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THE REGULAR POLYGON PROBLEM OF
(N + 1) BODIES:

THE PAST, THE PRESENT AND THE
FUTURE

Tilemachos J. Kalvouridis
Abstract. We deal with the dynamics of a small body, either natural or artificial, acted
upon by the gravitational forces of a coplanar system of N big bodies, the ν = N − 1 of
which have equal masses m and are located at the vertices of a regular ν-gon, while the
Nth body with a different mass m0 is located at the center of mass of the system. Our
aim is to present an overview of the main results obtained so far from the study of the
original configuration and of various versions of the dynamical system, together with a
brief reference to our recent work and to our projects in progress.

Keywords: Regular polygon problem of (N + 1) bodies.

§1. Introduction

The Newtonian general N-body problem has historically served as a source of inspiration and
creation of new problems of Celestial Mechanics but it still remains unsolved in the sense that
we are not able to find closed mathematical solutions of it. However serious efforts are done
on the direction of studying simpler models of more than two bodies even since the era of
Lagrange and Euler and find particular solutions. The famous restricted three-body problem
is one of them. A relatively new model is the regular polygon problem of (N + 1) bodies
[31, 16], etc. It deals with the dynamics of a small body moving in the force field created
by N big bodies the ν = N − 1 of which with equal masses are located at the vertices of a
regular ν-gon, while the Nth body with a different mass is located at the center of mass of
the system. The geometric formation of the big bodies is based on a model proposed in 1865
by Maxwell in order to explain the rings of Saturn. Ever since, many papers concerning the
above problem, appeared in the international bibliography [18, 19, 21, 7, 8, 9, 5, 15, 6, 29, 23],
etc. Here we note that in the past, this configuration was used as a cosmological model,
as a mechanism to describe the concentration of interplanetary matter in the neighborhood
of planetary systems and of the creation of proto-nebulae, as well as a simplified model to
describe co- orbital or quasi co-orbital systems of astronomical objects (asteroids, moons, or
natural satellites) orbiting at almost the same, distance from their primary. Finally, it was
proposed to simulate the rings observed around the giant planets of our solar system. The
configuration we are dealing with is a central one, meaning that the resultant force acting on
each body of the system is always directed to a fixed center. A particular class of solutions is
the homographic ones where the configuration remains always similar to itself and a sub-class
consists of the relative equilibria. These solutions were investigated among others by [30, 33],
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Figure 1: (a) The configuration of the classical regular polygon problem of (N + 1) bodies,
(b) Maxwell’s sketch of his proposed model (1857).

etc., while Arribas et al. [3, 4] studied some cases with quasi-homogeneous potentials. The
next two paragraphs refer to the original gravitational problem and the various versions of it
respectively, while in the last paragraph we present some recent results and we expose some
new ideas for further improvement and generalization of the initial model, on which we are
already working on.

§2. Dynamics of a small body in a regular polygon configuration of N
bodies and some results obtained so far from the study of the

classical gravitational case

The original gravitational version is characterized with two parameters; the number of the
peripheral bodies ν = N − 1 and the mass parameter β = m0/m. The problem can be re-
duced to some other celestial models proposed in the past like Copenhagen case (ν=2, β=0),
Marañhao’s four-body problem [27] (Figure 2a) and Ollöngren’s restricted five- body prob-
lem [28] (Figure 2b), by simply adjusting the parameters.

2.1. Equations of motion
The motion of the particle is described in a synodic coordinate system by the following set of
second order differential equations where all the quantities are dimensionless,

ẍ − 2ẏ =
∂U
∂x

= Ux,

ÿ + 2ẋ =
∂U
∂y

= Uy,

z̈ =
∂U
∂z

= Uz.

(1)

Where,

U =
1
2

(
x2 + y2

)
+

1
∆

 βr0
+

ν∑
i=1

1
ri

 , (2)
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Figure 2: (a) Marañhao’s model (ν = 2, β , 0), (b) Ollöngren’s configuration (ν = 3, β , 0).

is the effective potential and

r0 =
(
x2 + y2 + z2

)1/2
ri =

[
(xi − x)2 + (yi − y)2 + z2

]1/2
,

are the distances of the particle from the primaries. We also have,

∆ = M
(
Λ + βM2

)
Λ =

ν∑
i=2

sin2(π/ν)
sin[(i − 1)(π/ν)]

M = 2 sin(π/ν). (3)

There is a Jacobian-type integral of motion where C is a constant.

