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PARAMETER-UNIFORM NUMERICAL
METHODS FOR SINGULARLY PERTURBED

PROBLEMS
Eugene O’Riordan

Abstract. Singularly perturbed differential equations are often characterized by the pres-
ence of a small parameter multiplying the highest order derivative term(s) in the differ-
ential equation. The solutions typically exhibit steep gradients in narrow regions (often
called layers) of the domain [3, 11]. It is important to discuss the choice of norm used to
measure the accuracy of any proposed approximate solutions. Standard numerical meth-
ods typically fail to accurately capture these layers. This paper outlines the rationale for
the definition of parameter-uniform numerical methods and it highlights the central tool
used in the numerical analysis associated with singularly perturbed problems [8, 16].
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§1. Introduction

Our interest lies in analysing numerical algorithms, which generate finite dimensional ap-
proximations ŪN to solutions u (defined over a continuum) of a wide class of problems in-
volving partial differential equations. For a large set of problems, we wish to prove that this
sequence of computable approximations ŪN converge (in some norm) to the solution of the
continuous problem, as the dimension N of the discrete problem tends to infinity. In addition,
it is useful to identify the rate at which this sequence converges. Thus, the main aim here is
to establish a theoretical error bound of the form:

‖u − ŪN‖∗ ≤ CN−p, p > 0.

Typically, the exponent p is an integer and C is an undetermined constant, which depends on
the problem data and on the value of p; but the error constant C is independent of N; so that
as N → ∞, the error tends to zero, in the selected norm ‖ · ‖∗.

In practice, limitations need to be placed on the extent of the problem class (e.g. the
types of domains admitted, smoothness of the data in the differential operator, the magnitude
and sign of certain coefficients in the differential equation, etc.) in order to prove some
kind of error estimate. Of course, we hope that we do not place so many restrictions on
the problem data that the class corresponds to an empty set or simply to a set of constant
coefficient second order boundary values problems. This comment is most pertinent when
dealing with classes of nonlinear problems. Moreover, it would be best if all the restrictions
on the problem class are explicitly specified. In many cases these restrictions are implicitly
stated. In addition, we want to be able to establish theoretical error bounds for some particular



160 Eugene O’Riordan

problems (from the problem class) for which an exact solution is not explicitly known. If the
exact solution is known (in a manageable closed form), then any numerical approximation is
rather superfluous. Most importantly, what is an appropriate norm ‖ · ‖∗ to measure accuracy
? In the context of theoretical numerical analysis, the choice of norm is open to the individual
numerical analyst. Note that it is usually much easier to prove convergence in a weaker norm.
In fact, if one is under time pressure to complete a proof, a change to a different norm can
greatly facilitate adherence to a publication deadline!

§2. Continuous problem

Throughout this paper we shall assume that we are dealing with a bounded domain Ω ⊂

Rn, n = 1, 2, 3; with the boundary denoted by ∂Ω. Consider the continuous problem: Find
u(x), x ∈ Ω, that satisfies the boundary value problem

Lu(x) = f (x), x ∈ Ω;

where we assume that L is a linear second order differential operator1. We shall further
assume that the differential operator is inverse-monotone: That is, for all z within the domain
D(L) of the operator L

Lz(x) ≥ 0, ∀x ∈ Ω implies that z(x) ≥ 0, ∀x ∈ Ω.

This is a pointwise property of the differential operator. If the operator has this property,
we can conclude that there exists a positive constant C such that2 ‖u‖∞ ≤ C‖ f ‖∞. This
stability bound ensures that the problem has a unique solution and is stable with respect to
perturbations in the data. The inverse-monotone property allows one bound the continuous
solution u, without explicitly identifying the inverse of the operator L. For example, the
differential operator L could be of parabolic-type

L1 := −
∂2

∂x2 + a(x, t)
∂

∂x
+ b(x, t)I + c(x, t)

∂

∂t
, (x, t) ∈ (0, 1) × (0,T ];

or of elliptic type L2 := −4+a(x) ·∇+b(x)I, x ∈ Ω := (0, 1)× (0, 1); and on the boundary we
specify, for example, Dirichlet boundary conditions L := I, x ∈ ∂Ω. In general, restrictions
need to be imposed on the sign of coefficients so that the operator L has the inverse-monotone
property (e.g., for the parabolic operator L1, it suffices to require b ≥ 0 and c > 0).

