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EFFICIENT NUMERICAL METHODS FOR
SINGULARLY PERTURBED SYSTEMS OF

REACTION-DIFFUSION TYPE
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Abstract. In this work we consider 1D and 2D parabolic singularly perturbed systems
of two equations of reaction-diffusion type, when the diffusion parameter is the same at
both equations of the system. For these problems, in general, parabolic layers appear
at all the boundary of the spatial domain. The solution of the continuous problems is
approximated by using a finite difference scheme, which combines a splitting or additive
scheme, defined on a uniform mesh, to discretize in time, and the classical central finite
difference scheme, defined on a mesh of Shishkin type, to discretize in space. In the
case of 1D parabolic systems, this scheme is uniformly convergent with respect to the
diffusion parameter, having first order in time and almost second order in space. Some
numerical results are given which corroborate the order of convergence of the method.
The numerical results given for a 2D parabolic system, indicate the uniform convergence
of the proposed splitting scheme.
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§1. Introduction

In this work we consider 1D parabolic singularly perturbed reaction-diffusion systems of type L1,εu ≡
∂u
∂t

(x, t) +L1,x,εu(x, t) = f(x, t), (x, t) ∈ Q1 ≡ (0, 1) × (0,T ],

u(x, t) = 0, x ∈ {0, 1} t ∈ (0,T ], u(x, 0) = 0, x ∈ [0, 1],
(1)

where the spatial differential operator is given by

L1,x,εu ≡ −D
∂2u
∂x2 +Au, (2)

and 2D parabolic singularly perturbed reaction-diffusion systems of type L2,εu ≡
∂u
∂t

(x, t) +L2,x,εu(x, t) = f(x, t), (x, t) ∈ Q2 ≡ Ω × (0,T ],

u(x, t) = 0, x ∈ Γ ≡ ∂Ω, t ∈ (0,T ], u(x, 0) = 0, x ∈ Ω,
(3)

where Ω = (0, 1)2 and the spatial differential operator is given by

L2,x,εu ≡ −D∆u +Au. (4)
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In both problems,D = diag(ε, ε), A = (ai j), i, j = 1, 2, the diffusion parameter ε, 0 < ε ≤ 1,
can be sufficiently small, and we suppose that the reaction matrix A is an M-matrix, i. e.,
ai1 + ai2 ≥ α ≥ 0, aii > 0, i = 1, 2, ai j ≤ 0, if i , j.

Singularly perturbed 1D elliptic or parabolic systems of reaction-diffusion type and its
numerical approximation, has been studied in many works (see for instance [3, 5, 6, 9] and
the references therein). From the results in those papers, it follows that the exact solution
of problem (1), in general, has a parabolic boundary layer of width O(

√
ε) at x = 0, 1. For

example, in [6] the solution of problem (1) was approximated with a finite difference scheme,
which uses the Euler method on a uniform mesh for the temporal discretization, and the
standard central difference scheme on a piecewise uniform Shishkin mesh for the spatial dis-
cretization. The uniform convergence with respect to the diffusion parameter of this scheme
was proved in [6]; nevertheless, a high computing time is required to find the solution due to
the components of the discrete solution are coupled at each time level. In [1] a splitting (or
additive) scheme, to discretize the time variable on a uniform mesh, was used. This scheme
decouples the numerical vector solution and simpler problems for each individual unknown
are solved at each time level. The main advantage of these methods is that the computational
cost is reduced considerably (see [11] for a detailed discussion).

The aim of this paper is to approximate with an additive scheme the solution of 2D
parabolic systems given in (3), which up to our knowledge has not been previously considered
in the literature. The steady version o f this class of vector problems has been considered in
very few papers [7, 8, 10]; in these papers, it is shown that the 2D elliptic singularly perturbed
problem has in general a parabolic layer of width O(

√
ε) near the boundary Γ of the domain.

