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ON THE PERFORMANCE OF LOW
STORAGE ADDITIVE RUNGE-KUTTA

METHODS
Inmaculada Higueras and Teo Roldán

Abstract. Given a differential system that involves terms with different stiffness proper-
ties, a natural approach to obtain numerical approximations is the use of implicit-explicit
time-discretizations. These systems, often with a large number of equations, arise from
the semidiscretization of some time-dependent partial differential equations. In the con-
struction of Runge-Kutta methods, properties like stability and accuracy are important
items that must be taken into account. However, in some contexts, storage requirements
of the schemes also play an important role. When the high dimension of the problem
compromises the computer memory capacity, it is important to incorporate low memory
usage to other properties of the scheme.

In a recent work the authors have studied and constructed implicit-explicit Runge-
Kutta methods with low-storage requirements. In this paper we develop and test new
low-storage Runge-Kutta methods that complete the study done in the mentioned work.
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§1. Introduction

Space discretization of some time-dependent partial differential equations (PDEs) gives rise
to systems of ordinary differential equations in additive form. These systems, often with a
large number of equations, arise, e.g., from semidiscretisations of convection-diffusion prob-
lems and hyperbolic systems with relaxation [2, 5, 11, 15, 16].

When the differential system involves terms with different stiffness properties, a natural
approach to obtain numerical approximations is the use of implicit-explicit (IMEX) time-
discretizations. IMEX Runge-Kutta methods have been deeply studied in the literature (see,
e.g., [1, 4, 2, 11, 15, 19]).

Sometimes, the additive differential system is of the form

u′ = f1(u, v) ,

v′ = f2(u, v) +
1
ε
g2(u, v) ,

(1)

where ε is the stiffness parameter. These systems have been considered, e.g., in [1, 3, 4, 2,
10, 15, 16], where robust IMEX Runge-Kutta methods have been analyzed. In particular, in
[4, 2], uniform convergence in the stiffness parameter ε has been studied.

For systems with a large number of equations, memory storage requirement is an im-
portant issue. When the high dimension of the problem compromises the computer memory
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capacity, it is important to incorporate low memory usage to some other properties of the
scheme. These ideas have been developed in [6, 7, 8, 9, 10, 12, 13, 14, 17, 18], where differ-
ent low-storage Runge-Kutta methods have been constructed. In particular, in [6, 12], explicit
Runge-Kutta methods are implemented by using the van der Houwen format [17], while di-
agonally implicit Runge-Kutta (DIRK) schemes have been explored in [14]. Robust IMEX
Runge-Kutta methods with low-storage requirements were recently constructed in [10]. In
particular, new Additive Semi-Implicit Runge-Kutta methods (ASIRK), a special class of
IMEX Runge-Kutta methods, have been developed. These new methods can be implemented
by using just three memory registers. In this paper we complete that work constructing new
low-storage methods.

The rest of the paper is organized as follows. In section 2 we briefly introduce ASIRK
methods, a special class of IMEX Runge-Kutta schemes. In section 3 we review low-storage
ASIRK implementations in three memory registers. Taking into account the results obtained
in [10], we construct new low-storage ASIRK schemes in section 4. Some numerical experi-
ments are displayed in section 5.

§2. Additive Semi-Implicit Runge-Kutta methods

We consider a special class of IMEX Runge-Kutta schemes that have been used in [19] look-
ing for computational efficiency. These schemes are usually referred as ASIRK-sA methods.
The numerical solution of a general additive differential problem

y′ = f (y) + g(y) , y(t0) = y0 , (2)

with an ASIRK-sA method is given by

yn+1 = yn +

s∑
i=1

ωi Ki,n+1 , (3)

where the internal derivatives Ki,n+1 are given by

Ki,n+1 = h
(

f (yn +

i−1∑
j=1

bi j K j,n+1) + g(yn +

i−1∑
j=1

ci j K j,n+1 + cii Ki,n+1)
)
, i = 1 , . . . , s , (4)

and bi j, ci j, ω j are the coefficients of the method. Observe that the resulting scheme is explicit
in f and diagonally implicit in g. On the following, we denote the matrices and vector con-
taining the coefficients of the ASIRK-sA method by B = (bi j), C = (ci j), and ω, respectively.
Below we display these matrices for s = 3,