For the numerical analyst, one typically requires the solution to be sufficiently regular
for the analysis to be applicable. For the elliptic problem posed on the unit square, L2u =

f , x ∈ Ω := (0, 1) × (0, 1), u = 0, x ∈ Ω̄ \ Ω; one often requires u ∈ C3,α(Ω̄). For this level
of regularity3, one can assume that a, b, f ∈ C1,α(Ω̄) and the additional local compatibility
conditions f (0, 0) = f (1, 0) = f (0, 1) = f (1, 1) = 0 are satisfied. However, for many elliptic
problems posed on a non-rectangular domain Ḡ, local compatibility conditions do not exist

1Normally, the definition of the operator L on the boundary and in the interior of the domain are given separately.
For example, Lu(x) := −4u(x) + a(x)u(x), x ∈ Ω := (0, 1) × (0, 1); Lu(x) := u(x), x ∈ ∂Ω.

2The stability bound can be established by constructing a bounded function y(x) such that L(y±u)(x) ≥ 0,∀x ∈ Ω.
3See [7] or [9], for example, for a definition of the Hölder spaces Cn,α(Ω̄).
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[4] to guarantee that the solution u ∈ C3,α(G) ∩ C1,α(Ḡ). Hence, one often comes across
implicit assumptions on the data of the form: Assume u ∈ C3,α(Ω̄). These kind of implicit
regularity assumptions can significantly limit the scope of the problem class.

§3. Discrete Problem and classical error analysis

Within the numerical analysis literature, there are two standard numerical approaches to gen-
erating numerical approximations to the solutions of partial differential equations: the finite
difference method and the (far more popular) finite element method. In the finite difference
method, the continuous derivatives are approximated by finite differences and the error is
typically measured in a pointwise norm,

‖u − ŪN‖
Ω,∞ := max

x∈Ω
|(u − ŪN)(x)| ≤ CN−p, p > 0;

where ŪN corresponds to some interpolated global approximation generated from the nodal
values UN(xi). On the other hand, the finite element method discretizes a weak form of the
continuous problem and the accuracy is measured in an L2-based norm, such as the H1-norm

‖e‖2H1(Ω) :=
∫

Ω

e2
x + e2

y + e2dΩ, where e = u − ŪN .

In general, less regularity is required of the continuous solution u in the case of the finite
element method, which is a major attraction of this approach. Let us now discuss these two
numerical approaches in some more detail.

For the finite difference method, a finite set of mesh points (or sample points) Ω̄N is
selected within the continuous domain Ω̄. (Here N is the number of mesh intervals used
in any coordinate direction.) Consider a sequence of approximate mesh functions (vectors)
UN(xn), xn ∈ Ω̄N , which are the solutions of the discrete problem

LNUN(xn) = f (xn), xn ∈ Ω
N

;

and LN is a finite difference operator (i.e., a matrix). The finite difference operator could be
one of the following 4

LN
1 := −δ2

x + D+
t , or LN

2 := −δ2
x − δ

2
y + aD−x + bD−y.

The discrete first derivatives D+
x ,D

−
x are defined at each mesh point by

D+
x UN(xi, y j) :=

UN(xi+1, y j) − UN(xi, y j)
xi+1 − xi

, D−x UN(xi, y j) :=
UN(xi, y j) − UN(xi−1, y j)

xi − xi−1
.

Both of these discrete first derivatives can be viewed as an approximation to the first order
continuous partial derivative ux(xi, y j).

4The classical approximation to the second order derivative uxx(xi, y j) is

δ2
xUN (xi, y j) :=

(D+UN − D−UN )(xi, y j)

h̄i
, h̄i := (hi + hi+1)/2, hi := xi − xi−1.
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It is desirable to construct the finite difference operator LN so that the inverse-monotone
property is inherited from the differential operator. That is: for any mesh function Z

LNZ(xi) ≥ 0, ∀xi ∈ Ω
N

implies that Z(xi) ≥ 0, ∀xi ∈ Ω
N
.

In matrix terminology we require the matrix LN to be monotone 5. Typically, one must choose
appropriate discrete replacements for the first derivatives in the differential operator L so that
the associated matrix LN is an M-matrix6. In practice, it is relatively easy to identify an M-
matrix, but this set is a distinct subset of the set of monotone matrices. In the case of certain
partial differential operators (e.g., containing a mixed second order derivative term), natu-
ral discretizations of the various derivatives may lead to a matrix which is not an M-matrix,
as not all of the off-diagonal elements may be of one sign. Unfortunately, the characteriza-
tions of monotone matrices is not as well developed as it is for M-matrices. For rectangular
non-uniform meshes, we can simply assume that there are no mixed derivative terms in the
differential operator so that the finite difference operator LN can be assembled according to
criteria that guarantee an M-matrix structure.

