (see [1]).

§2. L^{1} contraction principle

Proposition 1. Assume that $W(t)$ is a cylindrical Wiener process in $L^{2}(D)$ with respect to the stochastic basis $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right), P\right)$ and u_{1}, u_{2} are solutions to (1) with respect to the initial values u_{01} and u_{02} in $L^{2}(D)$ respectively on $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right), P\right)$. Then, we have

$$
\begin{equation*}
E \int_{D}\left|u_{1}(t)-u_{2}(t)\right| d x \leq \int_{D}\left|u_{01}-u_{02}\right| d x \tag{4}
\end{equation*}
$$

for all $t \in[0, T]$.
Proof. For $\delta>0$, let η_{δ} be an approximation of the absolute value, i.e.

$$
\eta_{\delta}(r)= \begin{cases}-r & \text { if } r<-2 \delta \\ \frac{r^{2}}{2 \delta} & \text { if }-2 \delta \leq r \leq 2 \delta \\ r & \text { if } r>2 \delta\end{cases}
$$

Using the Itô formula, it follows that

$$
\begin{equation*}
I_{1}=I_{2}+I_{3}+I_{4}+I_{5} \tag{5}
\end{equation*}
$$

for all $t \in[0, T]$ a.s. in Ω, where

$$
\begin{align*}
& I_{1}=\int_{D} \eta_{\delta}\left(u_{1}-u_{2}\right)(t) d x-\int_{D} \eta_{\delta}\left(u_{01}-u_{02}\right) d x \\
& I_{2}=-\int_{0}^{t} \int_{D}\left(\left|\nabla u_{1}\right|^{p-2} \nabla u_{1}-\left|\nabla u_{2}\right|^{p-2} \nabla u_{2}\right) \cdot \nabla\left(u_{1}-u_{2}\right) \eta_{\delta}^{\prime \prime}\left(u_{1}-u_{2}\right) d x d s \\
& I_{3}=-\int_{0}^{t} \int_{D}\left(F\left(u_{1}\right)-F\left(u_{2}\right)\right) \cdot \nabla\left(u_{1}-u_{2}\right) \eta_{\delta}^{\prime \prime}\left(u_{1}-u_{2}\right) d x d s, \\
& I_{4}=\int_{0}^{t}\left(\eta_{\delta}^{\prime}\left(u_{1}-u_{2}\right), H\left(u_{1}\right)-H\left(u_{2}\right) d W\right)_{2}, \\
& I_{5}=\frac{1}{2} \int_{0}^{t} \eta_{\delta}^{\prime \prime}\left(u_{1}-u_{2}\right)\left\|H\left(u_{1}\right)-H\left(u_{2}\right)\right\|_{H S\left(L^{2}(D)\right)}^{2} d s . \tag{6}
\end{align*}
$$

Since η_{δ} is convex, it follows that $I_{2} \leq 0$ for all $t \in[0, T]$, a.s. in Ω. Moreover, $E\left[I_{4}\right]=0$ for all $t \in[0, T]$. Therefore, from (5) and (6) it follows that

$$
\begin{equation*}
E\left[I_{1}\right] \leq E\left[I_{3}\right]+E\left[I_{5}\right] . \tag{7}
\end{equation*}
$$

Since, for any $t \in[0, T], \eta_{\delta}\left(u_{1}-u_{2}\right)(t)$ converges to $\left|\left(u_{1}-u_{2}\right)(t)\right|$ for $\delta \rightarrow 0^{+}$a.e. in $\Omega \times D$, and $\left|\eta_{\delta}\left(u_{1}-u_{2}\right)(t)\right| \leq\left|\left(u_{1}-u_{2}\right)(t)\right|$ for all $\delta>0$ a.s. in $\Omega \times D$, it follows that

$$
\begin{equation*}
\lim _{\delta \rightarrow 0^{+}} E\left[I_{1}\right]=E \int_{D}\left|u_{1}(t)-u_{2}(t)\right| d x-E \int_{D}\left|u_{01}-u_{02}\right| d x \tag{8}
\end{equation*}
$$

for any $t \in[0, T]$. For any $\delta>0$ we have

$$
\eta_{\delta}^{\prime \prime}\left(u_{1}-u_{2}\right)=\frac{1}{2 \delta} \chi_{\left\{\left|u_{1}-u_{2}\right| \leq 2 \delta\right\}}
$$

a.s. on $\Omega \times Q_{T}$, thus for $L \geq 0$ being the Lipschitz constant of F we have

$$
\begin{align*}
\left|E\left[I_{3}\right]\right| & \leq \frac{1}{2 \delta} E \int_{\left\{\left|u_{1}-u_{2}\right| \leq 2 \delta\right\}}\left|F\left(u_{1}\right)-F\left(u_{2}\right)\right|\left|\nabla\left(u_{1}-u_{2}\right)\right| d x d s \\
& \leq \frac{L}{2 \delta} E \int_{\left\{\left|u_{1}-u_{2}\right| \leq 2 \delta\right\}}\left|u_{1}-u_{2}\right|\left|\nabla\left(u_{1}-u_{2}\right)\right| d x d s \\
& \leq L E \int_{\left\{\left|u_{1}-u_{2}\right| \leq 2 \delta\right\}}\left|\nabla\left(u_{1}-u_{2}\right)\right| d x d s . \tag{9}
\end{align*}
$$