B =

 0 0 0
b21 0 0
b31 b32 0

 , C =

c11 0 0
c21 c22 0
c31 c32 c33

 , ω =

ω1
ω2
ω3

 . (5)

Even though method (3)-(4) can be considered as an additive Runge-Kutta method, it is im-
portant to notice that the coefficients in (5) are not the standard coefficients of an additive
Runge-Kutta scheme. However, as we show below, equations (3)-(4) can be rewritten as an
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additive Runge-Kutta method (9). With this approach, some issues for ASIRK-sA methods,
e.g., the set of order conditions, can be obtained in a simple way from the theory of additive
Runge-Kutta methods.

Equations (3)-(4) are given in terms of Kn+1 = (Kt
1,n+1, . . . ,K

t
s,n+1)t, the internal derivative

vector. By using the Kronecker product ⊗ and denoting Kn+1 = h
(
F(Yn+1) + G(Ŷn+1)

)
, where

F(Yn+1) = ( f (Y1,n+1)t, . . . , f (Ys,n+1)t)t and G(Ŷn+1) = (g(Ŷ1,n+1)t, . . . , g(Ŷs,n+1)t)t, it is possible
to rewrite (3)-(4) as

yn+1 = yn + h (ωt ⊗ Ik)
(
F(Yn+1) + G(Ŷn+1)

)
, (6)

where the internal stages Yn+1 = (Y t
1,n+1, . . . ,Y

t
s,n+1)t and Ŷn+1 = (Ŷ t

1,n+1, . . . , Ŷ
t
s,n+1)t are ob-

tained from

Yn+1 = e ⊗ yn + (B ⊗ Ik)
(
h F(Yn+1) + h G(Ŷn+1)

)
, (7)

Ŷn+1 = e ⊗ yn + (C ⊗ Ik)
(
h F(Yn+1) + h G(Ŷn+1)

)
. (8)

This formulation corresponds to a 2s-stage additive Runge-Kutta method, where the 2s inter-
nal stages are Yn+1 and Ŷn+1. Then, the double Butcher tableau of scheme (6)-(8) is

Be B 0

Ce C 0

ωt 0

0 B

0 C

0 ωt

(9)

Now, from the set of order conditions for IMEX methods, it is easy to derive the set of order
conditions for ASIRK-sA scheme (3)-(4) in terms of matrices B, C, and vector ω (see [10]
for details).

In the same way, it is posible to derive stability properties of ASIRK-sA methods (3)-(4)
applying some known results on linear stability for additive Runge-Kutta methods [11, 15,
19]; our approach is similar to the one made in [15]. Thus, we consider the simplified linear
model equation

y′ = ξ1 y + ξ2 y , y(0) = 1 , (10)

where ξ1, ξ2 ∈ C, with Re (ξ2) < 0, and we solve the model equation (10) with method (3)-(4).
In this way, we can write the numerical solution as

y1 = R(z1, z2) ,

where the function of absolute stability R(z1, z2) is obtained in terms of the coefficients of the
method and z1 = ξ1 h, z2 = ξ2 h . We are interested in obtaining the largest set

S 1 = {z1 ∈ C : sup
z2∈C−

|R(z1, z2)| ≤ 1} . (11)

Besides, in order to get a correct asymptotic decay for the stiff terms, the L-stability condition
for the implicit step, that is,

lim
z2→−∞

R(0, z2) = 0 , (12)
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must be imposed. For more details, see [15].
We are also interested in stiff accuracy, that is, accuracy of the numerical solution of

problem (1) for small values of ε. This issue has been studied in [2, 15] for IMEX Runge-
Kutta methods. The analysis done leads to the following additional order conditions for an
IMEX Runge-Kutta method with coefficients (A, bt, c), (Ã, b̃t, c̃) ,

btA−1c̃ = 1 , btA−1c̃2 = 1 , btA−1Ãc̃ = 1/2 . (13)