A classical proof for establishing a nodal error bound, involves combining a truncation
error bound ‖LN(u − U)‖ with some type of stability argument. Stability can be viewed as
implicitly bounding the inverse of the finite difference operator LN . Truncation error bounds
revolve around bounding integrals of the form

(
D+

x u −
∂u
∂x

)
(xi, y j) =

1
hi

∫ xi

t=xi−1

∫ t

s=xi

uss(s, y j) ds dt, hi := xi − xi−1.

The argument used to establish a truncation error bound is straightforward. A typical trunca-
tion error bound, for second order problems, would be of the form:

‖LN(u − UN)‖ΩN = ‖LNu − f ‖ΩN = ‖(L − LN)u‖ΩN ≤ C1(‖u(3)‖Ω + ‖u(2)‖Ω)N−q, q > 0;

where ‖u(k)‖Ω denotes the maximum value of the kth order partial derivatives across the entire
domain. So the truncation error depends on the magnitude of the derivatives of the con-
tinuous solution across the continuum Ω̄. For our purposes, stability is established using
inverse-monotonicity of the finite difference operator. An error bound is established by con-
structing a barrier function Y , such that ‖Y‖ΩN ≤ C2N−p and (LNY)(xi, y j) ≥ C1(‖u(3)‖Ω,∞ +

‖u(2)‖Ω,∞)N−q, ∀(xi, y j) ∈ ΩN . Since LN(Y ± (UN − u))(xi, y j) ≥ 0, by inverse-monotonicity,
we have the nodal error bound

‖UN − u‖ΩN ,∞ ≤ C2N−p.

It is important to state that the order of convergence p for the error is not necessarily the same
as the order of convergence q of the truncation error.

A nodal error bound is a measure of accuracy at the mesh points ΩN . What about the
other points in the domain Ω ? If there are no mesh points located in the vicinity of some
singularity in the solution, then, over a limited range of N, the singularity may never be

5A real n × n matrix A is monotone if for any vector x, Ax ≥ 0 implies x ≥ 0.
6A real n × n matrix A = (ai, j) with ai, j ≤ 0, i , j is an M-matrix if A is nonsingular and A−1 ≥ 0.
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observed in the numerical solutions. To compare the performance of two numerical methods,
one should compare the global accuracy of both methods.

Let φi(x) be a basis function associated with the mesh point xi with φi(xi) = 1, φi(xj) =

0, i , j; where φi is a piecewise polynomial. Form the global approximation

ŪN(x) =
∑

i

UN(xi)φi(x).

For the purposes of the numerical analysis, one forms the interpolant ū(x) =
∑

i u(xi)φi(x).
The global error bound is of the form

‖u − ŪN‖Ω,∞ ≤ ‖ū − ŪN‖Ω,∞ + ‖u − ū‖Ω,∞ ≤ C2N−p + ‖u − ū‖Ω,∞.

The interpolation error ‖u − ū‖Ω,∞ is determined by the choice of basis functions and by the
location of the mesh points. Note that the above error bound uses the pointwise L∞ norm.

For the finite element method, we again select a finite set of nodal points Ω̄N within Ω̄.
Based on this choice of nodal points, the domain is divided into a finite number of subdomains
(or elements). A weak form of the problem is then constructed. For example, for the elliptic
problem −4u + au = f , (x, y) ∈ Ω, u(x, y) = 0, (x, y) ∈ ∂Ω; an associated weak form would
be: Find u ∈ H1

0(Ω) such that

B(u, v) := (ux, vx) + (uy, vy) + (au, v) = ( f , v), ∀v ∈ H1
0(Ω); (u, v) :=

∫
Ω

uv dΩ.

Choose a finite set of basis functions {φi(x, y)}N×N
i=1 ∈ H1

0(Ω) and let VN be the linear span of
these basis functions. A discrete weak form of the problem is: Find Ū ∈ VN ⊂ H1

0(Ω) s.t.

B(Ū, V̄) = ( f , V̄), ∀ V̄ ∈ VN ⊂ H1
0(Ω).

The discretization of the weak form occurs when, rather than testing against all v ∈ H1
0(Ω),

we only test against functions in a finite dimensional subset of H1
0(Ω). By construction of the

subspace VN , the error is orthogonal to the subspace in the following sense:

B(u − Ū, V̄) = B(u, V̄) − B(Ū, V̄) = 0,∀ V̄ ∈ VN .