It is expected that the solution of problem (3) exhibits a similar type of layers [2]; then, it
is convenient to construct uniformly convergent methods, for which the rate of convergence
and the error constant are independent of the diffusion parameter ε. The fully discrete method
is obtained by using classical central differences on a mesh of Shishkin type for the spatial
discretization. For several test problems, we have observed numerically that this scheme pro-
vides reliable solutions using meshes with a reasonable size independently of the value of the
diffusion parameter.

The paper is organized as follows. In Section 2.1 we recall the asymptotic behavior of
the exact solution u of problem (1) with respect to the diffusion parameter ε, and we give
appropriate bounds of its derivatives. In Section 2.2, we construct the fully discrete scheme,
which combines the splitting scheme to discretize in time and the central finite difference
scheme to discretize in space. If the spatial discretization is constructed on a nonuniform
special mesh of Shishkin type, the resulting method is uniformly convergent of first order in
time and almost second order in space. Finally, in Section 3, the additive scheme is applied
to the 2D problem in space and we show the results obtained for some test problems of type
(1) and (3).

We denote by v ≤ w if vi ≤ wi, i = 1, 2, |v| = (|v1|, |v2|)T and ‖f‖D = max{‖ f1‖D, ‖ f2‖D}
where ‖ · ‖D is the maximum norm, where D is the corresponding domain. Henceforth, C
denotes any positive constant independent of the diffusion parameter ε and the discretization
parameters N and M, which can take different values at different places.
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§2. Parabolic 1D problems

2.1. Asymptotic behavior of the solution
In this section we recall the asymptotic behavior of the solution of the continuous problem
(1) and we give some appropriate bounds for its derivatives. The analysis follows the ideas
and techniques developed in [3, 5, 6, 9].

Lemma 1. (Maximum Principle) ([6]) Let v ∈ C(Q1) ∩ C2(Q1) such that L1,εv ≥ 0 on Q1
and v ≥ 0 on {0, 1}. Then, it holds that v ≥ 0 on Q1.

To obtain the uniform convergence of the numerical method that we construct later, we
need precise bounds of the solution u of (1) and its derivatives with respect to the diffusion pa-
rameter ε. To simplify the notation, we define Bε(ξ) = e−αξ/

√
ε + e−α(1−ξ)/

√
ε, which contains

the exponential functions characterizing the behavior of u.
The following result gives appropriate estimates for the partial derivatives of u which are

required for the analysis of the convergence of the finite difference scheme given in the next
section.

Lemma 2. ([6]) Assume that problem (1) satisfies enough regularity and compatibility con-
ditions. Then, the following estimates hold∣∣∣∣∣∣∂ku

∂tk (x, t)

∣∣∣∣∣∣ ≤ C, 0 ≤ k ≤ 2,

∣∣∣∣∣∣∂ku
∂xk (x, t)

∣∣∣∣∣∣ ≤ C(1 + ε−k/2Bε(x)), 1 ≤ k ≤ 4, (x, t) ∈ Q1.

Note that these estimates indicate that the solution of problem (1) has boundary layers at
x = 0 and x = 1, both with a width of order O(

√
ε).

2.2. The fully discrete method: uniform convergence
In this section we construct the numerical method to solve (1). First, we discretize in the time
variable; we consider a uniform mesh ωM

= {tn = nτ, 0 ≤ n ≤ M, τ = T/M}, where M is a
positive integer. Then, the temporal discretization is given by

z0 = u(x, 0) = 0,
For n = 0, 1, . . . ,M − 1,(
I + τLM

n+1

1,x,ε

)
zn+1(x) = τfn+1(x) +

(
I + τNn+1

)
zn(x), x ∈ (0, 1),

zn+1(x) = 0, x ∈ {0, 1},

(5)

where fn+1 = f(x, tn+1), n = 0, 1, . . . ,M − 1, I is the identity operator, and

LM
n+1

1,x,ε z ≡ −D
∂2z
∂x2 +Mn+1z,

withAn+1 =Mn+1 − Nn+1 andAn+1 = A(x, tn+1).
In this work we consider the additive scheme (see [11]) given by

Mn+1 =

(
a11(x, tn+1) 0
a21(x, tn+1) a22(x, tn+1)

