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COMPANION MATRICES AND JOINT
EIGENVECTORS OF COMMUTING

FAMILIES OF MATRICES FOR
POLYNOMIAL ZERO FINDING

Tomas Sauer
Abstract. Finding the solutions of polynomial systems of equations is equivalent to find-
ing the eigenvalues of a so-called companion matrix, as long as the system has only
finitely many solutions. Algebraically, this means to describe the action of multiplica-
tion with a fixed polynomial modulo an ideal. In one variable, this general point of view
leads to different explicit matrices whose eigenvalues are the zeros of a given polyno-
mial, in several variables this leads to the problem of finding the joint eigenvectors of a
commuting family of matrices. The paper studies both cases and gives algorithms relying
only on standard methods from numerical linear algebra.
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§1. Introduction

We study some aspects of semialgebraical methods for solving systems of polynomial equa-
tions, or equivalently, finding the zeros or common zeros of a polynomial or a finite set of
polynomials in one or several variables, respectively. “Semialgebraic” means that the method
is derived from algebraic principles, usually computational ideal theory, while the algorithm
itself must designed to run as stable as possible in a floating point environment where all
operations are affected by roundoff errors. In contrast to that, purely algebraic methods work
in a symbolic environment where all numerical operations are carried out exactly, usually by
using infinite precision rational numbers, cf. [9].

In this paper, we study techniques based on companion matrices which transform the
computation of zeros of polynomials into an eigenvalue problem that can be accessed by
well–established methods from numerical linear algebra. In a single variable, this is nothing
but the classical and well–known approach by means of the Frobenius companion matrix of
a polynomial. We will derive this method as a special case of describing the operation of
multiplication by a given polynomial on normal forms modulo a given ideal. By specializing
to different bases for the normal form space, we will recover two classical examples of com-
panion matrices, but also a new companion matrix, for which some numerical experiments
show a very interesting behavior.

In the multivariate case, the eigenvalue problem itself becomes more challenging: instead
of finding the eigenvalues of a single matrix, we need to compute all eigenvalues and joint
eigenvectors of a commuting family of n× n matrices, since the eigenvectors allow us to pick
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a proper combination of n joint eigenvalues out of ns possible combinations. An algorithm
for that purpose, given by Möller and Tenberg [18], will be presented, analyzed and modified
to work in a numerically more stable way. We will prove the correctness of the modification
in Theorem 5 and discuss some possible extensions.

The organization of the paper follows the above storyline. In Section 2, we will sketch
the algebraic background and give some example of univariate companion matrices. Numer-
ical experiments with one of those companion matrices will be reported in Section 3 while
Section 4 then will deal with the computation of joint eigenvalues or joint diagonalizations of
the commuting family.

§2. Companion matrices and zeros of polynomials

Companion matrices or multiplication tables are a key ingredient in making the computation
of (common) zeros of polynomials numerically accessible. Being a standard method in one
variable, cf. [11, p. 348] or [15, p. 147ff], its multivariate counterpart was brought to wider
attention by Stetter [22] although it is often attributed to Stickelberger, cf. [3]. The main idea
is easily described anyway.

Let F ⊂ C[x] = C[x1, . . . , xs] be a finite set of polynomials in s variables with complex
coefficients which generates an ideal

〈F〉 =

∑f∈F

g f f : g f ∈ C[x]

 .
It is easy to see that x ∈ Cs is a solution of the system, i.e., F(x) = 0 which means f (x) = 0,
f ∈ F, if and only if 〈F〉 (x) = 0, that is, f (x) = 0, f ∈ 〈F〉. In other words, the solution set

Z(F) := {x ∈ Cs : F(x) = 0} ,

which can be seen as the common zeros of F or the solution of the polynomial system F(x) =

0, depends on the ideal 〈F〉, not of it specific basis F. Hilbert’s celebrated Basissatz tells us
that any polynomial ideal can be written as 〈F〉 for some appropriate finite basis F, but recall
that neither is the basis unique nor are the representations with respect to the basis. Indeed,
most symbolic methods for polynomial zero finding consist of determining a “better” basis
from which the solution can be obtained more easily.