Finite element error analysis crucially relies on the assumptions that the bilinear form is both
coercive, i.e., there exists a positive constant C3 such that B(u, u) ≥ C3‖u‖2V , ∀ u ∈ V; and
bounded, i.e., there exists a positive constant C4 such that B(u, v) ≤ C4‖u‖V‖v‖V , ∀u, v ∈ V. If
the bilinear form is both coercive and bounded, then

C3‖u − Ū‖2V ≤ B(u − Ū, u − ū) + B(u − Ū, ū − Ū) = B(u − Ū, u − ū) ≤ C4‖u − ū‖V‖u − Ū‖V .

Hence, the following error bound has been established

‖u − Ū‖V ≤
C4

C3
‖u − ū‖V .

Assuming all integrals are evaluated exactly, the finite element error analysis reduces to sim-
ply estimating the interpolation error u− ū. However, note that a certain norm ‖·‖V is required
in this error analysis. How appropriate are these energy norms for a problem containing cer-
tain singularities?
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§4. Singularly perturbed problems

Consider the following class of singularly perturbed elliptic problems:
Given a, b, f ∈ Cm(Ω), g ∈ Cp(∂Ω) and Ω = (0, 1)n, n = 1, 2, 3; find u such that

Lεu := −ε4u + a · ∇u + bu = f in Ω, u = g, on ∂Ω; 0 < ε ≤ 1.

Recall that our main aim is to design a numerical method for a large class of problems.
Small values for the singular perturbation ε have a significant effect on the character of the
solution. Parameter-uniform numerical methods are designed to generate pointwise accurate
approximations in the classical case (when ε = 1) of a smooth continuous solution u, in
the extreme case of very small values of ε � CN−1, when the problem is hyperbolic in
character over most of the domain and in the transitional region where CN−1 < ε < 1. Thus
the accuracy of parameter-uniform numerical methods is guaranteed for all values of the
perturbation parameter within the range 0 < ε ≤ 1.

There are serious issues with classical finite element approaches to constructing numerical
methods for singularly perturbed problems. In general, inverse-monotonicity is lost when the
singular perturbation parameter ε is small (relative to N−1). The continuous solution may be
known to be non-negative, but the finite element approximation will produce negative values.
Moreover, large spurious oscillations appear in the computed solution, which have nothing to
do with the continuous solution. There is a vast literature on stabilized finite element methods
for singularly perturbed problems, which aim to minimize the adverse effects of losing the
inverse-monotonicity property of the differential operator. In addition to this defect, we must
question the suitability of the energy norm for singularly perturbed problems. A typical
corner singularity (appearing in the solution of a singularly perturbed elliptic problem) would
be of the form

exp(−(1 − x)/ε) exp(−(1 − y)/ε).

This function is almost zero, except in an ε-neighbourhood of the single point (1, 1). For
classical finite element analysis, the error is typically measured in the weighted energy norm

|‖w|‖2ε := ε(wx, wx) + ε(wy, wy) + (w, w);

but the magnitude of the corner singularity is negligible in this energy norm. Note that

|‖e−(1−x)/εe−(1−y)/ε|‖ε = C
√
ε; but ‖e−(1−x)/εe−(1−y)/ε‖Ω,∞ = 1.

This corner singularity is visible in the L∞ norm, but not in the energy norm.
Under certain restrictions on the data, the derivatives of the continuous solution u satisfy

the bounds ‖u(k)‖Ω,∞ ≤ Cε−k, k ≤ 3. A sharp nodal error bound on a classical finite difference
method (e.g., a stable scheme on a uniform mesh) will be of the form

‖UN − u‖ΩN ,∞ ≤ CN−1ε−1,

where C is independent of both N and ε. If ε is small (say 10−6) then the magnitude of N
needs to be at least 106 before the above upper bound is of order one. This is observed in
practice [3]. Using a uniform mesh, a classical numerical method needs the number of mesh
elements in each coordinate direction to be greater than ε−1 before convergence begins. This
is a severe practical restriction on classical numerical methods.



