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SUMMARY

Given a normal surface X the generalized Riemann-Roch formula ([7, 9, 3, 2, 1])

χ(OX(D)) = χ(X) +
1

2
D · (D −KX) +RX(D),

allows one to relate the Euler characteristics of OX(D) and OX via the canonical divisor
KX and a correcting term RX(D). Such a term is the main object of this talk.

The invariant RX : Cl(X) → Q only depends on the rational divisor class in X, that is,
the quotient of the Weil group by Cartier divisors and can be defined as a sum of associated
invariants at the singular points of X ([4]).

For this reason we only consider the local case. Assume X = Cn/G, the group Cl(X) is
naturally isomorphic to the group of characters of G, that is, G∨ = Hom(G,C∗). Following
M.Reid’s notation [10] if D1, D2 ∈ OX(a) then RX(D1) = RX(D2) =: RX(a).

We will show that not every rational divisor class contains curvettes, in particular their
generic divisors might not be irreducible. We will describe generic divisors and will obtain
formulas for RX using this description.

In the case of cyclic quotient singularities X = 1
d (1, p), this description can be given via

the Hirzebruch-Jung continued fraction descomposition [q1, ..., qn] of p
d and the use of the

greedy algorithm of a ∈ Zd = G∨ with respect to [q1, ..., qn].
Possible applications of these results are lattice point counting formulas for rational poly-

topes [5] and Kouchnirenko’s ([8, 6]) formulas for the Milnor number of a curve on a normal
surface singularity.
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