)
. (6)
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Lemma 3. ([1]) Let be u and zn+1 the solution of problems (1) and (5) respectively. Then, it
holds

|u(x, tn+1) − zn+1(x)| ≤ Cτ, ∀ x ∈ [0, 1], (7)

and therefore the time discretization is uniformly convergent of first order.
To deduce the fully discrete method, we discretize (5) with the classical central difference

scheme defined on a piecewise uniform mesh Ix,ε,N , given by Ix,ε,N = {0 = x0 < . . . < xN = 1}.
Taking into account that there are boundary layers at x = 0 and x = 1, the grid points of the
piecewise uniform Shishkin mesh are given by (see [4, 9])

x j =


jh, j = 0, . . . ,N/4,
xN/4 + ( j − N/4)H, j = N/4 + 1, . . . , 3N/4,
x3N/4 + ( j − 3N/4)h, j = 3N/4 + 1, . . . ,N,

with h = 4σ/N, H = 2(1 − 2σ)/N, and σ = min
{
1/4, 2

√
ε ln N

}
, is the transition parameter

of the Shishkin mesh.
We denote by Q

N,M
1 = Ix,ε,N×ω

M the corresponding grid for the (x, t)-variables, by QN,M
1 =

Q
N,M
1 ∩Q1, ΓN,M = Q

N,M
1 \QN,M

1 , by U = {U0, . . . ,UM} the vector numerical approximation on

the grid Q
N,M
1 with Un = {Un

0, . . . ,U
n
N}, 0 ≤ n ≤ M. Then, the fully discrete scheme is giving

by
U0 = 0,

For n = 0, 1, . . . ,M − 1,

[LN,M
1,ε U]n+1 ≡

Un+1 − Un

τ
−Dδ2

xUn+1 +Mn+1Un+1 − Nn+1Un = fn+1,

Un+1
0 = Un+1

N = 0,

(8)

where

δ2
xZi =

2
hi + hi+1

(
Zi+1 − Zi

hi+1
−

Zi − Zi−1

hi

)
,

is the standard approximation of the second order spatial derivative on a nonuniform mesh,
with hi = xi − xi−1, i = 1, . . . ,N.

We write in vector form the solution of problem (5) and it is denoted by z = {z0, . . . , zM}.
Then, the following result holds.
Lemma 4. ([1]) Let U the numerical solution of (8) on the Shishkin mesh and z the solution
of (5). Then, it holds

‖U − z‖
Q

N,M
1
≤ C(N−1 ln N)2, (9)

and therefore the spatial discretization is uniformly convergent of almost second order.
Combining the results of Lemmas 3 and 4, we obtain the following result of convergence,

which proves the uniform convergence of the numerical method to the exact solution of prob-
lem (1).
Theorem 5. ([1]) Let U be the numerical solution of (8) on the Shishkin mesh and u the
solution of (1). Then, it holds

‖U − u‖
Q

N,M
1
≤ C(τ + (N−1 ln N)2), (10)

and therefore the fully discrete method is uniformly convergent having first order in time and
almost second order in space.
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§3. Numerical results

In this section we give the numerical results for two singularly perturbed reaction-diffusion
systems which are 1D and 2D in the spatial variable.

3.1. Parabolic 1D problem
We first show the numerical results obtained for a problem of type (1) where the data are
defined by

A =

(
(1 + t)(ex + x) −(1 + x2)t
−x(1 + t) (1 + t2)(1 + x2 + sin(x))

)
, f =

(
t2(x2 + cos(πxt))
xt sin(x + t)(1 − e−t)

)
, (11)

and T = 1. The exact solution of this problem is unknown; in Figure 1 we show the numerical
solution using the scheme (8) with N = M = 32 for ε = 10−4. We observe that both
components of the solution exhibits boundary layer regions at x = 0 and x = 1.