Given F, the algebra of polynomials admits a direct sum decomposition

C[x] = 〈F〉 ⊕ NF

where NF is the vector space of normal forms modulo F. For any p ∈ C[x], its associated
normal form n(p) can be computed efficiently by reduction which is the main concept of
Gröbner bases and the generalization of Euclidean division to several variables. For an ele-
mentary introduction see [6]. Reduction with respect to a Gröbner basis is provided by all
computer algebra systems like Maple or Macaulay2, numerically more stable methods based
on homogeneous orthogonal reduction and H–bases have been introduced in [19]. The im-
portant point in the context of this paper is the following: given any finite subset F ⊂ C[x] and
p ∈ C[x], the normal form n(p) ∈ NF can be computed efficiently in finitely many operations.
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In this paper, we only consider zero dimensional ideals, which are ideals 〈F〉 such that
#Z(F) < ∞. These ideals can be characterized in terms of their normal form spaces as
follows.

Proposition 1. Let F be a finite set of polynomials and NF a normal form space for 〈F〉.
Then 〈F〉 is a zero dimensional ideal if and only if dim NF < ∞.

From now on we assume that 〈F〉 is zero dimensional. Let L : C[x] → NF be the linear
projector from that associates to each polynomial its normal form modulo 〈F〉. If Lp = Lp′

then p − p′ ∈ 〈F〉, hence p(x) = p′(x) for any x ∈ Z(F). Hence, L interpolates at Z(F). We
define the polynomials

`x := L

 ∏
x′∈Z(F)\{x}

(x − x′)T (· − x′)
‖x − x′‖22

 ∈ NF , x ∈ Z(F), (1)

which satisfy
`x(x′) = δx,x′ , x, x′ ∈ Z(F). (2)

Definition 1. The ideal 〈F〉 is called radical if

NF = span {`x : x ∈ Z(F)} ,

which means that all zeros in Z(F) are simple.

If an ideal is not radical, the multiplicity of the zero is a finite dimensional differentiation
invariant polynomial subspace, cf. [13, 14]. The occurance of multiplicities can complicate
the issue, but it can be assumed that all zeros are simple after a preprocessing step which we
will first recall in the univariate case.

Example 1. Let f (x) = (x − ζ)n g(x), g(ζ) , 0, be a univariate polynomial with an n–fold
zero at ζ. Then

f ′(x) = n(x − ζ)n−1 g(x) + (x − ζ)n g′(x) =: (x − ζ)n−1h(x), h(ζ) = n g(ζ) , 0,

so that (x − ζ)n−1 divides both f and f ′. Therefore, f / gcd( f , f ′) has the same zeros as f , but
only with multiplicity 1.

In “ideal language”, Example 1 shows that the associated radical ideal for the principal ideal
〈 f 〉 is the principal ideal

〈
f / gcd( f , f ′)

〉
. An analogous though more intricate procedure for

an arbitrary number of variables can be found in [12, p. 49]. Assuming that we first perform
this preprocessing step if necessary, we make the following standing assumption for the rest
of this paper.

Assumption 2. Suppose that 〈F〉 is a zero dimensional radical ideal, hence

dim NF = #Z(F)

and NF = span {`x : x ∈ Z(F)}.

With Assumption 2 and (2), the interpolation operator L : C[x] → NF that computes the
normal form can be written as

NF 3 n(p) = Lp =
∑

x∈Z(F)

p(x) `x, p ∈ C[x]. (3)
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More on polynomial interpolation and its ideal theoretic aspects can be found in [7] and the
surveys [8, 20].

With this terminology at hand, we are finally ready to define companion matrices or
multiplication tables. To that end, we note that multiplication by an arbitrary polynomial
q ∈ C[x] and then interpolating we obtain a mapping from NF to itself:

NF 3 p 7→ mq(p) := L(qp) =
∑

x∈Z(F)

p(x)q(x) `x (4)

Since L is a linear operator, it follows that

mq(p + p′) = L
(
q(p + p′)

)
= L

(
qp + qp′

)
= L(qp) + L(qp′) = mq(p) + mq(p′),

hence mq is a linear operator that can be represented with respect to a basis B of NF by matrix

Mq :=
(
mb,b′ : b, b′ ∈ B

)
, mq(b) =

∑
b′∈B

mb,b′ b′, b ∈ B. (5)

We observe that the companion matrix Mq depends on the space NF as well as on the concrete
basis B that we have chosen. This principle is as straightforward as flexible, as we will point
out by means of some univariate examples next.

