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NUMERICAL APPROXIMATION OF A TIME
FRACTIONAL-DERIVATIVE

INITIAL-BOUNDARY VALUE PROBLEM
WITH BOUNDARY LAYERS

José Luis Gracia, Eugene O’Riordan and Martin Stynes
Abstract. In this paper we consider a fractional differential equation where the time
fractional derivative is of Caputo type. The diffusion parameter can take arbitrarily small
values and then the solution exhibits in general a weak layer initially and boundary layers
along both sides of the domain. This problem is approximated with a finite difference
scheme which combines the L1 scheme and central differences; this scheme is defined on
a graded mesh for the time variable and a Shishkin mesh for the space variable. Numerical
results for a test problem are shown and they suggest that the proposed scheme gives
accurate approximations to the solution.
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§1. Introduction

In this paper we consider the following class of initial-boundary value problems

Dδ
t u − p

∂2u
∂x2 + c(x, t)u = f (x, t), (x, t) ∈ Q := (0, l) × (0,T ]; (1a)

u(0, t) = φL(t), u(l, t) = φR(t), for t ∈ (0,T ], (1b)
u(x, 0) = φ(x), for x ∈ [0, l], (1c)

where 0 < δ < 1, p is a positive constant, c ≥ 0 for (x, t) ∈ Q̄ and Dδ
t denotes the Caputo

fractional derivative [1] in time, which is defined by

Dδ
t g(x, t) :=

1
Γ(1 − δ)

∫ t

s=0
(t − s)−δ

∂g(x, s)
∂s

ds for (x, t) ∈ Q. (2)

The behaviour of the solution of the problem (1) with c ≡ c(x) was analysed in [5, 9] and
it was shown that it has a layer at t = 0. To be more precise, assuming some regularity and
compatibility conditions, the following estimates∣∣∣∣∣∣∂ku

∂xk (x, t)

∣∣∣∣∣∣ ≤ C, for k = 0, 1, 2, 3, 4,

∣∣∣∣∣∣∂`u∂t`
(x, t)

∣∣∣∣∣∣ ≤ C(1 + tδ−`) for ` = 1, 2, (3)
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for all (x, t) ∈ [0, l] × (0, 1] were proved rigorously in [9]. The estimates (3) were established
assuming that the constant p = O(1) and in this paper we explore how the solution behaves
if the diffusion parameter p is close to zero. Observe that in the limit case p = 0, the highest
order derivative in space has zero order and one would expect that, in general, the solution has
large gradients (boundary layers) at both sides of the domain x = 0 and x = l, similarly to the
case of a problem with a classical derivative in the time variable (see [3]). All these difficulties
should be taken into consideration when approximating the solution to the problem (1).

In [9] the L1 approximation [7] and standard central differences were used to discretise
the temporal and spatial variables, respectively. This discrete operator was defined both on
a uniform and a graded mesh for the time discretisation and a uniform mesh for the space
discretisation. However, this scheme cannot deal with all the difficulties in the solution u of
the problem (1). We now propose in this paper to use a special mesh of Shishkin type [3] con-
densing in the boundary layer regions to approximate the solution u in the spatial direction,
unlike the uniform mesh considered in [9] for the particular case of p = O(1).

The paper is structured as follows: In Section 2 we describe our finite difference scheme in
a general framework and it is used to approximate the discrete problem described in Section 3.
In this section we also give the notation employed for the two-mesh differences and the orders
of convergence of the scheme. This scheme is first applied to a test problem; the scheme uses
a uniform mesh to discretise the time variable and both a uniform and a Shishkin mesh to
discretise the space variable. In Section 4 a graded mesh is used to discretise the solution
in the time direction and a Shishkin mesh in the space direction; an improvement in the
computed orders of convergence associated with the scheme is observed when these special
meshes are used in both directions.
Notation: Throughout this paper we denote by ‖ · ‖D the maximum norm over the set D.

§2. Numerical scheme

This section describes the numerical scheme used to approximate the solution to problem (1).
An arbitrary non-uniform mesh ωm,n and the mesh steps hm, τn are defined by

ωm,n := {(xm, tn) : m = 0, 1, . . . ,M, n = 0, 1, . . . ,N} , hm := xm − xm−1, τn := tn − tn−1,

where M and N are two positive integers. In our finite difference difference scheme, the
Caputo fractional derivative Dδ

t is approximated by the commonly used L1 approximation [7]
(which we motivate below): The fractional derivative (2) is rewritten as

Dδ
t u(xm, tn) =

1
Γ(1 − δ)

n−1∑
k=0

∫ tk+1

s=tk
(tn − s)−δ

∂u(xm, s)
∂s

ds ,

and the first-order partial derivative on each time interval (tk, tk+1] is approximated by the
forward finite difference operator

∂u(xm, s)
∂s

≈
u(xm, tk+1) − u(xm, tk)

tk+1 − tk
=: D+

t u(xm, tk), s ∈ (tk, tk+1];
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which has the associated truncation error

(D+
t u − ut)(xm, tk) =

1
tk+1 − tk

∫ tk+1

s=tk

∫ s

r=tk
urr(xm, r) dr ds.

