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Abstract. IBEX 35 is the official index of the Spanish computerized trading system, and
it is a good indicator of the trends and evolution of the stock exchange. One of the main
goals of our work is to inquire into the mathematical structure of the reference index
IBEX. In particular, we want to elucidate if there are indications pointing at a fractal
structure of the daily close IBEX values during the period corresponding to years 2000-
2011.

Another objective of the study is the determination of useful parameters in order to
characterize the stock recordings and their different patterns. We have computed the frac-
tal dimension of the IBEX daily records over periods of twelve months and we have com-
pared it with three different simulated time series (a uniform random variable, a Gaussian
random motion and a sampled pure sinusoidal function).

Furthermore our results show that the IBEX daily records admit a model of fractional
Brownian function with Hurst parameter H in the range 0.4-0.6. Consequently, the IBEX
series is close to an ordinary Brownian motion (H = 0.5).
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§1. Introduction

The stock indices reflect the time evolution of the stock prices quoted in the market. The
assets composing the index follow criteria of election related to the trading volume and the
market capitalization. Given that there are several types of assets (share, derivatives), different
kinds of indices can be obtained, although the most used are referred to shares.

The indices try to reflect the behaviour of values quoted in the market as a unity. The
importance of these numbers rests on their simplicity for handling the information. With a
single number, the index summarizes a stock working day. They are not theoretical parame-
ters, since they are based on the real behaviour of the market, and they offer a general view
in order to take decisions.

IBEX 35 is the official index of the Spanish computerized trading system and is calcu-
lated, published and diffused by Sociedad de Bolsas. It is an index weighted by capital-
ization, composed by (temporarily) 36 companies quoted in the market of the four Spanish
stock exchanges. Despite the reduced number of companies involved, IBEX represents a
wide percentage of the total trading volume and the full capitalization of the Spanish market.
Consequently, it is a good indicator of the trends and evolution of the stock exchange.
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One of the main goals of our work is to inquire into the mathematical structure of the
reference index IBEX of the Spanish stock market.

In particular, we want to elucidate if there are indications pointing at a fractal structure of
the daily close IBEX values. For it, we have used both mathematical and statistical procedures
coming from the fractal methodology and the approximation theory. Another objective of the
study is the determination of useful parameters in order to characterize the stock recordings
and their different patterns. Our main purpose is the conciliation between the apparently
random behaviour of the signal and its trend curves. The theoretical framework is based on
deterministic as well as random fractal function models.

1.1. Fractal dimensions
We have considered the daily close values of IBEX during the period corresponding to
years 2000-2011. We computed the fractal dimension of the recordings in periods of twelve
months. We considered in the first place, the daily data of the year 2000. Later on we re-
moved the data of January 2000, being substituted by the values of January 2001, completing
a new period of twelve months, and so on. The overlapping between consecutive segments
was then eleven months. The fractal dimension of the interval was assigned to the last month
recorded.

After the computation of the dimensions by means of fractal interpolation, we performed
a smoothing filter of these numbers, by means of a moving average of third order. In this
way, we obtained a weighted fractal dimension assigned to each month (the last one) of the
period. In order to compare the IBEX values with different signals we obtained three different
simulated recordings with the same number of samples:

1. A uniform random variable.

2. A Gaussian random variable.

3. A sampled pure sinusoidal variable.

We performed the same procedures for the generated signals: computation of overlapped
fractal dimensions and smoothing in periods with the same length.

1.1.1. Fractal interpolation functions

In this Subsection we describe shortly the mathematical foundations of the fractal interpola-
tion functions.

Let K be a complete metric space with respect to the distance d(x, y), for x, y ∈ K.
Let H be the set of all complete not empty subsets of K. H is a complete metric space

with the Hausdorff distance [3].
Let wn : K → K, for n = 1, 2, . . . ,N, be a set of continuous mappings. Then, the set

{K, wn; n = 1, . . . ,N} is an Iterated Function System (IFS) on K.
Define the mapping W : H → H by

W(A) =

N⋃
n=1

wn(A) ∀A ∈ H .
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Any set G ∈ H such that
G = W(G)

is an invariant set of the IFS (G is a fixed point of W). Furthermore, G is an attractor if

G = lim
m→∞

W (m)(A) ∀A ∈ H .

Here W (m) represents the composition of W with itself m times. The convergence of this
limit is taken in the sense of the Hausdorff metric between sets [3].

Let us consider now a real compact interval I = [a, b], a partition of I

∆ : a = t0 < t1 < ... < tN = b,

and corresponding ordinate values (xn)N
n=0.