Simirlarly, by (H1)

$$
\begin{align*}
\left|E\left[I_{5}\right]\right| & \leq \frac{1}{2 \delta} E \int_{\left\{\left|u_{1}-u_{2}\right| \leq 2 \delta\right\}} \sum_{n=1}^{\infty}\left|h_{n}\left(u_{1}\right)-h_{n}\left(u_{2}\right)\right|^{2} d x d s \\
& \leq \frac{C_{1}}{2 \delta} E \int_{\left\{\left|u_{1}-u_{2}\right| \leq 2 \delta\right\}}\left|u_{1}-u_{2}\right|^{2} d x d s \\
& \leq 2 \delta C \tag{10}
\end{align*}
$$

where $C \geq 0$ is a constant not depending on $\delta>0$. Thus from (9) it follows that

$$
\begin{equation*}
\lim _{\delta \rightarrow 0^{+}} E\left[I_{3}\right]=E \int_{\left\{u_{1}=u_{2}\right\}}\left|\nabla\left(u_{1}-u_{2}\right)\right| d x d s=0 \tag{11}
\end{equation*}
$$

and from (10) it follows that $\lim _{\delta \rightarrow 0^{+}} E\left[I_{5}\right]=0$.

§3. Pathwise uniqueness and strong convergence

If u_{1} and u_{2} are solutions to (1) with respect to the same initial value $u_{0} \in L^{2}(D)$ and $\mu_{1,2}$ is the joint law of $\left(u_{1}, u_{2}\right)$ on $L^{2}\left(0, T ; L^{2}(D)\right) \times L^{2}\left(0, T ; L^{2}(D)\right)$, by Proposition 1 it follows that

$$
\mu_{1,2}\left(\left\{(\xi, \zeta) \in L^{2}\left(0, T ; L^{2}(D)\right) \times L^{2}\left(0, T ; L^{2}(D)\right) \mid \xi=\zeta\right\}\right)=\int_{\Omega \times \Omega} \chi_{\left\{u_{1}=u_{2}\right\}} d P \otimes d P=1
$$

hence the support of $\mu_{1,2}$ is contained in the diagonal of $L^{2}\left(0, T ; L^{2}(D)\right) \times L^{2}\left(0, T ; L^{2}(D)\right)$. The concept of pathwise uniqueness is linked to the concept of existence of strong solutions via the following Lemma (see [4], Lemma 1.1, p. 144 and 145):

Lemma 2. Let V be a Polish space equipped with the Borel σ-algebra. A sequence of V valued random variables $\left(X_{n}\right)$ converges in probability if and only if for every pair of subsequences X_{n} and X_{m} there exists a joint subsequence ($X_{n_{k}}, X_{m_{k}}$) which converges for $k \rightarrow \infty$ in law to a probability measure μ such that

$$
\mu(\{(w, z) \in V \times V \mid w=z\})=1
$$

§4. Assumptions and convergence results

Let $\left(\Omega, \mathcal{F},\left(\mathscr{F}_{t}\right), P\right)$ be the original stochastic basis for (1) and $W(t)$ the corresponding cylindrical \mathcal{F}_{t}-Wiener process in $L^{2}(D)$. Assume now that $\left(u_{N}\right)$ is a sequence of square-integrable, left-continuous and \mathcal{F}_{t}-adapted stochastic processes on (Ω, \mathcal{F}, P) with values in $L^{2}(D)$ which is tight in $L^{2}\left(0, T ; L^{2}(D)\right)$ satisfying

$$
\begin{equation*}
E \int_{0}^{T}\left\|\nabla u_{N}\right\|^{p} d t \leq C \tag{12}
\end{equation*}
$$

for all $N \in \mathbb{N}, p \geq 2$ and some constant $C \geq 0$.
Let $\left(u_{M}\right)$ and $\left(u_{L}\right)$ be a pair of subsequences of $\left(u_{N}\right)$. Since $\left(u_{M}, u_{L}, W\right)$ is tight on

$$
L^{2}\left(0, T ; L^{2}(D)\right) \times L^{2}\left(0, T ; L^{2}(D)\right) \times C([0, T] ; U)
$$

according to Prokhorov's theorem we can extract a joint subsequence $\mu^{j}:=\left(u_{M_{j}}, u_{L_{j}}, W\right)$ which converges in law to some probability measure μ. Applying the theorem of Skorokhod of [11], Theorem 1.10.4 and Addendum 1.10.5, p. 59 to $\left(u_{M_{j}}, u_{L_{j}}, W\right)$ we find a probability space $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{P})$, a sequence of measurable functions