The L1 approximation Dδ
Nun

m is given by

Dδ
Nun

m :=
1

Γ(1 − δ)

n−1∑
k=0

∫ tk+1

s=tk
(tn − s)−δD+

t uk
m ds

=
1

Γ(2 − δ)

n−1∑
k=0

uk+1
m − uk

m

tk+1 − tk

[
(tn − tk)1−δ − (tn − tk+1)1−δ

]
, (4)

where un
m is the approximate solution computed at the mesh point (xn, tm).

Let us now examine the truncation error associated with this approximation of the Caputo
fractional derivative

(Dδ
t − Dδ

N)u(xm, tn) =
1

Γ(1 − δ)

n−1∑
k=0

∫ tk+1

s=tk
(tn − s)−δ

(
us(xm, s) − D+

t u(xm, tk)
)

ds

=
1

Γ(1 − δ)

n−1∑
k=0

∫ tk+1

s=tk
(tn − s)−δ

1
tk+1 − tk

∫ tk+1

r=tk

∫ s

p=r
upp(xm, p) dp dr ds.

In the case of a uniform mesh in time with τ := tn+1 − tn, ∀n, then the truncation error can be
bounded as follows∣∣∣(Dδ

t − Dδ
N)u(xm, tn)

∣∣∣ ≤ τ‖utt‖[0,l]×[0,tn]

Γ(1 − δ)

∫ tn

s=0
(tn − s)−δ ds =

τt1−δ
n

Γ(2 − δ)
‖utt‖[0,l]×[0,tn].

On the other hand, the second order spatial derivative uxx is approximated by the standard
formula

uxx(xm, tn) ≈ δ2
xun

m :=
2

hm+1 + hm

(
un

m+1 − un
m

hm+1
−

un
m − un

m−1

hm

)
,

with hm := xm − xm−1 for m = 1, 2, . . . ,M. Note also that the truncation error associated with
the second-order derivative in space (on a nonuniform mesh) satisfies∣∣∣∣(δ2

xu − uxx)(xm, tn)
∣∣∣∣ =

2
hm+1 + hm

∣∣∣∣∣∣ 1
hm+1

∫ xm+1

r=xm

∫ r

s=xm

uss(s, tn) − uxx(xm, tn) ds dr

−
1

hm

∫ xm

r=xm−1

∫ r

s=xm

uss(s, tn) − uxx(xm, tn) ds dr

∣∣∣∣∣∣
≤ C

|hm+1 − hm|

∣∣∣∣∣∣∂3u
∂x3 (xm, tn)

∣∣∣∣∣∣ +
h3

m+1 + h3
m

hm+1 + hm

∣∣∣∣∣∣∂4u
∂x4 (ξ, tn)

∣∣∣∣∣∣
 ,

for 0 < m < M, 0 < n ≤ N and ξ ∈ (xm, xm+1). In the case of a uniform mesh in space with
h := xm+1 − xm, ∀m, then this spatial truncation error can be bounded as follows∣∣∣(δ2

xu − uxx)(xm, tn)
∣∣∣ ≤ Ch2 ‖uxxxx‖[0,l]×[0,tn].
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Our discretization of problem (1) is given by

LδNum
n := Dδ

Num
n − pδ2

xun
m + c(xm, tn)un

m = f (xm, tn) for 1 ≤ m ≤ M − 1, 1 ≤ n ≤ N, (5a)
un

0 = φL(tn), un
M = φR(tn) for 0 < n ≤ N, (5b)

u0
m = φ(xm) for 0 ≤ m ≤ M. (5c)

For a uniform mesh in both space and time this scheme has the associated truncation error
bound ∣∣∣LδN(um

n − u(xm, tn))
∣∣∣ ≤ Ch2 ‖uxxxx‖[0,l]×[0,tn] + Cτt1−δ

n ‖utt‖[0,l]×[0,tn].