Parameter-uniform numerical methods for singularly perturbed problems 165

§5. Parameter-uniform numerical methods

All of the previous discussion on numerical methods for singularly perturbed problems leads
us to the following definition: For singularly perturbed problems, a parameter-uniform nu-
merical method is inverse-monotone, satisfies a global error bound (in the pointwise norm)
of the form

‖ŪN − u‖Ω,∞ ≤ CN−p, p > 0,

and, most importantly, the error constant C is independent of ε and N. How does one con-
struct a parameter-uniform method for a large family of singularly perturbed problems ? The
numerical method will require a choice of mesh points (or elements) and a choice of finite
difference operator (or basis functions in the finite element context). Let us first consider the
fitted operator approach on the simplest of possible meshes, a uniform mesh.

For constant coefficient ordinary differential equations, one can construct a finite differ-
ence operator LN

∗ such that the numerical method is exact at the nodes (UN(xi) = u(xi)). In
the case of ordinary differential equations, this fitted operator LN

∗ can be easily extended to
the corresponding variable coefficient problem. Nodal error bounds of the form

‖UN − u‖ΩN ,∞ ≤ CN−1 (or CN−2);

(with C independent of ε) exist for convection-diffusion problems of the form −εu′′ + au′ =

f , a ≥ α > 0 [5, 11]. This fitted operator approach can also be applied to the following
problem classes, posed on the unit interval x ∈ (0, 1) (and t ∈ (0, 1)):

−εu′′ + a(x)u′ + b(x)u = f (x), a ≥ α > 0, b ≥ 0; (1)
−εu′′ + b(x)u = f (x), b > 0; (2)

−εuxx + a(x, t)ux + b(x, t)u + c(x, t)ut = f (x, t), a ≥ α > 0, c ≥ δ > 0, b ≥ 0. (3)

However, for the following class of parabolic problems (which includes the heat equation)

−εuxx + b(x, t)u + c(x, t)ut = f (x, t), b > 0, c ≥ δ > 0 (4)

then, on a uniform mesh, no fitted operator exists such that the resulting numerical method
is parameter-uniform nodally [14]. Moreover, even for the above four problem classes, if
we use a uniform mesh and polynomial interpolation, then a nodally exact finite difference
scheme will not be globally parameter-uniform. A central message of this paper is to state:
For singularly perturbed problems do not use a uniform mesh.

Ideally, we should construct a uniform mesh for the dependent variable, which is of course
not feasible (in general), without knowing the exact solution u. Bakhvalov (1934-2005) was
the first to introduce special non–uniform meshes for solving singularly perturbed boundary
value problems [2]. To construct a suitable mesh, consider the use of a mesh generating
function λ : Ω → [−1, 1], which is continuous and strictly decreasing, with λ(0) = 1 and
λ(1) = −1. The mesh points {xi} are defined implicitly by the equations

λ(xi) = 1 −
2i
N
.
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If one takes λ(x) = 1 − 2x, then the resulting mesh is a uniform mesh in the independent
variable. One could also take

λB(x) = e−x/ε;

and the resulting mesh is logarithmic in the independent variable. Note that, λB(x) ≤ ε, x ≥
τ := ε ln 1

ε
. Bakhvalov based his mesh on a combination of a uniform mesh and a logarith-

mic mesh associated with the mesh generating function λB. Twenty years after Bakhvalov’s
mesh, Shishkin [13, 12] introduced a simplification of the Bakhvalov mesh and subsequently
extended his approach to an extensive class of singularly perturbed problems [15].

For the one-dimensional convection-diffusion problem (1) the Shishkin mesh splits the
domain in a way that depends on both ε and N. Assign mesh points equally between the two
subintervals defined by,

[0, 1] = [0, 1 − σ] ∪ [1 − σ, 1], σ := min{
1
2
,Cε ln N}, C ≥

1
α
.

Observe that the transition parameter σ is given explicitly, the transition point σ differs from
the analytical layer width τ = ε ln(1/ε) and the piecewise-uniform mesh is only non-uniform
at one single point. In the case of the one-dimensional reaction-diffusion problem (2) the
standard Shishkin mesh splits the distribution of the mesh points (N/4 : N/2 : N/4) between
the three subintervals defined by,

[0, 1] = [0, σR] ∪ [σR, 1 − σR] ∪ [1 − σR, 1], σR := min{
1
4
, 2Cε ln N}, C ≥

1
√
β
.

For both problem classes (1), (2) using an inverse-monotone finite difference operator on such
Shishkin meshes we have [3] the global parameter uniform error bound

‖u − ŪN‖Ω,∞ ≤ CN−1(ln N).

For the time-dependent problems (3) and (4), a uniform mesh in time (with M time intervals)
coupled with the associated steady-state Shishkin mesh in space will yield the global error
bound [8]

‖u − ŪN‖Ω,∞ ≤ CN−1(ln N) + CM−1.