$$
\Phi_{j}:(\hat{\Omega}, \hat{\mathcal{F}}) \rightarrow(\Omega, \mathcal{F}), j \in \mathbb{N}
$$

such that $P=\hat{P} \circ \Phi_{j}^{-1}$ for all $j \in \mathbb{N}$ and measurable functions $u_{\infty}^{1}, u_{\infty}^{2}, W_{\infty}$ having the following properties:

$$
\begin{aligned}
& \text { i.) } \hat{u}_{M_{j}}:=u_{M_{j}} \circ \phi_{j} \rightarrow u_{\infty}^{1} \text { in } L^{2}\left(0, T ; L^{2}(D)\right) \text { for } j \rightarrow \infty \text { a.s. in } \hat{\Omega}, \\
& \text { ii.) } \hat{u}_{L_{j}}:=u_{L_{j}} \circ \phi_{j} \rightarrow u_{\infty}^{2} \text { in } L^{2}\left(0, T ; L^{2}(D)\right) \text { for } j \rightarrow \infty \text { a.s. in } \hat{\Omega}, \\
& \text { iii.) } W_{j}:=W \circ \phi_{j} \rightarrow W_{\infty} \text { in } C([0, T] ; U) \text { for } j \rightarrow \infty \text { a.s. in } \hat{\Omega} . \\
& \text { iv.) } \mathcal{L}\left(u_{\infty}^{1}, u_{\infty}^{2}, W\right)=\mu .
\end{aligned}
$$

The following Lemma is a direct consequence of (14), (12), the Vitali theorem and the equality of laws of W and W_{j} for all $j \in \mathbb{N}$:

Lemma 3. We have the following convergence results for $j \rightarrow \infty$:
i.) $\hat{u}_{M_{j}} \rightarrow u_{\infty}^{1}$ and $\hat{u}_{L_{j}} \rightarrow u_{\infty}^{2}$ in $L^{2}\left(\hat{\Omega} ; L^{2}\left(0, T ; L^{2}(D)\right)\right)$
ii.) $W_{j} \rightarrow W_{\infty}$ in $L^{2}(\hat{\Omega} ; C([0, T] ; U))$
iii.) $W_{j}(t)-W_{j}(s) \rightarrow W_{\infty}(t)-W_{\infty}(s)$ in $L^{2}(\hat{\Omega} ; U)$ for all $t \in[0, T], 0 \leq s \leq t$
iv.) For all $t \in[0, T], 0 \leq s \leq t$ and all $\psi \in C_{b}\left(L^{2}\left(0, s ; L^{2}(D)\right)^{2} \times C\left([0, T] ; L^{2}(D)\right)^{2} \times\right.$ $C([0, s] ; U))$

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \psi\left(\hat{u}_{M_{j}}, \hat{u}_{L_{j}}, B_{M_{j}}, B_{L_{j}}, W_{j}\right)=\psi\left(u_{\infty}^{1}, u_{\infty}^{2}, B_{\infty}^{1}, B_{\infty}^{2}, W_{\infty}\right) \tag{13}
\end{equation*}
$$

in $L^{2}(\hat{\Omega})$.
Assume that there exist $B_{\infty}^{1}, B_{\infty}^{2}$ in $L^{2}\left(\hat{\Omega} ; C\left([0, T] ; L^{2}(D)\right)\right)$ such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} B_{M_{j}}=B_{\infty}^{1}, \lim _{j \rightarrow \infty} B_{L_{j}}=B_{\infty}^{2} \tag{14}
\end{equation*}
$$

in $L^{2}\left(\hat{\Omega} ; C\left([0, T] ; L^{2}(D)\right)\right)$. Moreover, assume that for $i=1,2$, the function $u_{\infty}^{i}: \hat{\Omega} \times[0, T] \rightarrow$ $L^{2}(D)$ is a stochastic process with $u_{\infty}^{i}(0)=u_{0}$ and there exists $G^{i} \in L^{p^{\prime}}\left(\hat{\Omega} \times Q_{T}\right)^{d}$ such that

$$
\begin{equation*}
u_{\infty}^{i}(t)=B_{\infty}^{i}(t)+u_{0}+\int_{0}^{t} \operatorname{div}\left(G^{i}+F\left(u_{\infty}^{i}\right)\right) d s \tag{15}
\end{equation*}
$$