To approximate the orders of convergence of the scheme, we use a variant of the double-
mesh principle [4]. Let Un

i denote the numerical solution given by the fully discrete scheme
at the grid point (xi, tn) with i = 0, 1, . . . ,N, n = 0, 1, . . . ,M, and {Ûn

i } is the numerical
solution on a finer mesh {(x̂i, t̂n)} that consists of the mesh points of the coarse mesh and their
midpoints, i.e.,

x̂2i = xi, i = 0, . . . ,N, x̂2i+1 = (xi + xi+1)/2, i = 0, . . . ,N − 1,
t̂2n = tn, n = 0, . . . ,M, t̂2n+1 = (tn + tn+1)/2, n = 0, . . . ,M − 1. (12)

Then, we compute the two-mesh differences

dN,M
ε = max

0≤n≤M
max
0≤i≤N

|Un
i − Û2n

2i |, dN,M = max
ε

dN,M
ε , (13)

with dN,M = (dN,M
1 , dN,M

2 ). From these values, we obtain the corresponding numerical orders
of convergence by

pN,M
ε = log

(
dN,M
ε /d2N,2M

ε

)
/log 2, (14)

and from the the uniform maximum errors dN,M , we obtain the numerical uniform orders of
convergence pN,M = (pN,M

1 , pN,M
2 ) given by

pN,M = log
(
dN,M/d2N,2M

)
/log 2. (15)

Tables 1 and 2 display the maximum two-mesh differences and the orders of convergence
for each component; from them, we see the uniform convergence of the numerical algorithm.
Moreover, we deduce first order of uniform convergence; so, we can conclude that in this
example the errors associated to the time discretization dominate into the global error of the
numerical method.

To see the influence on the global error of the spatial discretization, which has almost
second order in contrast with the time discretization, which has first order, we multiply N by
2 and M by 4. Tables 3 and 4 display the results in this case. From them, we clearly see the
almost second order of the numerical algorithm.
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(a) Component u1 (b) Component u2

Figure 1: Test problem (1) with data (11) and ε = 10−4: numerical solution for N = M = 32.

Table 1: Test problem (1) with data (11): maximum and uniform two-mesh differences and
their orders of convergence for the component u1.

N=32 N=64 N=128 N=256 N=512 N=1024
M=16 M=32 M=64 M=128 M=256 M=512

ε = 1 4.1890E-4 2.1072E-4 1.0567E-4 5.2913E-5 2.6476E-5 1.3243E-5
0.991 0.996 0.998 0.999 0.999

ε = 10−1 1.9457E-3 1.0068E-3 5.1250E-4 2.5861E-4 1.2991E-4 6.5108E-5
0.950 0.974 0.987 0.993 0.997

ε = 10−2 2.6501E-3 1.3829E-3 7.0679E-4 3.5741E-4 1.7973E-4 9.0121E-5
0.938 0.968 0.984 0.992 0.996

ε = 10−3 3.1427E-3 1.7154E-3 8.4682E-4 4.3373E-4 2.2004E-4 1.1096E-4
0.873 1.018 0.965 0.979 0.988

ε = 10−4 3.9318E-3 2.0348E-3 1.0335E-3 5.2204E-4 2.6261E-4 1.3183E-4
0.950 0.977 0.985 0.991 0.994

ε = 10−5 4.2942E-3 2.1959E-3 1.1108E-3 5.5887E-4 2.8041E-4 1.4048E-4
0.968 0.983 0.991 0.995 0.997

ε = 10−6 4.4130E-3 2.2510E-3 1.1372E-3 5.7158E-4 2.8658E-4 1.4349E-4
0.971 0.985 0.992 0.996 0.998

. . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .

ε = 10−10 4.4745E-3 2.2796E-3 1.1507E-3 5.7816E-4 2.8978E-4 1.4507E-4
0.973 0.986 0.993 0.996 0.998

dN,M
1 4.4745E-3 2.2796E-3 1.1507E-3 5.7816E-4 2.8978E-4 1.4507E-4

pN,M
1 0.973 0.986 0.993 0.996 0.998
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Table 2: Test problem (1) with data (11): maximum and uniform two-mesh differences and
their orders of convergence for the component u2.