For ASIRK-sA methods, see [10] for details, we get these additional orden conditions

ωt e = 1 , ωt C−1 (Ce)2 = 1 , ωt B e = 1/2 . (14)

The linear system 
u′ = δ1 u + σ1 v ,

v′ = δ2 u + σ2 v +
1
ε

(c u − v) ,
(15)

is a particular case of (1). If we consider consistent initial values, v0 = c u0, then, after one
time step, the exact solution of (15) satisfies

u(ε, h) = u0

(
1 + â h + 1

2 â2 h2 + σ1 b̂ h ε
)

+ O(h3, h ε2) ,

v(ε, h) = u0

(
(1 + â h + 1

2 â2 h2) c + b̂ ε + (â + σ1 c) b̂ h ε
)

+ O(h3, h ε2) ,

where, as in [15], we have denoted â = δ1 + σ1 c, and b̂ = δ2 + (σ2 − δ1) c − σ1 c2 . We
will construct the numerical solution (u1(ε, h), v1(ε, h)) of system (15) with the ASIRK-sA
scheme (3)-(4), and from the difference between the numerical and the exact solution

u1(ε, h) − u(ε, h) , v1(ε, h) − v(ε, h) , (16)

we will get conditions on the coefficients of the method.

§3. ASIRK methods implemented in three memory registers

In this section we consider a kind of ASIRK-sA methods that can be implemented in an
efficient way by using three memory registers for any number of stages. The way this schemes
have been developed can be seen with details in [10]. The coefficients of these methods have
a particular structure that is mainly enforced by the possibility of implementing the scheme
in three memory registers. The ASIRK-sA methods we propose are of the form

B =



0
ω1+γ1 0
ω1 ω2+γ2 0
...

...
. . .

. . .

ω1 ω2 . . . ωs−1+γs−1 0


, C =



λ1
ω1 λ2
ω1 ω2 λ3
...

...
. . .

. . .

ω1 ω2 . . . ωs−1 λs


, ω =


ω1

ω2

...

ωs

 . (17)
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For example, a low-storage ASIRK-3A method can be displayed in this way

K1 = h f (yn) + h g(yn + λ1 K1) ,

K2 = h f (yn + ω1 K1 + γ1 K1) + h g(yn + ω1 K1 + λ2 K2) ,

K3 = h f (yn + ω1 K1 + ω2 K2 + γ2 K2) + h g(yn + ω1 K1 + ω2 K2 + λ3 K3) ,

yn+1 = yn + ω1 K1 + ω2 K2 + ω3 K3 .

For each stage, a memory register (Register 1) is used for the storage of yn +
∑i−1

j=1 ω j K j,

Register 1: Yi = Yi−1 + ωi−1 Ki−1 , i = 1, . . . , s + 1,

where we consider b0 = 0 and Y0 = yn. After the last stage, we obtain the numerical solution
yn+1 in the Register 1 as Ys+1 = Ys +ωs Ks. The second memory register (Register 2) is used
for the storage of the evaluation of the function f ,

Register 2: Li = h f (Yi + γi−1 Ki−1) , i = 1, . . . , s,

where γ0 = 0. Finally, the third memory register (Register 3) is used for the internal deriva-
tive Ki

Register 3: Ki = Li + h g(Yi + λi Ki) , i = 1, . . . , s. (18)

§4. A new method implemented in three memory registers

Given a low-storage ASIRK-sA method of the form (17), we determine its coefficients by
imposing accuracy, stiff accuracy and stability properties. In [10] the cases of two stages,
s = 2, and three stages, s = 3, were studied in detail. In this paper we consider s = 3 and we
make a different choice of one of the free parameters.