A suitable stability argument is required to deduce an error bound from this truncation error
bound. Observe that

Dδ
Nzn

m ≡
(tn − tn−1)1−δ

Γ(2 − δ)
D+zn

m +
1

Γ(1 − δ)

n−2∑
k=0

D+zk
m

∫ tk+1

s=tk
(tn − s)−δ ds, n ≥ 2.

Based on this observation and using the recurrence relation linking each time level, for a
uniform mesh in both space and time, one can deduce (see [4]) the stability bound

∣∣∣um
n − u(xm, tn)

∣∣∣ ≤ C
τδ

n1−δ − (n − 1)1−δ

∥∥∥LδN(um
n − u(xm, tn))

∥∥∥
[0,l]×[0,tn]

≤ C(nτ)δ
∥∥∥LδN(um

n − u(xm, tn))
∥∥∥

[0,l]×[0,tn]

≤ Ch2tδn ‖uxxxx‖[0,l]×[0,tn] + Ctnτ‖utt‖[0,l]×[0,tn].

The realistic a priori bounds (3) make the analysis of the convergence more delicate than the
classical argument given above. For example, if n = 1, the truncation error associated with
the Caputo time fractional derivative satisfies the crude estimate

|(Dδ
t − Dδ

N)u(xm, t1)| ≤ C, for 0 < m < M.

Therefore, one needs a more sophisticated approach to derive appropriate error estimates
from the stability of the discrete operator. The convergence of the scheme (5) is investigated
in [9]. In particular, if p = O(1), c ≡ c(x) and the scheme is defined on a uniform mesh, then
under suitable hypotheses on the data of the problem, the error satisfies

‖u − un
m‖ω ≤ C

(
h2 + τδ

)
, (6)

where C is a constant independent of N and M, but it depends on the data problem, as for
example on δ and p. It is shown in [9] that this estimate is sharp when p = O(1), by means of
some numerical results. In the next section we approximate a test problem with the numerical
scheme (5) but, unlike in [9], we allow the parameter p to be arbitrarily small. Therefore, the
dependence of the partial derivatives on the parameter p will be crucial when the truncation
error of the scheme (5) is analysed.
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§3. Numerical experiments

Consider the following test problem

Dδ
t u − p

∂2u
∂x2 =

1
π2 x2(π − x)2 (7a)

for (x, t) ∈ Q := (0, π) × (0, 1], with

u(0, t) = t2, u(π, t) = t2, for t ∈ (0, 1], (7b)

u(x, 0) = sin3(x), for x ∈ [0, π]. (7c)

We shall consider in our numerical experiments several values of δ and p.
The solution of this problem is unknown and we shall estimate the errors using the two-

mesh principle [2]: Let un
m be the computed solution with the scheme (5) on the mesh {(xm, tn)}

for m = 0, 1, . . . ,M and n = 0, 1, . . . ,N. To estimate the errors we compute a new ap-
proximation zn/2

m/2 using the same scheme but it is defined on the mesh {(xm/2, tn/2)} for m =

0, 1, . . . , 2M and n = 0, 1, . . . , 2N where xm+1/2 := (xm+1 + xm)/2 and tn+1/2 := (tn+1 + tn)/2.
Thus, the finer mesh includes the mesh points of the coarser mesh and their midpoints.

We then compute the two-mesh differences

dδM,N := max
0 ≤ m ≤ M,
0 ≤ n ≤ N

|un
m − zn

m|; (8)

and from these values one computes the estimated orders of convergence by

qδM,N = log2

 dδM,N
dδ2M,2N

 . (9)

In Figure 1 we display the computed solution for N = M = 64 and the values of
δ = 0.7, 0.3 (the order of the Caputo fractional derivative) and p = 1, 10−6 (the diffusion
parameter). The solution has been computed using a fine mesh in the vicinity of t = 0 and
x = 0, π (which are described in Sections 3.1 and 4) and we observe that the solution exhibits
initial and boundary layers.

In this section we consider a uniform mesh for the discretisation of the time and space
variables. We first consider the values of p = 1 and δ = 0.3, 0.5, 0.7. The numerical results
are given in Table 1, where the maximum two-mesh differences appears in the first row of
each block and their corresponding orders of convergence in the second row. We use this
format in all the tables of this paper. The numerical results of this table are in agreement
with the error estimate (6); they indicate that the method converges at the rate of O(τδ) and
therefore the error estimates proved in [9] are sharp.