N=32 N=64 N=128 N=256 N=512 N=1024
M=16 M=32 M=64 M=128 M=256 M=512

ε = 1 1.0876E-4 5.6962E-5 2.9078E-5 1.4700E-5 7.3910E-6 3.7057E-6
0.933 0.970 0.984 0.992 0.996

ε = 10−1 9.6357E-4 5.0499E-4 2.5887E-4 1.3105E-4 6.5929E-5 3.3067E-5
0.932 0.964 0.982 0.991 0.996

ε = 10−2 1.2939E-3 6.7639E-4 3.4575E-4 1.7487E-4 8.7943E-5 4.4100E-5
0.936 0.968 0.983 0.992 0.996

ε = 10−3 3.2608E-3 1.5960E-3 5.0709E-4 1.7663E-4 8.8840E-5 4.4553E-5
1.031 1.654 1.521 0.991 0.996

ε = 10−4 3.2168E-3 1.6987E-3 6.6516E-4 2.5332E-4 9.5757E-5 4.4575E-5
0.921 1.353 1.393 1.403 1.103

ε = 10−5 3.2012E-3 1.6930E-3 6.6237E-4 2.5221E-4 9.5188E-5 4.4577E-5
0.919 1.354 1.393 1.406 1.094

ε = 10−6 3.1962E-3 1.6911E-3 6.6146E-4 2.5185E-4 9.4999E-5 4.4577E-5
0.918 1.354 1.393 1.407 1.092

. . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .

ε = 10−10 3.1938E-3 1.6903E-3 6.6104E-4 2.5169E-4 9.4912E-5 4.4577E-5
0.918 1.354 1.393 1.407 1.090

dN,M
2 3.2608E-3 1.6987E-3 6.6516E-4 2.5332E-4 9.5757E-5 4.4577E-5

pN,M
2 0.941 1.353 1.393 1.403 1.103

Table 3: Test problem (1) with data (11): maximum and uniform two-mesh differences and
their orders of convergence for the component u1.

N=32 N=64 N=128 N=256 N=512 N=1024
M=16 M=64 M=256 M=1024 M=4096 M =16384

ε = 1 4.1890E-4 1.0770E-4 2.7097E-5 6.7848E-6 1.6969E-6 4.2426E-7
1.960 1.991 1.998 1.999 2.000

ε = 10−1 1.9457E-3 5.1822E-4 1.3176E-4 3.3079E-5 8.2786E-6 2.0702E-6
1.909 1.976 1.994 1.998 2.000

ε = 10−2 2.6501E-3 7.0771E-4 1.8001E-4 4.5199E-5 1.1312E-5 2.8289E-6
1.905 1.975 1.994 1.998 2.000

ε = 10−3 3.1427E-3 2.1199E-3 5.7945E-4 1.4832E-4 3.7593E-5 9.4125E-6
0.568 1.871 1.966 1.980 1.998

ε = 10−4 3.9318E-3 2.3403E-3 8.7321E-4 3.1479E-4 1.0300E-4 3.2291E-5
0.749 1.422 1.472 1.612 1.673

ε = 10−5 4.2942E-3 2.3394E-3 8.7364E-4 3.1529E-4 1.0322E-4 3.2364E-5
0.876 1.421 1.470 1.611 1.673

ε = 10−6 4.4130E-3 2.3392E-3 8.7379E-4 3.1545E-4 1.0328E-4 3.2388E-5
0.916 1.421 1.470 1.611 1.673

. . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .

ε = 10−10 4.4745E-3 2.3391E-3 8.7385E-4 3.1553E-4 1.0331E-4 3.2398E-5
0.936 1.420 1.470 1.611 1.673

dN,M
1 4.4745E-3 2.3403E-3 8.7385E-4 3.1553E-4 1.0331E-4 3.2398E-5

pN,M
1 0.935 1.421 1.470 1.611 1.673
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Table 4: Test problem (1) with data (11): maximum and uniform two-mesh differences and
their orders of convergence for the component u2.