Observe that if λs = ωs in (17), then the implicit scheme is stiffly accurate. Besides, in
this case, the implicit part of the method satisfies condition (12). Accordingly, we set λ3 = ω3
and we impose the first order condition ωte = 1, that is, ω3 = 1−ω1−ω2. With these choices,
from schemes (17) we get a family of ASIRK-3A methods with 6 parameters,

B =

 0 0 0
ω1 + γ1 0 0
ω1 ω2 + γ2 0

 , C =

λ1 0 0
ω1 λ2 0
ω1 ω2 1−ω1−ω2

 , ω =

 ω1
ω2

1−ω1−ω2

 . (19)

For methods (19), second order is obtained if the parameters satisfy

ω2(ω1 + γ1) + (−ω1 − ω2 + 1)(ω1 + ω2 + γ2) =
1
2
, (20a)

ω1 ω2 + ω1 λ1 − ω1 + ω2 λ2 − ω2 + 1 =
1
2
. (20b)

It can be checked that, with the 6 parameters in (19), it is not possible to achieve order three.
For second order ASIRK-3A methods of the form (19), the additional order conditions

(14) are satisfied; observe that in (19), the last row of C is equal to ω.
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Furthermore, in (19) we set λ = λ1 = λ2. In this way, if function g is linear, or if we
use Newton-like methods for solving the nonlinear systems, the same LU-factorization can
be used when the first two internal derivatives are computed (see equation (18)).

From the stiff accuracy analysis (16), cancellation of the term εh in the u variable, and
the term ε2/h in the v variable, leads to the equations

ω2λ(ω1 + γ1) + (ω1 + ω2 − 1) (ω1(ω2 + γ2) − λ(ω1 + ω2 + γ2))
λ2 = 1 , (21)

(ω1 − λ)(ω2 − λ)
λ2(ω1 + ω2 − 1)

= 0 . (22)

If (21) and (22) hold, the difference between the numerical and the exact solution of problem
(15) is of the form

u1(ε, h) − u(ε, h) = O(h3, h2 ε) , v1(ε, h) − v(ε, h) = O(h3, h ε) . (23)

In order to impose condition (22), there exists two posibilities: λ = ω1 or λ = ω2. In [10]
only the case λ = ω1 was studied. If we substitute this value in the other three equations,
namely, (20a), (20b) and (21), and we solve the corresponding system, we get a ω1-family of
second order methods such that the implicit method is L-stable, provided that it is A-stable.
Furthermore, the methods satisfy the additional conditions (14), they can be implemented by
using just three memory registers and, for the model problem (15), the errors are given by
(23).

In order to choose the parameter ω1 in this family of methods, different approaches can
be followed. If we minimized the local truncation error, then we obtain the scheme named
ASIRK-LSe(3,2). For more details see [10].

In this paper we study the other posibility, that is λ = ω2 in (22). If we substitute this
value in the other three equations (20a), (20b) and (21), then, from the corresponding system
we get

γ2 =
−4ω5

2 − 4ω4
2 + 12ω3

2 − 6ω2
2 + ω2

4ω4
2 − 12ω3

2 + 12ω2
2 − 6ω2 + 1

,

ω1 =
−2ω2

2 + 2ω2 − 1
2(2ω2 − 1)

, (24)

γ1 =
8ω6

2 − 72ω5
2 + 140ω4

2 − 112ω3
2 + 46ω2

2 − 10ω2 + 1

4ω2(2ω2 − 1)2
(
2ω2

2 − 2ω2 + 1
) .

This is another ω2-family of second order methods with the same properties as the family
obtained for the case λ = ω1 in [10]. We can follow again different approaches in order to
choose the parameter ω2 in (24). We can minimize the local truncation error, but also we can
optimize the stability region (11). In both cases the derived methods have a similar behavior,
so in this work we will only show the method obtained by minimizing the local truncation
error.
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ASIRK-LSe2(3,2) method

We have denoted by ASIRK-LSe2(3,2) the method in (24) that minimizes the sum of the
absolute values of the coefficients in the leading truncation error term. The optimum value
for this sum is 0.563, and it is obtained for ω2 = 0.144288. We remark that the optimum
value is significantly higher than the one obtained for the method ASIRK-LSe(3,2) in [10],
namely 0.218. A rational approximation of ω2 = 0.144288 is ω2 = 1/7. In that case we
obtain the method.