holds in $L^{2}(D)$ a.s. in $\hat{\Omega}$ for all $t \in[0, T]$. Let us denote the augmentation of the filtration $\sigma\left(W_{j}(s)\right)_{0 \leq s \leq t, t \in[0, T]}$ by $\left(\mathcal{F}_{t}^{j}\right)$. It is a direct consequence of Skorokhod's theorem and [3], Theorem 4.4, p. 89 that $W_{j}(t)$ is a Q-Wiener process in U with respect to $\left(\mathcal{F}_{t}^{j}\right)$, thus a cylindrical \mathcal{F}_{t}^{j}-Wiener process in $L^{2}(D)$ for all $j \in \mathbb{N}$. Moreover $\hat{u}_{M_{j}}=u_{M_{j}} \circ \phi_{j}, \hat{u}_{L_{j}}=u_{L_{j}} \circ \phi_{j}$ are left-continuous, \mathcal{F}_{t}^{j}-adapted processes with values in $L^{2}(D)$ and therefore the stochastic integrals

$$
B_{M_{j}}(t):=\int_{0}^{t} H\left(u_{M_{j}}\right) d W_{j}, B_{L_{j}}(t):=\int_{0}^{t} H\left(u_{L_{j}}\right) d W_{j}, t \in[0, T]
$$

are well-defined. Note that by assumption (15)

$$
\begin{equation*}
B_{\infty}^{i}(t)=u_{\infty}^{i}(t)-u_{0}-\int_{0}^{t} \operatorname{div}\left(G^{i}+F\left(u_{\infty}^{i}\right)\right) d s \tag{16}
\end{equation*}
$$

for all $t \in[0, T]$. The right-hand side of (16) can not be written as a nice operator applied to $u_{\infty}^{i}(t)$. Therefore, it is in general not clear if B_{∞}^{i} is adapted to $\sigma\left(u_{\infty}^{1}(s), u_{\infty}^{2}(s), W_{\infty}(s)\right)_{0 \leq s \leq t}$, $t \in[0, T]$ thus we define $\left(\mathcal{F}_{t}^{\infty}\right)$ to be the augmentation of the filtration

$$
\sigma\left(u_{\infty}^{1}(s), u_{\infty}^{2}(s), B_{\infty}^{1}(s), B_{\infty}^{2}(s), W_{\infty}(s)\right)_{0 \leq s \leq t}, t \in[0, T] .
$$

§5. Martingale identification argument

Lemma 4. For $i=1,2, B_{\infty}^{i}(t)$ is a \mathcal{F}_{t}^{∞}-martingale with quadratic variation process

$$
\begin{equation*}
\ll B_{\infty}^{i} \gg{ }_{t}=\int_{0}^{t} \boldsymbol{H}\left(u_{\infty}^{i}\right) \circ \boldsymbol{H}^{*}\left(u_{\infty}^{i}\right) d s \tag{17}
\end{equation*}
$$

for all $t \in[0, T]$, where we use the notation

$$
\boldsymbol{H}(u):=H(u) \circ Q^{1 / 2}, u \in L^{2}(D) .
$$

Proof. Let $\left(e_{l}\right)$ be an orthonormal basis of $L^{2}(D)$. We fix $t \in[0, T], 0 \leq s \leq t, \psi \in$ $C_{b}\left(L^{2}\left(0, s ; L^{2}(D)\right)^{2} \times C\left([0, T] ; L^{2}(D)\right)^{2} \times C([0, s] ; U)\right)$ and $n, m \in \mathbb{N}$. Moreover, for $u \in L^{2}(D)$, and $B(r) \in L^{2}(D), r \in[0, T]$ we define

$$
\begin{gathered}
\left(B, e_{n}, e_{m}\right)(r):=\left(B(r), e_{n}\right)_{2}\left(B(r), e_{m}\right)_{2}, \\
\Lambda\left(s, t, u, e_{n}, e_{m}\right):=\left(\left[\int_{s}^{t} \mathbf{H}(u) \circ \mathbf{H}^{*}(u) d r\right]\left(e_{n}\right), e_{m}\right)_{2} .
\end{gathered}
$$

Since $B_{M_{j}}(t)$ and $B_{L_{j}}(t)$ are stochastic integrals, from the convergence results of Lemma 3 and Assumption (14) it follows that

$$
\begin{align*}
0 & =\lim _{j \rightarrow \infty} E\left[\left(B_{M_{j}}(t)-B_{M_{j}}(s), e_{n}\right)_{2} \psi\left(\hat{u}_{M_{j}}, \hat{u}_{L_{j}}, B_{M_{j}}, B_{L_{j}}, W_{j}\right)\right] \\
& =E\left[\left(B_{\infty}^{1}(t)-B_{\infty}^{1}(s), e_{n}\right)_{2} \psi\left(u_{\infty}^{1}, u_{\infty}^{2}, B_{\infty}^{1}, B_{\infty}^{2}, W_{\infty}\right)\right], \tag{18}\\
0 & =\lim _{j \rightarrow \infty} E\left[\left(B_{L_{j}}(t)-B_{L_{j}}(s), e_{n}\right)_{2} \psi\left(\hat{u}_{M_{j}}, \hat{u}_{L_{j}}, B_{M_{j}}, B_{L_{j}}, W_{j}\right)\right] \\
& =E\left[\left(B_{\infty}^{2}(t)-B_{\infty}^{2}(s), e_{n}\right)_{2} \psi\left(u_{\infty}^{1}, u_{\infty}^{2}, B_{\infty}^{1}, B_{\infty}^{2}, W_{\infty}\right)\right], \tag{19}
\end{align*}
$$