N=32 N=64 N=128 N=256 N=512 N=1024
M=16 M=64 M=256 M=1024 M=4096 M =16384

ε = 1 1.0876E-4 2.8796E-5 7.3015E-6 1.8319E-6 4.5840E-7 1.1463E-7
1.917 1.980 1.995 1.999 2.000

ε = 10−1 9.6357E-4 2.5714E-4 6.5387E-5 1.6417E-5 4.1088E-6 1.0275E-6
1.906 1.975 1.994 1.998 2.000

ε = 10−2 1.2939E-3 3.4551E-4 8.7868E-5 2.2063E-5 5.5219E-6 1.3809E-6
1.905 1.975 1.994 1.998 2.000

ε = 10−3 3.2608E-3 1.4718E-3 4.0668E-4 1.0490E-4 2.6638E-5 6.6728E-6
1.148 1.856 1.955 1.978 1.997

ε = 10−4 3.2168E-3 1.5730E-3 5.5947E-4 1.9453E-4 6.2726E-5 1.9329E-5
1.032 1.491 1.524 1.633 1.698

ε = 10−5 3.2012E-3 1.5687E-3 5.5806E-4 1.9403E-4 6.2563E-5 1.9279E-5
1.029 1.491 1.524 1.633 1.698

ε = 10−6 3.1962E-3 1.5673E-3 5.5761E-4 1.9387E-4 6.2512E-5 1.9263E-5
1.028 1.491 1.524 1.633 1.698

. . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . .

ε = 10−10 3.1938E-3 1.5666E-3 5.5740E-4 1.9380E-4 6.2488E-5 1.9256E-5
1.028 1.491 1.524 1.633 1.698

dN,M
2 3.2608E-3 1.5730E-3 5.5947E-4 1.9453E-4 6.2726E-5 1.9329E-5

pN,M
2 1.052 1.491 1.524 1.633 1.698

3.2. Parabolic 2D problem
In this section we show that the additive schemes described in (5) for 1D parabolic problems,
can be also used to approximate uniformly the exat solution of 2D parabolic problems of type
(3). For the numerical approximation, we propose the following finite difference scheme

U0 = 0,
For n = 0, 1, . . . ,M − 1,

[LN,M
1,ε U]n+1 ≡

Un+1 − Un

τ
−D(δ2

x + δ2
y)U

n+1 +Mn+1Un+1 − Nn+1Un = fn+1,

Un+1
0 = Un+1

N = 0,

(16)

where the matricesMn+1 andNn+1 were defined for the 1D parabolic problem and δ2
x and δ2

y

are the standard approximation of the second order derivative on a nonuniform mesh in the x
and y directions, respectively. We use a uniform mesh in time and the time step is also denoted
by τ = T/M. In both space directions we take a piecewise uniform Shishkin mesh, which is
the tensor product of 1D piecewise uniform Shishkin meshes, Ix,ε,N = {0 = x0 < . . . < xN = 1}
and Iy,ε,N = {0 = y0 < . . . < yN = 1}, where the positive integer N is the spatial discretisation
parameter.

We use this scheme to approximate the following test problem

A =

(
1 + xy −x2y2

− cos(0.5(x + y)) ex+y

)
, f =

(
(1 − e−t) sin(π(x + y))
(1 − e−t)(3x(1 − x) + y(1 − y))

)
, (17)
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Figure 2: Test problem (3) with data (17) and ε = 10−4: numerical solution for N = M = 64.

and the final time is T = 1. Figure 2 shows the numerical solution for both components using
the scheme (16) with N = M = 64, again for ε = 10−4, at t = 0.5 and t = 1.