C = 2U(x, y, z) −
(
ẋ2 + ẏ2 + ż2

)
. (4)

2.2. Regions of allowed particle planar motions- Zero-velocity curves and
C = C(x, y) surfaces

In the planar motion these regions are limited by the zero-velocity curves (zvc) which are
drawn by means of (3) and separate, for each value of C, the xy-plane in domains where
motion is permitted from those where motion does not exist (Figure 3a). In the white al-
most circular areas which encircle the primaries, the motion of the particle is trapped. By
considering a third axis which counts the values of the Jacobian constant C, we obtain, for
each zero-velocity diagram, a corresponding three-dimensional plot and C = C(x, y) called
zero-velocity surface of particle’s planar motion (Figure 3b). Motion is permitted inside the
funnels and under the surface. Regarding the three-dimensional motion the zero-velocity sur-
faces (zvs) limit the domains of xyz-space in which motion is permitted from those where
motion is not allowed. For example, in Figure 3c, motion is allowed and trapped inside the
small almost spherical surfaces and is free outside the hyperboloid surface which encloses
them. In Figure 3d the motion is trapped inside the central closed surface and inside the
toroidal closed surface which surrounds all peripheral primaries, while it is free outside the
hyperboloid envelop.
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Figure 3: (a)-(b) Planar motion, ν = 7, β = 2. Network of zero-velocity contours and zero-
velocity surface C = C(x, y). (c)-(d) 3D motion, ν = 10, β = 2. Two “snapshots” of the
evolution of the zero-velocity surfaces.

2.3. Equilibrium positions and equilibrium zones. Stability

The equilibrium positions in the gravitational case are all located on the xy-plane and are
arranged on imaginary circles concentric to the one of the peripheral primaries which we
call equilibrium zones. Their distribution preserves the symmetry of the configuration which
repeats itself through rotations about the z-axis with an angle 2π/ν. The equilibria are grouped
on either five (CA1, CA2, CB, CC2, CC1) or three (CA1, CC2, CC1) equilibrium zones and the
equilibria of each zone are dynamically equivalent. These points are also located on the lines
which either: (a) connect the central primary to a peripheral one and are called collinear (like
those of zones A1 and C1), or (b) bisect the angles formed by the central primary and two
consecutive peripheral ones and are called triangular (like those of zones A2, B, C2). For
each ν there is a unique marginal value of β = lν at which a transition (bifurcation) from five
to three equilibrium zones occurs. This value increases as ν increases. As β increases, the
existing equilibrium zones approach from both sides the imaginary circle of the primaries.
The Jacobian constants C of the equilibria play an important role since they determine the
way that zero-velocity curves and surfaces evolve. Bifurcations in the topology of the zvc
and zvs occur at values C = CW , where CW = CA1, CA2, CB, CC2, CC1. Therefore, if β < lν
five bifurcations occur, while if β > lν three bifurcations take place. All the equilibria for any
combination of the two parameters ν and β are unstable.
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Figure 4: Attracting domains in the Newtonian case (ν = 7, β = 2): A1 (very dark grey), A2
(dark grey), B (light grey), C2 (black), C1 (very light grey).

2.4. Attracting domains of the equilibria
An attracting domain is a set consisting of the initial points for which the application of an
iterative process (in this case the Newton-Raphson algorithm) leads to the equilibrium posi-
tions of an equilibrium zone [7]. The domain of each zone presents all the symmetry elements
of the primaries’ arrangement. It generally consists of some “compact” parts, all the points
of which lead to the equilibrium positions of this particular zone (Figure 4). Furthermore,
we have found dispersed points that lie on the boundaries of the “compact” regions of this or
other zones. These boundaries are not clearly defined and their distribution is rather chaotic.
As regards the “speed” of convergence, we must note that the areas corresponding to fast con-
vergence (within 1-5 steps) consist of the central “compact” parts of the attracting domains
of the specific zone that surround the equilibrium positions of this zone and few dispersed
points that frame these areas, but also appear near other equilibrium zones. As parameter β
increases, the “compact” areas in general shrink and the number of the dispersed points of
this class considerably decreases.

2.5. Planar and 3D periodic orbits and families. Stability
Periodic orbits are either simple or multiple and simple or multiple symmetric with respect
to a coordinate axis. They are also characterized as direct or retrograde if they are described
in the same or opposite sense to the rotation of the synodic coordinate system respectively.
The orbits are grouped in families and those which are symmetric with respect to the x-
axis are represented as single curves in a two-dimensional diagram (x0,C) and are called
characteristic curves [21, 8]. Some families evolve inside the funnels formed by the zero-
velocity boundaries which surround the primaries (Figure 5a). They consist of planetary or
satellite-type type orbits. Their characteristic curves have regions of stability (horizontal)
and instability. Some other families emanate from the equilibrium points or bifurcate from
families of the same multiplicity. As β increases, the characteristic curves shift towards the
peripheral primaries and accumulate near their imaginary circle.
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Figure 5: (a) Families of s.p.orbits for ν = 8, β = 2, (b) two interplanetary s.p.orbits.