for $j \rightarrow \infty$. Moreover,

$$
\begin{align*}
0 & =E\left[\left(\left(B_{M_{j}}, e_{n}, e_{m}\right)(t)-\left(B_{M_{j}}, e_{n}, e_{m}\right)(s)-\Lambda\left(s, t, \hat{u}_{M_{j}}, e_{n}, e_{m}\right)\right) \psi\left(\hat{u}_{M_{j}}, \hat{u}_{L_{j}}, B_{M_{j}}, B_{L_{j}}, W_{j}\right)\right] \\
& \rightarrow E\left[\left(\left(B_{\infty}^{1}, e_{n}, e_{m}\right)(t)-\left(B_{\infty}^{1}, e_{n}, e_{m}\right)(s)-\Lambda\left(s, t, u_{\infty}^{1}, e_{n}, e_{m}\right)\right) \psi\left(u_{\infty}^{1}, u_{\infty}^{2}, B_{\infty}^{1}, B_{\infty}^{2}, W_{\infty}\right)\right], \tag{20}\\
0 & =E\left[\left(\left(B_{L_{j}}, e_{n}, e_{m}\right)(t)-\left(B_{L_{j}}, e_{n}, e_{m}\right)(s)-\Lambda\left(s, t, \hat{u}_{L_{j}}, e_{n}, e_{m}\right)\right) \psi\left(\hat{u}_{M_{j}}, \hat{u}_{L_{j}}, B_{M_{j}}, B_{L_{j}}, W_{j}\right)\right] \\
& \rightarrow E\left[\left(\left(B_{\infty}^{2}, e_{n}, e_{m}\right)(t)-\left(B_{\infty}^{2}, e_{n}, e_{m}\right)(s)-\Lambda\left(s, t, u_{\infty}^{2}, e_{n}, e_{m}\right)\right) \psi\left(u_{\infty}^{1}, u_{\infty}^{2}, B_{\infty}^{1}, B_{\infty}^{2}, W_{\infty}\right)\right] . \tag{21}
\end{align*}
$$

for $j \rightarrow \infty$.
Lemma 5. $W_{\infty}(t)$ is a \mathcal{F}_{t}^{∞}-martingale .
Proof. By definition of $\left(\mathcal{F}_{t}^{\infty}\right)$, W_{∞} is adapted to $\left(\mathcal{F}_{t}^{\infty}\right)$. We fix $t \in[0, T], 0 \leq s \leq t, \psi \in$ $C_{b}\left(L^{2}\left(0, s ; L^{2}(D)\right)^{2} \times C\left([0, T] ; L^{2}(D)\right)^{2} \times C([0, s] ; U)\right)$ and $h \in U$. Since $\hat{u}_{M_{j}}$ and $\hat{u}_{L_{j}}$ are \mathcal{F}_{t}^{j}-adapted and $B_{M_{j}}, B_{L_{j}}$ are stochastic integrals with respect to W_{j} for all $j \in \mathbb{N}$, we have

$$
\begin{equation*}
E\left[\left(W_{j}(t)-W_{j}(s), h\right)_{U} \psi\left(\hat{u}_{M_{j}}, \hat{u}_{L_{j}}, B_{M_{j}}, B_{L_{j}}, W_{j}\right)\right]=0 \tag{22}
\end{equation*}
$$

for all $j \in \mathbb{N}$. Using the convergence results of Lemma 3, we may pass to the limit with $j \rightarrow \infty$ in (22) and find that

$$
\begin{equation*}
E\left[\left(W_{\infty}(t)-W_{\infty}(s), h\right)_{U} \psi\left(u_{\infty}^{1}, u_{\infty}^{2}, B_{\infty}^{1}, B_{\infty}^{2}, W_{\infty}\right)\right]=0 . \tag{23}
\end{equation*}
$$

Lemma 6. $W_{\infty}(t)$ is a \mathcal{F}_{t}^{∞}-Wiener process.

Remark 1. In particular, Lemma 6 implies that $W_{\infty}(t)$ is a cylindrical Wiener process in $L^{2}(D)$ with increments $W(t)-W(s), 0 \leq s \leq t \leq T$, independent of \mathcal{F}_{s}^{∞}.