B =


0 0 0

41663
25900 0 0

37
70

250
851 0

 , C =


1
7 0 0

37
70

1
7 0

37
70

1
7

23
70

 , w =


37
70
1
7
23
70

 . (25)

§5. Numerical Experiments

In this section we study the performance of the numerical scheme constructed in this paper,
named ASIRK-LSe2(3,2), and we compare it with the method ASIRK-LSe(3,2) given in [10],
and the ASIRK-3A method considered by Zhong in [19].

In [10] we tested the methods on different problems but here we will just see a simple
prototype of stiff system of the form

u′ = −v ,

v′ = u +
1
ε

(e(u) − v) ,
(26)

with e(u) = sin u. We can choose arbitrarily the initial value u(0), but there is no freedom
in the choice of v(0). If we consider non-consistent initial values, then the solution presents
an initial layer in the v component when ε → 0. We have chosen u(0) = π/2 and we have
integrated the problem in [0, 1], with time step h = 0.05, assuming different initial data v(0).
Consistent initial values are obtained if we take v(0) = sin(u(0)) = 1. By adding a small
perturbation δ, we get non-consistent initial values; in the numerical experiments we have
taken δ = 0.05. Finally we have also considered well prepared initial data to obtain a smooth
solution.

CInVal: v(0) = 1 ,

NCInVal: v(0) = 1 + δ , (27)

WPInVal: v(0) = 1 +
π

2
ε −

π

2
ε3 .

For each method we compute the convergence rates for a wide range of values of the
parameter ε; in our tests we consider ε = 10− j, j = 0, 1, 2, . . . , 6. We try to check whether
the convergence is uniform in ε, particularly in the intermediate regime. In order to show the
convergence rates, for each value of ε we compute Eh and Eh/2, an estimation of the relative
L∞-global error with stepsizes h and h/2, respectively. With these values we compute the
convergence rate in the standard way.
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Figure 1: Convergence rates of u (continuous line) and v (dashed line) vs. stiffness parameter
ε for problem (26) for stepsize h = 0.05.
From top to bottom: ASIRK-LSe2(3,2) (25), ASIRK-LSe(3,2) and Zhong’s method. From
left to right: NCInVal, CInVal and WPInVal initial values (27).

In figure 1 we show the convergence rates versus the stiff parameter ε for the system (26),
when methods ASIRK-LSe2(3,2), ASIRK-LSe(3,2) and Zhong’s method are used.

For CInVal and NCInVal the new method ASIRK-LSe2(3,2) gives results similar to the ones
obtained with ASIRK-LSe(3,2) scheme. However, for WPInVal initial conditions, the new
method in this paper has a worse behavior in the middle stiff regime, that is, when h is close
to ε. These poor results may be due to the higher value of the leading truncation error terms.
Consequently, the choice of λ = ω2 does not lead to a numerical scheme better than the ones
obtained in [10].
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[14] Koch, O., Kupka, F., Löw-Baselli, B., Mayrhofer, A., and Zaussinger, F. SDIRK
Methods for the ANTARES Code. ASC Report 32 (2010).

[15] Pareschi, L., and Russo, G. Implicit-explicit Runge-Kutta schemes for stiff systems of
differential equations. Recent Trends in Numerical Analysis 3 (2000), 269–289.

[16] Pareschi, L., and Russo, G. High order asymptotically strong-stability-preserving meth-
ods for hyperbolic systems with stiff relaxation. Hyperbolic Problems: Theory, Numer-
ics, Applications (2003), 241–251.



86 Inmaculada Higueras and Teo Roldán

[17] Van Der Houwen, P. J. Construction of integration formulas for initial value problems.
North Holland, 1977.

[18] Williamson, J. Low-storage Runge-Kutta Schemes. Journal of Computational Physics
35 (1980), 48–56.

[19] Zhong, X. Additive semi-implicit Runge-Kutta Methods for computing high-speed
nonequilibrium reactive flows. Journal of Computational Physics 128 (1996), 19–31.

Inmaculada Higueras and Teo Roldán
Dpto. Ing. Matemática e Informática
Universidad Pública de Navarra
higueras@unavarra.es and teo@unavarra.es