Example 2. For s = 1 we consider the monic polynomial f (x) = xn+1 + anxn + · · · + a0
for which N f = Πn, the space of all polynomials of degree ≤ n, spanned by the monomials
{1, x, . . . , xn}, and q(x) = x. Then,

m(·)

(
(·) j

)
= L

(
(·) j+1

)
= (·) j+1, j = 0, . . . , n − 1,

and

m(·) ((·)n) (x) = L
(
(·)n+1

)
(x) = xn+1 − f (x) = −

n∑
j=0

a j x j,

so that the associated multiplication table

M(·) =


0 −a0

1
. . .

...
. . . 0 −an−1

1 −an

 (6)

is the well–known Frobenius companion matrix, cf. [15].

Example 3. Still Let pn, n ∈ N0, be a system of monic orthogonal polynomials, thus satisfy-
ing a three term recurrence of the form

pn = (· + βn) pn−1 − γn pn−2, n ∈ N0, p0 = 1, p−1 = 0, (7)

and fix some n > 0. Then Npn+1 = Πn again and with the basis {p0, . . . , pn}, the recurrence
relation (7) yields that

m(·)(pk) = pk+1 − βk+1 pk + γk+1 pk−1, k = 0, . . . , n − 1,
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and
m(·)(pn) = −βn+1 pn + γn+1 pn−1,

yielding the tridiagonal companion matrix

M(·) =



−β1 γ2
1 β2 γ3

. . .
. . .

. . .

1 −βn γn+1
1 −βn+1


(8)

well–known in the computation of quadrature nodes, cf. [10].

The final example is less common, but can be found in [2].

Example 4. Still in s = 1, we consider f (x) = an+1xn+1 + · · · + a0, an+1 , 0, of degree n + 1
and arbitrary points ξ0, . . . , ξn+1 ∈ R which, in particular, do not have to be zeros of f . As
basis for N f = Πn we choose the Newton fundamental polynomials

B =

b j :=
j−1∏
k=0

(· − ξk) : j = 0, . . . , n


and the projector given by Newton form

Lp =

n∑
j=0

[ξ0, . . . , ξ j]p b j

of the interpolation polynomial where [ξ0, . . . , ξ j]p denotes the divided difference. The dual-
ity between basis polynomials and divided differences yields that

m(·)(b j) = L
(
(·)b j

)
=

n∑
k=0

[ξ0, . . . , ξk]
(
(·)b j

)
bk

=

n∑
k=0

[ξ0, . . . , ξk]
(
(· − ξ j)b j

)
bk + ξ j

n∑
k=0

[ξ0, . . . , ξk]b j bk

=

n∑
k=0

[ξ0, . . . , ξk]b j+1 bk + ξ j

n∑
k=0

[ξ0, . . . , ξk]b j bk = b j+1 + ξ j b j, j = 0, . . . , n − 1,

and, since [ξ0, . . . , ξn+1] f = an+1 and ((· − ξn) bn) (ξ j) = 0, j = 0, . . . , n,

m(·)(bn) = ξn bn + (· − ξn)bn −
1

[ξ0, . . . , ξn+1] f
f

= ξn bn +

n∑
j=0

(
[ξ0, . . . , ξk] ((· − ξn)bn) −

[ξ0, . . . , ξk] f
[ξ0, . . . , ξn+1] f

)
bk

= ξn bn −

n∑
j=0

[ξ0, . . . , ξk] f
[ξ0, . . . , ξn+1] f

bk.
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Consequently, the Newton companion matrix is of the form

M(·) =


ξ0 −

[ξ0] f
[ξ0,...,ξn+1] f

1 ξ1 −
[ξ0,ξ1] f

[ξ0,...,ξn+1] f
. . .

. . .
...