We now approximate the problem (7) but we consider a smaller value of p; we choose
p = 10−6. The values for the parameters N,M and δ are the same as in Table 1. The numerical
results for these parameter settings are given in Table 2 and they indicate that our numerical
scheme (5) does not converge when the diffusion parameter is very small and M is reasonable
large (i.e., independent of p). In Figure 2 we display the two mesh differences for p = 10−6
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(b) δ = 0.7 and p = 10−6
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(c) δ = 0.3 and p = 1
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(d) δ = 0.3 and p = 10−6

Figure 1: Test problem (7): Computed solution on [0, π] × [0, 1], using the special meshes
described in Sections 3.1 and 4 for δ = 0.3, 0.7 and p = 1, 10−6.

and several values of δ, N and M. These plots show how the two-mesh differences behave
depending on the values of the parameters. The large values for the two-mesh differences in
the vicinity of x = 0 and x = πmotivate the use of a special mesh in space so that the resulting
method gives accurate approximations to the solution. This special mesh is described in the
next section.

3.1. Numerical results using a Shishkin mesh in space
This section uses a special mesh of Shishkin type [3] for the space discretisation. This type of
meshes has been extensively used to approximate a wide set of singularly perturbed problems
(see [6, 8] and the references therein) and they are also proposed to approximate the prob-
lem (1) when p is very small. We consider the standard mesh which is used to approximate the
singularly perturbed 1D linear problem of reaction-diffusion problem: −εu′′ + b(x)u = g(x)
whose solution exhibits two boundary layers at both endpoints of the domain and the layers
have a width of order O(

√
ε).

We recall that this mesh is defined by means of a transition parameter

σ = min
{
π/4, 2

√
p ln M

}
,

which is used to split the interval [0, π] into three subintervals [0, σ], [σ, π − σ] and [π −
σ, π] and within each of them the mesh distributes M/4, M/2 and M/4 points equidistantly,
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Table 1: Test problem (7) with p = 1 and several values of δ: Maximum two-mesh differences
using a uniform mesh in time and space.

N=M=32 N=M=64 N=M=128 N=M=256 N=M=512 N=M=1024
δ = 0.3 1.442E-002 1.405E-002 1.379E-002 1.343E-002 1.292E-002 1.226E-002

0.037 0.028 0.038 0.055 0.076
δ = 0.5 1.843E-002 1.618E-002 1.372E-002 1.118E-002 8.781E-003 6.700E-003

0.188 0.238 0.296 0.348 0.390
δ = 0.7 1.433E-002 9.789E-003 6.352E-003 4.023E-003 2.568E-003 1.606E-003

0.550 0.624 0.659 0.647 0.678

Table 2: Test problem (7) with p = 10−6 and several values of δ: Maximum two-mesh
differences using a uniform mesh in time and space.

N=M=32 N=M=64 N=M=128 N=M=256 N=M=512 N=M=1024
δ = 0.3 2.323E-002 1.887E-002 1.533E-002 1.245E-002 1.444E-002 2.826E-002

0.300 0.300 0.300 -0.214 -0.969
δ = 0.5 1.172E-002 8.290E-003 5.862E-003 4.145E-003 1.247E-002 2.728E-002

0.500 0.500 0.500 -1.588 -1.130
δ = 0.7 4.740E-003 2.918E-003 1.796E-003 3.035E-003 1.055E-002 2.585E-002

0.700 0.700 -0.757 -1.797 -1.293

respectively. Thus, if σ = π/4 the mesh is uniform and otherwise is a piecewise uniform
mesh condensing in the layer regions.

The numerical results for our scheme (5) using a uniform mesh in time and a Shishkin
mesh in space are displayed in Table 3 for the value of p = 10−6. Similar results have been
obtained for smaller values of the parameter p. We have considered the same values for the
parameters N,M and δ as in the previous tables. These numerical results suggest that our
scheme converges even for p � 1. The observed order of convergence is δ and then the
temporal errors again dominates the spatial errors.

Table 3: Test problem (7) with p = 10−6 and several values of δ: Maximum two-mesh
differences using a uniform mesh in time and a Shiskhin mesh in space.

N=M=32 N=M=64 N=M=128 N=M=256 N=M=512 N=M=1024
δ = 0.3 2.323E-002 1.887E-002 1.533E-002 1.245E-002 1.011E-002 8.215E-003

0.300 0.300 0.300 0.300 0.300
δ = 0.5 1.213E-002 8.290E-003 5.862E-003 4.145E-003 2.931E-003 2.073E-003

0.549 0.500 0.500 0.500 0.500
δ = 0.7 1.449E-002 5.503E-003 1.993E-003 1.106E-003 6.806E-004 4.189E-004

1.397 1.465 0.850 0.700 0.700
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(a) δ = 0.7, p = 10−6 and N = M = 128
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(b) δ = 0.7, p = 10−6 and N = M = 256
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(c) δ = 0.5, p = 10−6 and N = M = 128
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(d) δ = 0.5, p = 10−6 and N = M = 256

Figure 2: Test problem (7): Two-mesh differences for the scheme (5) using a uniform mesh.

