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A MODEL FOR RELATIVE EVOLUTION OF
0 AND 1, THE 2 FIXED POINTS OF

MULTIPLICATION
Mariá Monserrat Rincon-Camacho

Abstract. We study the fixed-point equation, given for a fixed l > 0 by:

x = h(1 − |2x − 1|l), x, h ∈ R,

where |2x − 1| = |x− 1
2 |

1
2

represents the relative distance of x to the mean value of 0 and 1
which are the fixed points of multiplication. The particular cases l = 1 and 2 are classical.
This work intends to look at the question: “How much of the specific behaviour for l = 1
and 2 remains valid when the exponent l varies freely in ]0,∞[?”. Some preliminary
answers are given, which are derived either from theory (l ∈ N∗, 1 ≤ l ≤ 5) or from
numerical simulation (0 < l < 1 or l > 5).

Keywords: Fixed points 0 and 1 for real multiplication, relative distance to the mean,
logistic family, path of homogenisation, degree of heterogeneity, symbiosis, wavetracks,
backward and forward chaos, laws of composition.
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§1. Introduction

1.1. Fixed points of multiplication
Through history, multiplication has been the source of paradoxes leading to the creation of
new concepts whenever x× x = x2 does not behave as expected. The solution of the quadratic
equation x2 = 2 defied the law of rationality of ancient Greece, since

√
2 cannot be expressed

as the ratio of two integers. Solving x2 + 1 = 0 presented a new obstacle in the 16th century.
The solution

√
−1 proposed by Cardano in (1545) provoked resistance during three centuries

since it broke the assumed law that a square is positive. For more information about the art
of computing and the paradoxes in logic see [3, 4, 5, 16].

Multiplication appears as the driving force behind the historical evolution of computation.
Over R, the fixed points of x × x = x are 0 and 1 which define the classical binary logic of
Aristotle modelled by the field Z2 = {0, 1}. In this work we aim to model a real nonlinear
evolution of this classical logic by means of the composition of continuous functions inter-
preted below as a nonlinear generalisation of multiplication. Let f , g ∈ C0(R) and consider
the law of composition defined as

f ◦ g = f (g(·)), f , g : R 7→ R.

The two fixed points of f ◦ f = f are given by the identity function 1 : x 7→ x and the null
function 0 : x 7→ 0, where: 1 ◦ f = f ◦ 1 = f and 0 ◦ f = 0, f ◦ 0 = f (0) . 0. If there is no
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ambiguity with numerical exponentiation, we denote f ◦ f as f 2, f k = f ◦ ( f k−1), k ≥ 1 and
f 0 = 1. It is possible to interpret the relation f 2 = f for ◦ as a nonlinear generalisation of
x2 = x for ×. If f is the linear map x 7→ a × x, then ◦ reduces to ×, see [11], but in general ◦
is neither commutative nor distributive with respect to +. Thus, the multiplicative law given
by ◦ endows the Banach space C0(R) with a nonlinear generalisation of multiplication. Over
linear functions, the functions 0 and 1 are characterised by the numbers 0 and 1 by the obvious
identities: 1 : x 7→ x = 1 × x and 0 : x 7→ 0 = 0 × x.

The composition of functions as a multiplicative law can be illustrated by studying a
fixed-point equation of the type

x = fh(x), h ∈ R (1)

where the real parameter h induces an evolution. Indeed, it has been experimentally shown
that many evolutive physical phenomena in Nature are adequately explained by the dynamic
evolution present in (1), see [12, 17]. As an example of (1), here we propose to study the
following fixed-point equation which is based on the relative distance |2x − 1| to the mean
value 1

2 = 0+1
2 between 0 and 1

x = h(1 − |2x − 1|l), x, h ∈ R. (2)

1.2. Scope of the paper

Most of the numerical and theoretical studies about (2) have focussed on the classical cases
l = 2 (mostly) and l = 1. In this paper we verify numerically the existant theory for 1 < l < ∞
where the Schwarz derivative of fh(x) = hΛl(x) is negative, see [12, 17]. Specially, we study
the stability window of the first fixed point and how it evolves when l → ∞ (Section 5).
When 0 < l < 1 there is no theory and in this work we do only a numerical exploration about
this case. The conjectures made in this paper for the cases 0 < l < 1 and l→ ∞ are based on
numerical experiments.

To our knowledge only theory about the limit l→ ∞ is given by the Feigenbaum scaling
constants δl = lim j→∞

h j−h j−1

h j+1−h j
, δ2 ≈ 4.669 and αl = liml→∞

d j

d j+1
, α2 ≈ −2.503 computed in

[1, 2] where h j is the first value h where a 2 j-period appears on the Feigenbaum’s route to
chaos and d j is the value of the nearest cycle element to 0. The asymptotic values α1, α∞ = −1
(resp. δ1 = 2, liml→∞ δl ≈ 30) were proved in [7] (resp. [6, 18]). In [8] it was shown that
29.5128 < δl < 29.9571 for l large enough and the estimate δ∞ = 29.576303 ± 10−6 is given
in [2, p.35].