1 ξn −
[ξ0,...,ξn] f

[ξ0,...,ξn+1] f

 , (9)

and depends only on the values f (ξ0), . . . , f (ξn+1), quite is in the spirit of algebra from values
as introduced, for example, in [23].

So far, we have considered only univariate examples. For s > 1, the fundamental multipli-
cation tables are those of the form M(·) j which correspond to multiplication with coordinate
polynomials. Since

mqq′ (p) = L(qq′p) = L
(
q L(q′p)

)
= L

(
q mq′ (p)

)
= mq

(
mq′ (p)

)
, p ∈ NF ,

and
mq+q′ (p) = L

(
(q + q′)p

)
= L(qp) + L(q′p) = mq(p) + mq′ (p), p ∈ NF ,

we can immediately draw the following conclusions.

Theorem 3. The matrices M j := M(·) j , j = 1, . . . , s, commute and generate the algebra of
multiplication tables, i.e., M jMk = Mk M j, j, k = 1, . . . , s, and

Mq = q(M) =
∑
α∈Ns

0

qα Mα =
∑
α∈Ns

0

qα Mα1
1 · · ·M

αs
s , q =

∑
α∈Ns

0

qα (·)α. (10)

Example 5. Suppose that F is such that NF = Πn with the monomial basis B = {(·)α : |α| ≤ n}
in standard multiindex notation. In this case, there exist a basis of 〈F〉 which is of the form
G := {gα := (·)α + g̃α : g̃α ∈ Πn, |α| = n + 1}, and this basis is even an H–basis. Then

m(·) j ((·)α) = (·)α+ε j , |α| ≤ n,

where ε j ∈ N
s
0 denotes the jth coordinate multiindex, and

m(·) j ((·)α) = −g̃α+ε j = −
∑
|β|≤n

g̃α+ε j,β (·)β, |α| = n.

Consequently, arranging these relations into blocks according to the total degree, the jth
companion matrix has the block Hessenberg form

M j =


0 G0

S 1 G1
. . .

...
S n Gn

 , (11)

where

S k =

(
δα,β+ε j :

|α| = k
|β| = k − 1

)
∈ C(k+s

s−1)×(k−1+s
s−1 ), k = 1, . . . , n,
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and

Gk =

(
−g̃β+ε j,α :

|α| = k
|β| = n

)
∈ C(k+s

s−1)×(n+s
s−1), k = 0, . . . , n.

In this respect, (11) is the exact block analogy of the Frobenius companion matrix (6) from
Example 2 and can be directly read off the coefficients of the monic Gröbner or H–basis of
the ideal 〈F〉.
The practical use of companion matrices lies in the following theorem which has different
attributions and an extremely simple proof.
Theorem 4 (Stetter, Sticklberger). If 〈F〉 is zero dimensional and radical, then the eigenval-
ues of M j are x j, x ∈ Z(F), and the associated eigenvectors are `x, x ∈ Z(F).

Proof. Note that by (2)

m(·) j (`x) = L
(
(·) j`x

)
=

∑
x′∈Z(F)

x′j`x(x′) `x′ = x j `x (12)

holds for any x ∈ Z(F), hence the coefficient vectors of the `x are the #Z(F) linearly indepen-
dent joint eigenvectors of the #Z(F) × #Z(F)-matrices M j. �

Remark 1. Note that the eigenvectors `x do not depend on the matrix M j. Indeed, we even
have that

Mq`x = q(M)`x =
∑
α∈Ns

0

qαMα `x =
∑
α∈Ns

0

qαxα `x = q(x) `x

for any polynomial q ∈ C[x].
Remark 2. For s = 1, Theorem 4 follows directly from inspecting the Newton Compan-
ion matrix from Example 4: if the parameters ξ0, . . . , ξn are, by accident, the zeros of f ,
then [ξ0, . . . , ξ j] f = 0, j = 0, . . . , n, and the eigenvalues of the matrix are the zeros of the
polynomial. Since all companion matrices only differ by a change of basis, i.e., a similarity
transform, the same also holds for the companion matrices of the other examples. On the
other hand, (12) is nothing but computing the diagonal companion matrix with respect to the
basis B = {`x : x ∈ Z(F)}.