Proof. From Lemma 5 it follows that $W_{\infty}(t)$ is a \mathcal{F}_{t}^{∞}-martingale with $W_{\infty}(0)=0$. According to [3], Theorem 4.4, p. 89 it is left to show that

$$
\begin{equation*}
\ll W_{\infty}>_{t}=t Q \text { for all } t \in[0, T] . \tag{24}
\end{equation*}
$$

Let $\left(g_{l}\right)$ be an orthonormal basis of U. We fix $t \in[0, T], 0 \leq s \leq t, \psi \in C_{b}\left(L^{2}\left(0, s ; L^{2}(D)\right)^{2} \times\right.$ $\left.\mathcal{C}\left([0, T] ; L^{2}(D)\right)^{2} \times C([0, s] ; U)\right)$ and $n, m \in \mathbb{N}$. Since $\ll W_{j}>_{t}=t Q$ for all $t \in[0, T]$ and all $j \in \mathbb{N}$, from the convergence results of Lemma 3 it follows that

$$
\begin{align*}
0 & =E\left[\left(\left(W_{j}, g_{n}, g_{m}\right)(t)-\left(W_{j}, g_{n}, g_{m}\right)(s)-\left((t-s) Q\left(g_{n}\right), g_{m}\right)_{U}\right) \psi\left(\hat{u}_{M_{j}}, \hat{u}_{L_{j}}, B_{M_{j}}, B_{L_{j}}, W_{j}\right)\right] \\
& \rightarrow E\left[\left(\left(W_{\infty}, g_{n}, g_{m}\right)(t)-\left(W_{\infty}, g_{n}, g_{m}\right)(s)-\left((t-s) Q\left(g_{n}\right), g_{m}\right)_{U} \psi\left(u_{\infty}^{1}, u_{\infty}^{2}, B_{\infty}^{1}, B_{\infty}^{2}, W_{\infty}\right)\right)\right] \tag{25}
\end{align*}
$$

for $j \rightarrow \infty$, where

$$
\left(W, g_{n}, g_{m}\right)(r):=\left(W(r), g_{n}\right)_{U}\left(W(r), g_{m}\right)_{U}
$$

for $W(r) \in U, r \in[0, T]$, thus (24) holds true.
Corollary 7. For $i=1,2$, the process

$$
\begin{equation*}
M_{i}(t):=\int_{0}^{t} H\left(u_{\infty}^{i}\right) d W_{\infty}, t \in[0, T] \tag{26}
\end{equation*}
$$

is a $\mathcal{F}_{t}{ }^{\infty}$-martingale with quadratic variation process

$$
\ll M_{i}>_{t}=\int_{0}^{t}\left(H\left(u_{\infty}^{i}\right) \circ Q^{1 / 2}\right) \circ\left(H\left(u_{\infty}^{i}\right) \circ Q^{1 / 2}\right)^{*} d s
$$

for all $t \in[0, T]$.
Remark 2. For $i=1,2, u^{i}: \hat{\Omega} \times[0, T] \rightarrow L^{2}(D)$ is assumed to be a stochastic process. By definition of $\left(\mathcal{F}_{t}^{\infty}\right)$ we get that u^{i} is \mathcal{F}_{t}^{∞}-adapted and by Lemma 3 it follows that u^{i} is square integrable. From [8], Remark 1.1., p. 45 it follows that u^{i} is a.s. equal to a predictable process, thus the stochastic integral in (26) is well-defined.
Lemma 8. For $i=1,2$ we have the cross quadratic variation process

$$
\begin{equation*}
\ll W_{\infty}, B_{\infty}^{i},>_{t}=\int_{0}^{t} Q \circ H^{*}\left(u_{\infty}^{i}\right) d s . \tag{27}
\end{equation*}
$$

Proof. Since, for any square-integrable and predictable $\phi \in L^{2}\left(\hat{\Omega} \times(0, T) ; H S\left(L^{2}(D)\right)\right.$ and any Q-Wiener process $W(t)$ we have

$$
\begin{align*}
\int_{0}^{t}\left(\phi \circ Q^{1 / 2}\right) \circ\left(\phi \circ Q^{1 / 2}\right)^{*} d s & =\ll \int_{0} \phi d W>_{t} \\
& =\ll \int_{0} \phi d W, \int_{0} \phi d W>_{t} \\
& =\int_{0}^{t} \phi d \ll W, \int_{0} \phi d W>_{s}, \tag{28}
\end{align*}
$$

and from (28) it follows that

$$
\begin{equation*}
\ll W, \int_{0} \phi d W \gg=\int_{0}^{t} Q^{1 / 2} \circ\left(\phi \circ Q^{1 / 2}\right)^{*} d s=\int_{0}^{t} Q \circ \phi^{*} d s \tag{29}
\end{equation*}
$$

Therefore, for all $j \in \mathbb{N}$ and $t \in[0, T]$ we have

$$
\begin{equation*}
\ll W_{j}, B_{M_{j}}>_{t}=\int_{0}^{t} Q \circ H^{*}\left(\hat{u}_{M_{j}}\right) d s \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\ll W_{j}, B_{L_{j}} \gg{ }_{t}=\int_{0}^{t} Q \circ H^{*}\left(\hat{u}_{L_{j}}\right) d s \tag{31}
\end{equation*}
$$