The exact solution of problem (17) is unknown and we again use the same variant of the
double-mesh principle to approximate the errors: We denote them by

DN,M
ε = max

0≤n≤M
max

0≤i, j≤N
|Un

i, j − Û2n
2i,2 j|, DN,M = max

ε
DN,M
ε , (18)

where {Ûn
i, j} is the numerical solution on a finer mesh {(x̂i, ŷ j, t̂n)} that consists of the mesh

points of the coarse mesh and their midpoints, i.e.,

x̂2i = xi, i = 0, . . . ,N, x̂2i+1 = (xi + xi+1)/2, i = 0, . . . ,N − 1,
ŷ2 j = y j, j = 0, . . . ,N, ŷ2 j+1 = (y j + y j+1)/2, j = 0, . . . ,N − 1,
t̂2n = tn, n = 0, . . . ,M, t̂2n+1 = (tn + tn+1)/2, n = 0, . . . ,M − 1.

(19)

From the maximum two-mesh differences DN,M
ε and the uniform maximum two-mesh differ-

ences DN,M , we obtain the orders of convergence and the uniform orders of convergence
by using (14) and (15) respectively. The uniform orders of convergence are denoted by
qN,M = (qN,M

1 , qN,M
2 ).

Tables 5 and 6 display the maximum errors and the orders of convergence for both com-
ponents. These numerical results suggest that the additive scheme is uniformly convergent,
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Table 5: Test problem (3) with data (17): maximum and uniform two-mesh differences and
their orders of convergence for the component u1.

N=M=16 N=M=32 N=M=64 N=M=128
ε = 1 5.622E-5 3.701E-5 2.363E-5 1.431E-5

0.603 0.648 0.723
ε = 10−1 1.326E-3 6.482E-4 3.211E-4 1.598E-4

1.032 1.014 1.007
ε = 10−2 3.258E-3 1.275E-3 6.637E-4 3.383E-4

1.353 0.942 0.972
ε = 10−3 3.780E-3 1.596E-3 7.791E-4 3.949E-4

1.244 1.035 0.980
ε = 10−4 3.730E-3 1.608E-3 8.208E-4 4.154E-4

1.214 0.970 0.983
ε = 10−5 3.716E-3 1.643E-3 8.370E-4 4.233E-4

1.177 0.973 0.984
ε = 10−6 3.712E-3 1.655E-3 8.439E-4 4.261E-4

1.165 0.972 0.986
. . .. . . . . .. . . . . .. . . . . .. . . . . .. . .

ε = 10−10 3.710E-3 1.660E-3 8.469E-4 4.277E-4
1.160 0.971 0.986

DN,M
1 3.780E-3 1.660E-3 8.469E-4 4.277E-4

qN,M
1 1.187 0.971 0.986

Table 6: Test problem (3) with data (17): maximum and uniform two-mesh differences and
their orders of convergence for the component u2.

N=M=16 N=M=32 N=M=64 N=M=128
ε = 1 1.661E-4 1.079E-4 6.491E-5 3.593E-5

0.623 0.733 0.853
ε = 10−1 1.074E-3 5.982E-4 3.164E-4 1.627E-4

0.844 0.919 0.960
ε = 10−2 1.849E-3 9.236E-4 4.768E-4 2.422E-4

1.002 0.954 0.977
ε = 10−3 2.230E-3 1.003E-3 5.022E-4 2.544E-4

1.153 0.998 0.981
ε = 10−4 2.233E-3 9.936E-4 5.044E-4 2.554E-4

1.168 0.978 0.982
ε = 10−5 2.234E-3 9.905E-4 5.043E-4 2.555E-4

1.174 0.974 0.981
ε = 10−6 2.235E-3 9.894E-4 5.042E-4 2.555E-4

1.175 0.973 0.981
. . .. . . . . .. . . . . .. . . . . .. . . . . .. . .

ε = 10−10 2.235E-3 9.890E-4 5.042E-4 2.555E-4
1.176 0.972 0.980

DN,M
2 2.235E-3 1.003E-3 5.044E-4 2.555E-4

qN,M
2 1.156 0.992 0.981
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when it is used to approximate the solution of 2D parabolic problems. In this case we multi-
ply N and M by 2; from both tables, we see first order of uniform convergence, and therefore
we can conclude that the errors associated to the time discretization dominate into the global
error of the numerical method.
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