§3. A numerical experiment

Returning to s = 1, we briefly perform some numerical experiments concerning the Newton
companion matrix and its iterative application. For simplicity, we assume that f is a monic
polynomial and start with some arbitrary, for example random, choice

ξ0 =
(
ξ0

0 , . . . , ξ
0
n

)
,

from which compute a sequence of companion matrices

M j :=


ξ

j
0 −[ξ j

0] f
1 ξ

j
1 −[ξ j

0, ξ
j
1] f

. . .
. . .

...

1 ξ
j
n − [ξ j

0, . . . , ξ
j
n] f

 , j ∈ N,
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1 iteration 2 iterations 3 iterations
n avg max avg max avg max
2 1.2726e-14 1.1130e-11 1.4280e-17 1.5266e-16 1.0138e-17 1.5266e-16
5 2.6031e-11 2.7078e-08 1.5354e-16 7.7716e-15 1.4655e-16 3.8858e-15
8 1.0356e-07 2.3336e-04 2.8920e-16 4.7851e-14 2.3223e-16 5.6621e-15

10 9.2646e-06 3.0206e-02 2.4375e-09 8.2716e-06 4.8751e-09 1.6543e-05
15 2.2419e-04 1.1340e-01 6.0210e-04 2.7328e-01 6.9069e-04 2.9682e-01
20 1.6115e-03 7.4816e-01 6.0930e-03 6.2219e-01 7.0142e-03 6.6549e-01

Table 1: Random polynomials and their zeros, average and maximal errors over 1000 trials.

# of iterations
n 1 2 3 4 5
5 13.900 15.913 15.930 15.969 16.029

10 11.034 15.243 15.414 15.428 15.425
15 7.9267 12.4128 13.6033 13.6274 13.6394
20 5.3069 7.4589 8.9817 9.0395 9.0391
30 1.79008 1.00444 0.95683 0.91752 0.87821

Table 2: Logarithmic average, number of correct digits in average over 1000 trials

by choosing ξ j+1 as the eigenvalues of M j. The experiment proceeds in the following way:
we first compute n random points ζ j ∈ [0, 1] and set f (x) =

∏n
j=1(x − ζ j). Moreover, we

choose a random initialization for ξ0 ∈ [0, 1]n+1 and then run, with the same setup, several
iterations of of the Newton companion process. This experience is repeated 1000 times, of
course with new random points, and we average the absolute value of the errors over all zeros
and all trials. In addition, we also record the maximal deviation.

The results are listed in Table 1. For small degree polynomials we can record a significant
improvement in accuracy, while for degrees larger than 10, there iterations do not give better
results. The reason is that the numerical inaccuracies in the computation of the divided dif-
ference result in eigenvectors with a significant imaginary part and resubsituting these values
into the process leads even to increased errors in some cases. Moreover, Table 1 is, however,
somewhat misleading as it only determines the arithmetic mean of all errors and therefore a
single case with an error of 10−3 dominates many cases with an error of 10−10.

Indeed, iterative application of Newton companion matrices can often lead to a signif-
icant improvement, at least for moderate degrees, as Table 2 shows, where the average of
the logarithmic error is listed, i.e., the average number of correct decimal digits in the solu-
tions. At least up to degree n = 20, the iterations improve the numerical quality significantly.
Of course, further investigation and quantitative statements would be needed here which is
currently under investigation.

§4. Joint eigenvectors

Now we turn our attention to s > 1, the “truly” multivariate situation. Theorem 4 tells us
that, numerically, the problem of finding the common zeros Z(F) of F ⊂ C[x] is equivalent
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to finding the joint eigenvalues of the commuting family M j. We will not focus here on the
question how these matrices are obtained; this can be done by Gröbner or H–basis methods,
see, for example [1, 17] or [16], where also some numerical issues concerning the choice
of basis are addressed. Moreover, a method to obtain companion matrices for polynomials
whose coefficients are given implicitly as kernels of certain matrices by fast methods from
numerical linear algebra has been pointed out in [21] and was the starting point for these
investigations.