Moreover, this same approach has been successfully extended to a large class of elliptic and
parabolic problems in two and three space dimensions [3, 6, 16].

We conclude this paper by briefly discussing a Shishkin-decomposition [6, 16] of the
solution, which is the central component used in the analysis of these parameter-uniform nu-
merical methods. The solution is decomposed into a sum of components involving a regular
component v and several layer components w. The regular component is defined in such a way
that all the first and second order partial derivatives of the regular component are bounded
independently of the singular perturbation parameter ε. The layer components are character-
ized as being the solution of the associated homogenous differential equation and are small
(relative to the perturbation parameter) in the domain, except in the neighbourhood of one
particular edge or corner of the domain. The Shishkin decomposition is not an asymptotic
expansion. There is no remainder term. This solution decomposition allowed Shishkin incor-
porate classical Schauder a priori bounds [7], into the singularly perturbed context, in order
to bound the partial derivatives of the components.
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We illustrate the Shishkin decomposition in relation to the elliptic problem:

Lεu := −ε4u + a1ux + a2uy = f , (x, y) ∈ Ω = (0, 1) × (0, 1); u = g, (x, y) ∈ ∂Ω;

with a1 > α1 > 0, a2 > α2 > 0 and its associated reduced problem is

a1rx + a2ry = f , (x, y) ∈ Ω, r = g, (x, y) ∈ ∂Ωin := {(x, y) ∈ ∂Ω|xy = 0}.

Exponential boundary layers appear near the outflow edges x = 1, y = 1 and a simple corner
layer appears in the vicinity of the corner point (1, 1). The regular component v ∈ C3,γ(Ω̄) is
the solution of

Lεv = f , (x, y) ∈ Ω, v = u, (x, y) ∈ ∂Ωin

and boundary values v = v∗ at the boundary, ∂Ωout := {(x, y) ∈ ∂Ω|xy , 0, (1− x)(1− y) = 0},
can be identified so that

‖v(i)‖Ω,∞ ≤ C(1 + ε2−i), 0 ≤ i ≤ 3.

The layer components wR, wT and wTR are all solutions of the homogeneous problem

LεwR = LεwT = LεwTR = 0, (x, y) ∈ Ω;

with the following boundary conditions (where w∗ needs to be suitably specified)

wR(1, y) = (u − v)(1, y), wR(0, y) = wR(x, 0) = 0, wR(x, 1) = w∗R(x, 1);
wT (x, 1) = (u − v)(x, 1), wT (1, y) = w∗T (1, y), wT (0, y) = 0, wT (x, 0) = 0;
wTR(x, 1) = −wR(x, 1), wTR(1, y) = −wT (1, y), wTR(0, y) = 0, wTR(x, 0) = 0.

By inverse-monotonicity, for all points (x, y) ∈ Ω̄ the following bounds hold:

|wR(x, y)| ≤ Ce−
α1(1−x)

ε , |wT (x, y)| ≤ Ce−
α2(1−y)

ε , |wTR(x, y)| ≤ Ce−
α1(1−x)

ε e−
α2(1−y)

ε ;

and, in addition, (for suitable w∗) one can establish (e.g., [9]) that for all i, j ≤ 3

∥∥∥∥∂ jwR

∂xi

∥∥∥∥
Ω,∞
≤ C(1 + ε−i),

∥∥∥∥∂ jwR

∂y j

∥∥∥∥
Ω,∞
≤ C(1 + ε1− j);∥∥∥∥∂ jwT

∂xi

∥∥∥∥
Ω,∞
≤ C(1 + ε1−i),

∥∥∥∥∂ jwT

∂y j

∥∥∥∥
Ω,∞
≤ C(1 + ε− j); ‖w(i)

TR‖Ω,∞ ≤ Cε−i.

By construction, u = v+wR+wT +wTR. These bounds on the derivatives of the components
are the pivotal ingredients in establishing the error bounds associated with parameter-uniform
numerical methods (which incorporate Shishkin meshes). The reader is referred to the papers
[1, 6, 9, 10] and the references therein for further details on this decomposition.
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§6. Conclusion

This paper indicates that it is important to be aware of the restrictions being imposed on the
problem class under investigation. It is also advisable to be somewhat sceptical of exotic new
norms introduced to generate a theoret ical result; how does the resulting numerical method
perform in practice? For singularly perturbed problems, we advocate aiming to construct a
parameter-uniform numerical method for these types of problems.
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