We choose orthonormal bases $\left(g_{l}\right)$ of U and $\left(e_{l}\right)$ of $L^{2}(D)$, fix $t \in[0, T], 0 \leq s \leq t, \psi \in$ $C_{b}\left(L^{2}\left(0, s ; L^{2}(D)\right)^{2} \times C\left([0, T] ; L^{2}(D)\right)^{2} \times C([0, s] ; U)\right)$ and $n, m \in \mathbb{N}$. Using the convergence results of Lemma 3 and Assumption 14 from (30) and (31) it follows that

$$
\begin{align*}
0 & =E\left[\left(\left(B_{M_{j}}, W_{j}, e_{n}, g_{m}\right)(t)-\left(B_{M_{j}}, W_{j}, e_{n}, g_{m}\right)(s)-\int_{s}^{t}\left(Q \circ H^{*}\left(\hat{u}_{M_{j}}\right)\left(e_{n}\right), g_{m}\right)_{U} d r\right) \psi_{j}\right] \\
& \rightarrow E\left[\left(\left(B_{\infty}^{1}, W_{\infty}, e_{n}, g_{m}\right)(t)-\left(B_{\infty}^{1}, W_{\infty}, e_{n}, g_{m}\right)(s)-\int_{s}^{t}\left(Q \circ H^{*}\left(u_{\infty}^{1}\right)\left(e_{n}\right), g_{m}\right)_{U} d r\right) \psi_{\infty}\right] \tag{32}
\end{align*}
$$

for $j \rightarrow \infty$ and

$$
\begin{align*}
0 & =E\left[\left(\left(B_{L_{j}}, W_{j}, e_{n}, g_{m}\right)(t)-\left(B_{L_{j}}, W_{j}, e_{n}, g_{m}\right)(s)-\int_{s}^{t}\left(Q \circ H^{*}\left(\hat{u}_{L_{j}}\right)\left(e_{n}\right), g_{m}\right)_{U} d r\right) \psi_{j}\right] \\
& \rightarrow E\left[\left(\left(B_{\infty}^{2}, W_{\infty}, e_{n}, g_{m}\right)(t)-\left(B_{\infty}^{2}, W_{\infty}, e_{n}, g_{m}\right)(s)-\int_{s}^{t}\left(Q \circ H\left(u_{\infty}^{2}\right)\left(e_{n}\right), g_{m}\right)_{U} d r\right) \psi_{\infty}\right] \tag{33}
\end{align*}
$$

for $j \rightarrow \infty$, where

$$
\psi_{j}:=\psi\left(\hat{u}_{M_{j}}, \hat{u}_{L_{j}}, B_{M_{j}}, B_{L_{j}}, W_{j}\right), \psi_{\infty}:=\psi\left(u_{\infty}^{1}, u_{\infty}^{2}, B_{\infty}^{1}, B_{\infty}^{2}, W_{\infty}\right)
$$

and

$$
\left(B, W, e_{n}, g_{m}\right)(r):=\left(B(r), e_{n}\right)_{2}\left(W(r), g_{m}\right)_{U}
$$

for $r \in[0, T]$ and $W(r) \in U, B(r) \in L^{2}(D)$.
Lemma 9. For $i=1,2$ and all $t \in[0, T]$ we have

$$
\begin{equation*}
\ll \int_{0} H\left(u_{\infty}^{i}\right) d W_{\infty}-B_{\infty}^{i}>_{t}=0 \tag{34}
\end{equation*}
$$

Proof. For $i=1,2$ from Lemmas 4-6 and Corollary 7 it follows that

$$
\begin{align*}
& \ll \int_{0} H\left(u_{\infty}^{i}\right) d W_{\infty}-B_{\infty}^{i}>_{t} \\
& =\ll \int_{0} H\left(u_{\infty}^{i}\right) d W_{\infty}>_{t}-2 \ll \int_{0} H\left(u_{\infty}^{i}\right) d W_{\infty}, B_{\infty}^{i}>_{t}+\ll B_{\infty}^{i}>_{t} \\
& =2 \int_{0}^{t}\left(H\left(u_{\infty}^{i}\right) \circ Q^{1 / 2}\right) \circ\left(H\left(u_{\infty}^{i}\right) \circ Q^{1 / 2}\right)^{*} d s-2 \int_{0}^{t} H\left(u_{\infty}^{i}\right) d \ll W_{\infty}, B_{\infty}^{i}>_{s} \tag{35}
\end{align*}
$$

where, according to Lemma 8

$$
\begin{align*}
& \int_{0}^{t} H\left(u_{\infty}^{i}\right) d \ll W_{\infty}, B_{\infty}^{i}>_{s} \\
& =\int_{0}^{t} H\left(u_{\infty}^{i}\right) \circ Q^{1 / 2} \circ\left(Q^{1 / 2}\right)^{*} \circ H^{*}\left(u_{\infty}^{i}\right) d s=\int_{0}^{t}\left(H\left(u_{\infty}^{i}\right) \circ Q^{1 / 2}\right) \circ\left(H\left(u_{\infty}^{i}\right) \circ Q^{1 / 2}\right)^{*} d s \tag{36}
\end{align*}
$$