Möller and Tenberg [18] gave an algorithm to compute joint eigenvectors and the associ-
ated eigenvalues based on intersections on eigenspaces, while an adapted QR method to com-
pute joint eigenvectors and associated eigenvalues by decomposing the companion matrices
simultaneously has been addressed in [4, 5]. Here, we will reconsider the eigenspaces inter-
section method, first recalling the Möller–Tenberg algorithm and then introducing a modified
version that is more suitable for numerical computations.

Specifically, we want to solve the following apparently innocent problem from numerical
linear algebra.

Problem 1. Given s commuting matrices M1, . . . ,Ms ∈ C
n×n, find a matrix V ∈ Cn×n whose

columns are the n linearly joint independent eigenvectors of M j, j = 1, . . . , s.

Remark 3. Before stating the algorithms, let us recall some basic facts first:

1. For general commuting families, Problem 1 as stated here cannot be solved because
there does not have to exist a basis of eigenvectors for the M j if some of these bases
have multiple eigenvalues where geometric and algebraic multiplicity do not match.
In our particular case here, however, Assumption 2 ensures that the coefficient vectors
of the `x, x ∈ Z(F), are the eigenvectors we are looking for. And (2) immediately
guarantees that the `x are linearly independent: suppose that a coefficient vector (ax :
x ∈ X) satisfies

0 =
∑

x∈Z(F)

ax `x =: p.

Then evaluation of p on Z(F) implies that ax = 0, x ∈ Z(F).

2. Once the matrix V is determined, it simultaneously diagonalizes the matrices M j,

V−1M jV = D j =


λ j1

. . .

λ jn

 , j = 1, . . . , s,

and we get
Z(F) = {(λ1k, . . . , λsk) : k = 1, . . . , n} . (13)

This highlights the importance of the joint eigenvectors: they connect the eigenvalues
to give the n elements of Z(F).

3. We rely on a function Λ : Cn×n → Cn×Cn×n, such that, given a square matrix A ∈ Cn×n,
Λ(A) = (λ, E) computes a vector λ ∈ Cn of eigenvalues and a matrix E ∈ Cn×n that
contains a normalized basis of eigenvectors, provided the matrix can be diagonalized.
Such a function is provided by Matlab and octave under the name eig.
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Definition 2. We write a vector λ ∈ Cn by multiplicities as (λ̂, µ), λ̂ ∈ Cm, µ ∈ Nm, where
λ̂ j , λ̂k, 1 ≤ j < k ≤ m, and

λ = (λ̂1, . . . , λ̂1︸     ︷︷     ︸
µ1

, . . . , λ̂m, . . . , λ̂m︸      ︷︷      ︸
µm

),
m∑

j=1

µ j = n.

Both methods to be stated now, Algorithm 1 and Algorithm 2, can best be described by means
of column partitioned n × n matrices which we will write as

V = [V1 | . . . |V`] , V j ∈ C
n×n j , j = 1, . . . , `,

where ` = `(V) stands for the number of column blocks. With this terminology, we can state
the first method which computes the joint eigenvectors by successively refining eigenspaces.

Algorithm 1 (Möller & Tenberg, [18]).
Given: M1, . . . ,Ms ∈ C

n×n.

1. Compute (λ, E) = Λ(M1), λ = (λ̂, µ), let V be a column permutation of E such that

V = [V1 | . . . |Vm] , M jVk = λ̂k Vk, k = 1, . . . ,m,

and set `(V) = m.

2. For j = 2, . . . , s

(a) For k = 1, . . . , ` := `(V)
i. Compute, by means of the pseudoinverse V+

k ,

(λ, E) = Λ(V+
k M jVk), λ = (λ̂, µ). (14)

ii. Partition E = [E1 | . . . | Em] according to λ̂ and µ.
iii. Replace Vk by [VkE1 | . . . |VkEm], i.e., `(Vk) = m.

(b) Replace `(V) by `(V1) + · · · + `(V`).

Result: matrix V such that V−1M jV = D j, where D j is diagonal.