Let K be defined as K = I × R, and the mappings wn : K → K as:

wn(t, x) = (Ln(t), Fn(t, x))

for n = 1, 2, . . . ,N, where {
Ln(t) = ant + bn

Fn(t, x) = αnx + qn(t), (1.1)

with
an =

tn − tn−1

tN − t0
, bn =

tN tn−1 − t0tn
tN − t0

(1.2)

and qn(t) = qn1t + qn0, such that

qn1 =
xn − xn−1

tN − t0
− αn

xN − x0

tN − t0
(1.3)

qn0 =
tN xn−1 − t0xn

tN − t0
− αn

tN x0 − t0xN

tN − t0
. (1.4)

The Iterated Function System {K, wn; n = 1, . . . ,N} admits an attractor G, which is the
graph of a continuous function f : I → R interpolating the data {(tn, xn)N

n=0}.
The parameters αn are the vertical scaling factors of the IFS and must satisfy the inequality

|αn| < 1 for any n = 1, 2, . . . ,N [1]. The maps wn transform a line segment r parallel to the
y-axis into a line segment parallel to the y-axis. The ratio of the length of wn(r) to the length
of r is the modulus of the vertical scaling factor |αn|.

1.1.2. Computation of fractal dimensions

The first step is the reconstruction of the signal by means of fractal interpolation functions,
computing the parameters of the IFS associated to the data according to the fit proposed in
the previous paragraph [7]. The computation of the fractal dimension is then performed by
the use of the following equation:

N∑
n=1

|αn| aD−1
n = 1 (1.5)
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where αn is the vertical scaling factor in the transformation wn. If the nodes are equidistant,
then an = 1/N and the previous expression can be simplified as:

D = 1 +

ln

 N∑
n=1

|αn|


ln N

. (1.6)

This formula for the dimension is valid in the case
∑N

n=1 |αn| > 1. Otherwise, the fractal
dimension is one [1]. This parameter lies between 1 and 2.

The computed values for all the records are displayed in the Figure 1 and Figure 2. The
lower values (near 1) correspond to the sinusoidal function. The upper values (near 2) are the
dimensions of the random variables. The intermediate numbers correspond to the IBEX data.

à à à à à à à à à à à à
ò ò ò ò ò ò ò ò ò ò ò ò

ô ô ô ô ô ô ô ô ô ô ô ô

01�01 04�01 07�01 10�01
0.0

0.5

1.0

1.5

2.0

2.5

à à à à à à à à à à à à
ò ò ò ò ò ò ò ò ò ò ò ò

ô ô ô ô ô ô ô ô ô ô ô ô

01�02 04�02 07�02 10�02
0.0

0.5

1.0

1.5

2.0

2.5

à à à à à à à à à à à à
ò ò ò ò ò ò ò ò ò ò ò ò

ô ô ô ô ô ô ô ô ô ô ô ô

01�03 04�03 07�03 10�03
0.0

0.5

1.0

1.5

2.0

2.5

à à à à à à à à à à à à
ò ò ò ò ò ò ò ò ò ò ò ò

ô ô ô ô ô ô ô ô ô ô ô ô

01�04 04�04 07�04 10�04
0.0

0.5

1.0

1.5

2.0

2.5

à à à à à à à à à à à à
ò ò ò ò ò ò ò ò ò ò ò ò

ô ô ô ô ô ô ô ô ô ô ô ô

01�05 04�05 07�05 10�05
0.0

0.5

1.0

1.5

2.0

2.5

à à à à à à à à à à à à
ò ò ò ò ò ò ò ò ò ò ò ò

ô ô ô ô ô ô ô ô ô ô ô ô

01�06 04�06 07�06 10�06
0.0

0.5

1.0

1.5

2.0

2.5

à à à à à à à à à à à
ò ò ò ò ò ò ò ò ò ò ò

ô ô ô ô ô ô ô ô ô ô ô

01�0703�0705�0707�0709�0711�07
0.0

0.5

1.0

1.5

2.0

2.5

Figure 1: Annual graphics of the values of the weighted fractal dimension in the period 2001-
2007

The least difference between IBEX and random variables was obtained in 2001.

We performed a statistical study in order to elucidate if the differences between the di-
mensions of the IBEX and the rest of the variables were significant. The normality of the
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dimension data was established by means of a Shapiro & Wilks test. The statistics was done
yearly, comparing the data of weighted fractal dimensions of IBEX with the values of the
random and deterministic signals. This was done by means of a t-Student test of mean com-
parisons. The study determined that the differences were pairwise significant at the level 0.01.
These results aim at a fractal structure of the IBEX series, which we check further in the fol-
lowing procedure.
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Figure 2: Annual graphics of the values of the weighted fractal dimension in the period 2008-
2011

§2. Hurst exponents: IBEX 35 as fractional Brownian function

The second parameter computed by our group is the Hurst exponent (H) of the IBEX series.
H is an indicator of self-similarity of the recording. It was proposed by H. E. Hurst [4], who
searched a formula to quantify the levels of the Nile River. The value H = 0 is associated
to a white noise, H = 1 corresponds to a deterministic signal, and H = 0.5 is related to a
Brownian motion. For stock values, H is a measure of the trend of the asset. H < 0.5 is
interpreted as index of a high volatility, H = 0.5 as a red noise and if H > 0.5 the series
displays a definite trend. From the point of view of the theory, the exponent is related to a
fractional Brownian motion.