(a) (b)

Figure 6: ν = 7, β = 2. (a) Vertical critical points from planar to 3D orbits, (b) a family of
3D periodic orbits.

Regarding the three dimensional motions we have found that only orbits symmetric with
respect to the xz-plane may exist [15]. Figure 6a shows how the families of planar periodic
orbits emanate from the fixed points (black circles) in the case where ν = 7 and β = 2.
The shaded regions are forbidden areas for particle’s motion. The bifurcation points from
the planar to the three-dimensional families of periodic orbits are shown with small grey
triangles (vertical critical points) and they are located in the stability regions of the character-
istic curves. The parametric research shows that the dynamics of the three-dimensional ring
problem remains qualitatively the same, regardless how massive is the central primary with
respect to the other primaries.



The regular polygon problem of (N + 1) bodies:the past, the present and the future 123

(a) (b)

Figure 7: ν = 7, β = 2. (a) Focal curve in xyC space, (b) projection of this curve on xy-plane.

2.6. Focal points and focal curves, a new property
In addition to the known general properties of the zero-velocity curves and surfaces a new
property has been proved in the particular ring problem [19]. In simple words, the C = C(x, y)
surfaces drawn for a particular ν and various values of β intersect along a unique wavy curve,

ν∑
i=1

r0

ri
=

1
4

ν∑
i=2

1
sin(i − π/ν)

, (5)

whatever is the value of the mass parameter β. This curve surrounds the central primary
(Figure 7) and as a consequence of this, the zero-velocity curves of the diagrams, that are
drawn for y = 0, for a particular ν and for various values of β, have two common points,
which are symmetric with respect to the C axis when ν is even, and non-symmetric when ν is
odd.

§3. Various versions of the original problem

3.1. The photo-gravitational regular polygon problem of (N+1) bodies
We use the basic principles of Radzievskii’s theory. Briefly speaking, we assume that ra-
diation influences the motion of the small body but does not affect the motion of the other
primaries and that this force is expressed by a reduction factor q = 1 − b, where b is the
radiation coefficient and is the ratio of force Fr caused by radiation to force Fg that results
from gravitation. For an illuminating body with a given luminosity and mass this coefficient
depends on the physical and geometrical characteristics of the illuminated particle. We also
assume that the particle is very small and moves with velocities much smaller than the speed
of light. Under these circumstances the effective potential has the general form,

U =
1
2

(
x2 + y2

)
+

1
∆

βq0

r0
+

ν∑
i=1

qi

ri

 , (6)

[17, 22, 24, 1]. If q = 0, the radiation force balances the gravitational one, if q < 0, radiation
surpasses gravity and if q > 0, the gravitational force exceeds radiation. In Figure 8 we depict
the parametric distribution of the equilibrium points in two configurations.
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Figure 8: (a) Copenhagen case where both primaries P1 and P2 radiate, (b) Marañhao’s
problem where the two peripheral primaries P1 and P2 radiate.

Figure 9: The regular polygon problem of (N + 2) bodies.

3.2. The regular polygon problem of (N+2) bodies

In this version we consider two small interacting bodies instead of one (Figure 9). Then, in
excess to the two parameters of the original gravitational case there are two parameters which
are the reduced masses of the minor bodies S 1, S 2, µα = mα/m, α = 1, 2. The model could
simulate either dual satellite missions or two satellites in flying formation. The version is
based on a combination of the 2 + 2 body problem [34] and the regular polygon problem of
(N + 1) bodies. We have studied the equilibrium points and their parametric variation [10]
and we have found among other characteristics that each equilibrium point of the gravitational
version belonging to zones A1 and C1 splits into two pairs of equilibria of S 1, S 2 on the same
direction with these points, each equilibrium of zones A2 and C2 splits into four pairs which
are located on the same direction and on a vertical direction and finally each equilibrium of
zone B splits into two pairs located on a direction which is perpendicular to the direction of
the initial points (Figure 10).
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(a) (b)

Figure 10: (a) Two collinear pairs evolve around an equilibrium position of A1 (or C1), (b)
four pairs (two collinear and two perpendicular) evolve around an equilibrium position of C2
(or A2).