Remark 4. Algorithm 1 also works in the case of multiple zeros where the matrices M j do
not have a basis of eigenvalues. For details see [18].
The second algorithm is a variation of the Möller–Tenberg method that uses explicit subspace
intersection. To that end, we identify a matrix A ∈ Cn×a with the subspace ACa ⊂ Cn spanned
by the columns of A. In this sense, A ∩ B, A ∈ Cn×a, B ∈ Cn×b, stands for a matrix whose
columns span the intersection ACa ∩ BCb. How to compute such an intersection will be
recalled in Algorithm 3. If two spaces have only trivial intersection, i.e., A ∩ B = {0}, then
A ∩ B is represented by the empty matrix as in Matlab.

Algorithm 2 (Eigenspace intersection).
Given: M1, . . . ,Ms ∈ C

n×n.

1. Compute (λ, E) = Λ(M1), λ = (λ̂, µ), let V be a column permutation of E such that

V = [V1 | . . . |Vm] , M jVk = λ̂k Vk, k = 1, . . . ,m,

and set `(V) = m.
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2. For j = 2, . . . , s

(a) Compute
(λ, E) = Λ(V−1M jV), λ = (λ̂, µ), (15)

and partition E = [E1 | . . . | Em] according to λ̂ and µ.
(b) For k = 1, . . . , ` = `(V)

i. Replace Vk by [Vk ∩ VE1 | . . . |Vk ∩ VEm].
ii. Set `(Vk) = #{t : dim(Vk ∩ VEt) ≥ 1}.

3. Replace `(V) by `(V1) + · · · + `(V`).

Result: matrix V such that V−1M jV = D j, where D j is diagonal.

Theorem 5. If the matrices M j, j = 1, . . . , s, are companion matrices of a zero dimensional
radical ideal, then Algorithm 2 computes a matrix V that simultaneously diagonalizes the
matrices M j, j = 1, . . . , s.

Proof. The principle of Algorithm 2 is that after j steps the blocks in the partitioning

V = [V1 | . . . |V`]

are exactly the nontrivial intersections of eigenspaces of M1, . . . ,M j. We prove this fact by
induction on j where the case j = 1 is a trivial consequence of the first step of the algorithm.
Suppose that the claim is valid for some j ≥ 1. Since

M j+1VEt = VV−1M j+1VEt = λ̂t VEt, t = 1, . . . ,m,

any intersection Vk∩VEt is a joint eigenspace of M j+1 and one of M1, . . . ,M j by the induction
hypothesis, thus of M1, . . . ,M j+1. Moreover, E and V are nonsingular, hence Cn = VE1 ⊕

· · · ⊕ VEm and therefore

Vk = Vk ∩ C
n = Vk ∩

 m⊕
t=1

VEt

 =

m⊕
t=1

(Vk ∩ VEt),

which yields Cn = V1 ⊕ · · · ⊕ V` at each level and proves that V contains all intersections.
Since the intersections of eigenspaces of M1, . . . ,Ms are of dimensions 0 or 1, the case j = s
proves the claim. �

Next, we collect some observations on the two algorithms.
Remark 5. A first view, Algorithm 1 and Algorithm 2 appear to be some “overkill”. In-
deed, if there is a single matrix M j with only simple eigenvalues, then its decomposition
(λ, E) = Λ(M j) already gives a matrix E that diagonalizes all the M j. Since, moreover, mul-
tiple eigenvalues are very unlikely after small perturbations of the matrix, one may ask why
all this effort should be necessary. The answer is simple: in polynomial systems it quite often
happens that the solutions lie on a grid, i.e., belong to a subset of X1 × · · · × Xs, for finite
sets X j ⊂ C, and then M j has just #X j different eigenvalues, each of them with respective
multiplicities. Even if they may all different after small perturbations in the computation of
the companion matrices, the eigenspace structure is still necessary to find the proper combi-
nations of these values.
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Remark 6. This approach also connects to projection methods. Indeed, if p ∈ Π1 is a linear
polynomial such that p(x) , p(x′), x, x′ ∈ Z(F) – and almost any linear function has this
property – then