Now, (34) follows from (35) and (36).
Corollary 10. From Lemma 9 it follows that for $i=1,2$

$$
B_{\infty}^{i}(t)=\int_{0}^{t} H\left(u_{\infty}^{i}\right) d W_{\infty}, t \in[0, T] .
$$

§6. Conclusion

If, in addition, $G^{i}=\left|\nabla u_{\infty}^{i}\right|^{p-2} \nabla u_{\infty}^{i}$ in $L^{p^{\prime}}\left(\hat{\Omega} \times Q_{T}\right)^{d}$ holds true for $i=1$, 2, from Assumption (15) it then follows that u_{∞}^{1} and u_{∞}^{2} satisfy

$$
\begin{equation*}
u_{\infty}^{i}(t)=u_{0}+\int_{0}^{t} \operatorname{div}\left(\left|\nabla u_{\infty}^{i}\right|^{p-2} \nabla u_{\infty}^{i}+F\left(u_{\infty}^{i}\right)\right) d s+\int_{0}^{t} H\left(u_{\infty}^{i}\right) d W_{\infty} \tag{37}
\end{equation*}
$$

and we have constructed two martingale solutions to (1) with respect to the same stochastic basis $\left(\hat{\Omega}, \hat{\mathcal{F}},\left(\mathcal{F}^{\infty}\right)_{t}, \hat{P}\right)$ and the same \mathcal{F}_{t}^{∞}-Wiener process $W_{\infty}(t)$. From Proposition 1 it follows that $u_{\infty}^{1}(t)=u_{\infty}^{2}(t)$ as elements of $L^{2}(D)$ a.s. $\hat{\Omega}$ for all $t \in[0, T]$. Recall that the joint subsequence ($u_{M_{j}}, u_{L_{j}}$) which was extracted from $\left(u_{N}\right)$ on the original probability space (Ω, \mathcal{F}, P) converges in law on $L^{2}\left(0, T ; L^{2}(D)\right) \times L^{2}\left(0, T ; L^{2}(D)\right)$ to a probability measure $\mu=\left(\mu_{1}, \mu_{2}\right)$ and by Skorokhod's theorem we have $\mu_{1}=\mathcal{L}\left(u_{\infty}^{1}\right), \mu_{2}=\mathcal{L}\left(u_{\infty}^{2}\right)$. Therefore, the support of μ is contained in the diagonal of $L^{2}\left(0, T ; L^{2}(D)\right) \times L^{2}\left(0, T ; L^{2}(D)\right)$ and from Lemma 2 it follows that $\left(u_{N}\right)$ converges in probability.

References

[1] Berthelin, F., and Vovelle, J. Stochastic isentropic euler equations. Preprint, 2016. http://math.univ-lyon1.fr/~vovelle/publications.html.
[2] Brzeźniak, Z., and Ondreját, M. Weak solutions to stochastic wave equations with values in Riemannian manifolds. Comm. Partial Differential Equations 36, 9 (2011), 1624-1653.
[3] Da Prato, G., and Zabczyk, J. Stochastic equations in infinite dimensions, vol. 44 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1992.
[4] Gyöngy, I., and Krylov, N. Existence of strong solutions for Itô's stochastic equations via approximations. Probab. Theory Related Fields 105, 2 (1996), 143-158.
[5] Hofmanová, M. Degenerate parabolic stochastic partial differential equations. Stochastic Process. Appl. 123, 12 (2013), 4294-4336.
[6] Hofmanová, M., and Seidler, J. On weak solutions of stochastic differential equations. Stoch. Anal. Appl. 30, 1 (2012), 100-121.
[7] Hofmanová, M., and Seidler, J. On weak solutions of stochastic differential equations II. Stoch. Anal. Appl. 31, 4 (2013), 663-670.
[8] Ikeda, N., and Watanabe, S. Stochastic differential equations and diffusion processes. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989.
[9] Ondreját, M. Stochastic nonlinear wave equations in local Sobolev spaces. Electron. J. Probab. 15 (2010), no. 33, 1041-1091.
[10] Pardoux, E. Équations aux dérivées partielles stochastiques non linéaires monotones. Ph.d. thesis, University Paris Sud, 1975.
[11] van der Vaart, A. W., and Wellner, J. A. Weak convergence and empirical processes. Springer Series in Statistics. Springer-Verlag, New York, 1996.
[12] Watanabe, S., and Yamada, T. On the uniqueness of solutions of stochastic differential equations i,ii. J. Math. Kyoto Univ. 11 (1971), 155-167, 553-563.

Aleksandra Zimmermann
University of Duisburg-Essen
Faculty of Mathematics
45117 Essen
aleksandra.zimmermann@uni-due.de