(a) (b)

Figure 11: (a) The structure of a one-rotor gyrostat, (b) three equilibrium states of the small
gyrostat S in a regular polygon configuration.

3.3. The regular polygon problem of (N + 1) bodies where the small body
is a gyrostat or a rigid body

A gyrostat consists of a platform or carrier and a number of rotors that are rigidly attached
to it. Each rotor is spinning independently about an axis fixed on the platform and its motion
does not modify the mass distribution of the gyrostat. A gyrostat is generally characterized
by (n + 1) angular velocities, the n of which are the angular velocities of the spinning rotors
relative to the platform. There are many fields of applications, e.g. artificial satellites, space-
based telescopes and stations, etc. In this case we have investigated the existing equilibrium
states of a one rotor-gyrostat [32] and of a tri-axial rigid body. The potential and the kinetic
energy are expressed by means of the six independent variables x, y, z, ψ (angle of preces-
sion), θ (angle of nutation) and φ (angle of spin) (Figure 11a) and the small body’s motion
is described by a set of six second order differential equations describing the rotational and
the translational component of motion. An equilibrium state is stable if both the translational
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and the rotational conditions ensure its stability (Figure 11b). A similar study was done in
the case where the small body is a tri-axial rigid one [25].

3.4. The regular polygon problem of (N + 1) bodies with Manev-like post-
Newtonian potentials

Here we use a corrective term of the form B/r3 in Newton’s inverse square law of gravitation
[26] which is related with the force field of the central primary. We try in this way to ap-
proximate either its non-sphericity (oblate or prolate body) or an existing radiation emission
[2, 4, 11, 12, 13]. In this case a new parameter e is added to the two ones which appear
in the conventional gravitational case. Although there are no significant qualitative changes
if e > 0 (oblate body), however, important changes occur when this parameter is negative
(prolate body). Figure 12a shows the zero-velocity surface for ν = 7, β = 2, e = −0.1 and
in Figure 12b the detail of the inversed central “chimney”. In Figures 12c and d we depict
the bifurcation diagram of the planar equilibrium positions and the out-of-plane equilibria
respectively when e < 0. The distribution of the families of simple and double periodic orbits
for ν = 7, β = 5 and e < −0.1 are shown respectively in Figures 12e, f.

§4. Recent work and works in progress

4.1. The Copenhagen problem with Manev-like post-Newtonian quasi-
homogeneous potentials

The gravitational version of this problem was first studied by Strömgren and colleagues be-
tween 1913 and 1939. The scientific interest focused again on this problem after the discovery
of a great number of exosolar systems. During the last decade we treated some versions of it
by considering that the small body is a triaxial rigid body or a gyrostat, as well as by assum-
ing that the two primaries are radiation sources or magnetic dipoles [20, 23, 14], etc. Here we
consider that the two major bodies create post-Newtonian Manev-type potentials. We studied
the equilibrium points and we have found that when e > 0 there are only the five equilibrium
Lagrangian points of the gravitational case, while when −0.5 < e < 0, in excess of these,
20 different new unstable equilibrium points (Figure 13a) may appear. We also investigated
the symmetric periodic orbits (simple or multiple) and the evolution of their families. Many
families evolve in the permitted areas between the inversed parts of the “chimneys” and the
external parts of them and consist of satellite-type simple periodic orbits which emanate from
the equilibrium points LE1, LE2, LE3 and LE4 and bifurcate to families with the same or higher
multiplicity (Figures 13b). Other families emanate from the collinear Lagrangian points L1,
L2 and L3. The motion of the particle may be trapped for certain values of the Jacobian con-
stant C in some regions of the xy plane or move freely on the xy-plane for other values of this
constant (C < CL2).

4.2. Works in progress
Trying to improve or to extend the regular polygon model we are now investigating some
new versions; (i) the regular polygon problem of (N + 1) bodies with Schwarzschild-like
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(c) (d)

(e) (f)

Figure 12: e < 0. (a) The zero-velocity surface, (b) detail of the inversed central “chimney”,
(c) bifurcation diagram of the equilibrium points on the xy-plane, (d) out-of-plane equilibria,
(e)-(f) families of simple and double per.orbits for ν = 7, β = 5, e = −0.1.
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(a) (b)

Figure 13: (a) Distribution of the existing equilibria when e < 0, (b) families of simple
periodic orbits for e = −0.03.

quasi-homogeneous potentials, (ii) the regular polygon problem of (N + 2) bodies where all
primaries are radiation sources or create post-Newtonian quasi-homogeneous potentials.
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