Mp = p0I +

s∑
j=1

p j M j

has n simple eigenvalues and the eigenvectors are the joint eigenvectors of any Mq, q ∈
C[x], according to Theorem 3. Hence, the matrix V with these eigenvectors as columns
diagonalizes all M j, j = 1, . . . , s. The main problem, however, is to find an a priori p such
that the eigenvalues of Mp are sufficiently well separated to give a numerically meaningful
result.
Remark 7. Since in both algorithms nothing has to be done in step 2a) and 2b), respectively,
as soon as `(Vk) = 1, both algorithms can be terminated as soon as `(V) = n. If all eigenvalues
of M1 are simple, this even happens after the first step.
Remark 8. While the Möller–Tenberg method in Algorithm 1 is faster since it has to solve
smaller eigenvalue problems in (14) compared to those in (15), it is more sensitive to the
order of the matrices and to small perturbations in the companion matrices than Algorithm 2
since it only refines the spaces and cannot compensate small errors made in previous steps.
Remark 9. In both algorithms it is reasonable to normalize the columns of V after each
iteration. It is not included in the descriptions since it is not needed for correctness but it
usually stabilizes the computations significantly.
Remark 10. The prediagonalisation in (15), using V−1M jV would not be necessary for the
method to work, but it improves the performance of eigenvalue computations. Whenever a
column of V is already an eigenvalue of M j, then we get that

V−1M jV =



∗ . . . ∗ 0 ∗ . . . ∗

...
. . .

...
...

...
. . .

...
∗ . . . ∗ 0 ∗ . . . ∗

0 . . . 0 λ 0 . . . 0
∗ . . . ∗ 0 ∗ . . . ∗

...
. . .

...
...

...
. . .

...
∗ . . . ∗ 0 ∗ . . . ∗


,

where λ is the associated eigenvalue. Thus, the eigenvalue routine does only have to do
reductions where needed.
For the sake of completeness, we finally recall an easy and numerically stable way to compute
the intersection of two subspaces.

Algorithm 3 (Subspace intersection).
Given: A ∈ Cn×a, B ∈ Cn×b of rank a and b, respectively, a, b ≤ n.

1. Compute a singular value decomposition(
A | − B

)
= UΣV∗, U ∈ Cn×n, Σ ∈ Cn×(a+b), V ∈ C(a+b)×(a+b),

with singular values σ1 ≥ · · ·σk > σk+1 = · · · = σmin(n,a+b) = 0.
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2. Set C = AV1:a,k+1:a+b.
Result: C = A ∩ B.
The validity of this algorithm is easily verified: a vector 0 , w ∈ Cn belongs to A ∩ B if and
only if there are nonzero vectors u ∈ Ca and v ∈ Cb such that w = Au = Bv, hence(

A | − B
) (u
v

)
= 0

so that Au belongs to the kernel if and only if u consists of the first a columns of a nontrivial
element of the kernel of

(
A | − B

)
, and the rank assumption ensures that u , 0.

In numerical practice, Algorithm 3 works by thresholding the singular values with respect
to a given tolerance τ > 0, setting all singular values with σ j ≤ τ to zero. Moreover, the
version given here always computes C as a subspace of A. An alternative way could be the
symmetric choice

C =
1
2

(
AV1:a,k+1:a+b + BVa+1:a+b,k+1:a+b

)
which better compensates small errors in A and B by averaging.

The (implicit) thresholding in Algorithm 3 also suggests an important improvement to
Algorithm 2. Note that if the threshold τ is too small, some subspace intersections will be
missed while a too large threshold generates false intersections. This can be fixed to some
extend by adapting the threshold in such a way that the intersections at least span a space of
proper dimension, as done in the following procedure.
Algorithm 4 (Adaptive threshold control).

1. Fix ρ > 1.

2. Compute W = V[E1 | . . . | Em] = [W1 | . . . |Wm].

3. Repeat

(a) Compute

Xt := Vk ∩Wt, t = 1, . . . ,m and `′ =

m∑
t=1

dim Xt

by Algorithm 3 based on the threshold τ.
(b) If `′ < m replace τ by ρτ.
(c) If `′ > m replace τ by ρ−1τ.

until `′ = m.
This algorithm terminates. This is due to the fact `′ is monotonically increasing with re-
spect to τ and the extremal values τ = 0 and τ = σ1 give smaller and larger intersections,
respectively.
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