It is a proved fact that the Brownian motion is a good model for experimental series and,
in particular, for economic historical data. The fractional (or fractal) Brownian motions (fBm)
were studied by Mandelbrot (see for instance [6], [5]). They are random functions containing
both independence and asymptotic dependence and admit the possibility of a long-term auto-
correlation. Another characteristic feature of fBm’s is the self-similarity [6]. In words of B.
Mandelbrot & Van Ness [6]:“fBm falls outside the usual dichotomy between causal trends
and random perturbation”. The fractional Brownian motion is generally associated with a
spectral density proportional to 1/ f 2H+1, where f is the frequency. It is then a “coloured
noise”. For H = 1/2 one has an 1/ f 2−noise (Brownian or red).
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If B(t, ω) is an ordinary Brownian motion, its increments B(t2, ω) − B(t1, ω) are Gaussian
with mean zero and variance |t2 − t1| (see for instance [8]):

{B(t2, ω) − B(t1, ω)} ∼ N(0, |t2 − t1|).

A fractional Brownian motion with Hurst exponent H, BH(t, ω), owns the following proper-
ties:

1. BH(t, ω) has almost all sample paths continuous (when t lies in a compact interval I).

2. With probability one, the graph of BH(t, ω) has both Hausdorff and box dimension
equal to 2 − H.

3. If H = 1
2 then BH(t, ω) is an ordinary Brownian function (or Wiener process). In this

case the increments in disjoint intervals are independent.

4. The increments {BH(t0 + T, ω) − BH(t0, ω)} are Gaussian with mean zero and variance
proportional to T 2H [2], [6] (Corollary 3.4).

The goal of the our numerical experiment is to inquire about the structure of the IBEX
daily data as fractional Brownian motion. Is IBEX really a variable of this type? In order
to answer this question we considered the close daily data of the index of each year (2000-
2011). Let us denote by x(i) the value of the i-th day of one fixed year (i = 1, 2, . . . ,N, where
N is the number of the data). Using different steps hk, we defined the increment variables:

ψhk
i = x(i + hk) − x(i).

where hk = kδ. In this particular case we consider δ = 1, corresponding to one day, because
it is a natural period for this type of recordings.

For each k-th increment variable we computed the mean and the variance vhk . If the IBEX
admits a model of fractional Brownian function the increments must follow the model:

ψhk
i ' N(0, vhk ),

where N(0, vhk ) is Gaussian with variance vhk proportional to h2H
k [2], [6], where H is the

Hurst exponent [4]. H is also called Hurst parameter or index of the time series. If the IBEX
is a fBm, a log-log plot of the variances vhk as function of hk must display a collection of
points on (or close to) a line (see Figure 3). This is due to the relation between the k-th
variance and the corresponding step hk described in the above property 4 [2].

The Hurst exponent is then the half of the slope of the line. We performed a linear re-
gression and computed the corresponding parameters and correlation coefficients. The data
considered are the k-th steps and the variances of the variables with increment hk. The corre-
lation between both coordinates is very high, since the coefficients are very close to one. The
values of H of each year are displayed in Figure 4. The hypothesis of null correlation was
rejected by means of a t-Student test with a significance level of 5% in all the periods.

Our numerical results show that the IBEX daily records admit a model of fractional Brow-
nian function with Hurst parameter H in the range (0.4-0.6) approx. The time series is close
to an ordinary Brownian motion (H = 0.5). However, depending on the year one can ob-
serve a slight variation in the self-similarity parameter H. In particular, we found a global
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Figure 3: Log-log plot of the variances as function of the steps (hk, v
hk ) at the year 2008. The

line represents the regression of these data.

Year Correlation Coef.
2000 0.999650
2001 0.999101
2002 0.999221
2003 0.998102
2004 0.999567
2005 0.999856
2006 0.999165
2007 0.999566
2008 0.997753
2009 0.999887
2010 0.999151
2011 0.991496

Table 1: Correlation coefficient of the regression for the computation of the Hurst parameter
(years 2000-2011)

minimum at the year 2008 with value 0.380001. In general, lower values of the exponent
are associated with variability, antipersistence and short term irregular cycles that hinder the
financial forecasting attempts. These results may be useful for defining new risk measures,
for coverage strategies and for financial asset pricing.
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Figure 4: Yearly Hurst exponents in the range 2000-2011.
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