§4. Numerical results using a graded mesh in time and a Shishkin mesh
in space

In [9] the Caputo fractional derivative is approximated on a graded mesh

t j =

( j
N

)r

, j = 0, 1, . . . ,N, (10)

where r ≥ 1 is the grading exponent. If r = 1, then the mesh is uniform. In that paper it was
established that the error associated to the discretization of the Caputo fractional derivative (2)
converges at the rate O(M−(2−δ)) if r ≥ (2 − δ)/δ.

We define our scheme (5) on the graded mesh (10) which discretizes the time variable
and the Shishkin mesh to discretize the space variable. This scheme is used to discretize the
domain associated with the test problem (7) when p is small. In Tables 4, 5 and 6 we show
the numerical results obtained with this scheme for p = 10−5, p = 10−6 and p = 10−7 and the
computed orders of convergence in these tables are greater than in Table 3. Hence, we see that
the use of a non-uniform mesh in both space and time, with each mesh suitably adapted to
any difficulty present in the solution, can improve the convergence of the numerical solutions.
When the order of p is smaller than N−2 and the spatial mesh is nonuniform, we have observed
that the maximum two-mesh differences occurs at the transition points x = σ, 1 − σ—where
the spatial mesh is not uniform—instead of inside the boundary layer regions (see Figure 3).
This causes a reduction in the spatial orders of convergence as can be observed in Tables 4, 5
and 6. The convergence of this method will be analysed in a future paper.
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Table 4: Test problem (7) with p = 10−5 and several values of δ: Maximum two-mesh
differences using a graded mesh in time and a Shiskhin mesh in space.

N=M=32 N=M=64 N=M=128 N=M=256 N=M=512 N=M=1024
δ = 0.3 1.121E-002 4.250E-003 1.497E-003 5.606E-004 4.331E-004 2.293E-004

1.399 1.505 1.417 0.372 0.918
δ = 0.5 1.296E-002 4.919E-003 1.763E-003 5.885E-004 4.402E-004 2.337E-004

1.397 1.481 1.583 0.419 0.913
δ = 0.7 1.514E-002 5.797E-003 2.122E-003 7.248E-004 4.276E-004 2.308E-004

1.385 1.450 1.550 0.761 0.890

Table 5: Test problem (7) with p = 10−6 and several values of δ: Maximum two-mesh
differences using a graded mesh in time and a Shiskhin mesh in space.

N=M=32 N=M=64 N=M=128 N=M=256 N=M=512 N=M=1024
δ = 0.3 1.121E-002 4.250E-003 1.497E-003 4.934E-004 1.571E-004 9.381E-005

1.399 1.505 1.601 1.652 0.743
δ = 0.5 1.296E-002 4.919E-003 1.763E-003 5.885E-004 1.896E-004 9.504E-005

1.397 1.481 1.583 1.634 0.996
δ = 0.7 1.515E-002 5.797E-003 2.122E-003 7.248E-004 2.406E-004 9.185E-005

1.385 1.450 1.550 1.591 1.389
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(a) δ = 0.3, p = 10−5 and N = M = 128
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(b) δ = 0.3, p = 10−5 and N = M = 256

Figure 3: Test problem (7): Two-mesh differences near x=0 for the scheme (5) using a graded
mesh in time and a Shishkin mesh in space.
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Table 6: Test problem (7) with p = 10−7 and several values of δ: Maximum two-mesh
differences using a graded mesh in time and a Shiskhin mesh in space.

N=M=32 N=M=64 N=M=128 N=M=256 N=M=512 N=M=1024
δ = 0.3 1.121E-002 4.250E-003 1.497E-003 4.934E-004 1.571E-004 4.871E-005

1.399 1.505 1.601 1.652 1.689
δ = 0.5 1.296E-002 4.919E-003 1.763E-003 5.885E-004 1.896E-004 5.971E-005

1.397 1.481 1.583 1.634 1.667
δ = 0.7 1.515E-002 5.797E-003 2.122E-003 7.248E-004 2.406E-004 7.900E-005

1.385 1.450 1.550 1.591 1.607
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