The organisation of the paper is as follows. In Section 2, we recall some generalities
about the logistic equation given by fh(x) = hΛl(x). A theoretical study for l ∈ {1, 2, 3, 4, 5}
is presented in Section 3 where the exact analytic solutions of (2) are described together with
the Picard iterations and wavetracks. Section 4 presents new and surprising results for l far
from the classical value l = 2. This is illustrated for the cases 0 < l < 1 and l large. The
relative evolution involving the three numbers 0, 1 and their mean value 1

2 in the fixed point
equation (2) is interpreted in Section 5. Finally some conclusions are given in Section 6.
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§2. Logistic equations

Equation (2) is the family of logistic equations introduced in [12] which can be written as
x = hΛl(x) where the function

Λl(x) = 1 − |2x − 1|l

is a continuous function with varying parameter l > 0. The maximum value 1 is attained at
x = 1

2 where l quantifies the smoothness of the function Λl.
There are two real functions h 7→ x(h, l) which solve (2), one is given by 0 and the other

function h 7→ x(h) is called the homogenisation path, a term which will be explained in
Section 5.

The family fh(x) = hΛl(x) has a negative Schwarz derivative when l > 1, thus it has
observable periods, see [12, chapter 3]. The Picard iteration

x0 = 1
2 , xn+1 = fh(xn), n ≥ 0, h ≥ 0 (3)

reveals the numerical behaviour of the law of composition repeatedly applied to fh. Given an
initial point x0, it is possible to reach or not a fixed point after some iterations depending on
h. The information provided by (3) is given by the orbit diagram.

Figure 1: Logistic map: x = hΛ2(x) = 4hx(1 − x)

An example is displayed for l = 2 in Figure 1, which is the well-known logistic map
studied between 1970 and 1990, see [9, 10, 12]. The forward and backward orbit diagrams
correspond to h > 0 and h < 0 respectively, they are shown in Figure 1. The complete
diagram is displayed in the center; the top corners show the enlarged chaotic parts. We can
observe that |xn(h)| 6→ ∞ if h ∈ [− 1

2 , 1].
At this point, a remark is in order. Most studies of (3) for l = 2 do not take into account

the “backward” chaos obtained for h ∈ [− 1
2 ,−

1
4 ] and focus exclusively on the “forward” one
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obtained for h ∈ [ 3
4 , 1]. From a computational point of view we shall see that this restriction is

misleading when l positive evolves away from 2, either being large (l→ ∞) or small (l→ 0)
(Section 4).

For l = 2, theory tells us that iteration (3) diverges as h varies in R, unless h belongs to a
finite interval. There are three ways in which xn(h) stays finite in (3) as n→ ∞ :

1. xn(h) tends to a finite limit, h ∈] − 1
2 ,

3
4 [ in Figure 1,

2. xn(h) tends to belong to a periodic k-cycle, k ≥ 2, see for instance the 2k-cycles points
for h ∈] − 0.39,− 1

4 [ and h ∈] 3
4 , 0.89[ and the 3-cycle for h ∈] − 0.46,−0.454[ and

h ∈]0.954, 0.96[ in Figure 1,

3. xn(h) has no limit, but remains constrained to a finite interval as it can be observed in
the chaotic parts in Figure 1.

In the following sections, we study the solutions of equation (2) and the portrait of the
Picard iterations which remain finite as n→ ∞.

§3. Exponent l ∈ {1, 2, 3, 4, 5}

In this section we study the case where the positive exponent l in (2) is an integer ≤ 5. We
look for real solutions x(h) , 0 for equation (2), we describe the Picard iterations given by
(3) and we introduce the so called wavetracks.

3.1. Analytic solutions
To solve equation (2) is equivalent to find the roots of a polynomial if l is even or to find the
roots of a piecewise polynomial if l is odd. In Table 1, we summarise the closed form of the
exact real solutions developed in [14, Section 2] which come from solving the polynomials
in (2) for l ∈ {1, 2, 3, 4} when x ∈ R and for l = 5 when x ≤ 1

2 . It can be easily seen that 0 is a
solution to (2) for all l > 0. The real solutions which are different from 0 are plotted in Figure
2 (a) in the window [−2, 2] × [−1.5, 2.5] and in (b) in the window [0.3, 0.7]2. For all other l,
the analytic solution can be found by computing the inverse map x 7→ h(x) = x

1−|2x−1|l .

l polynomial equation

2 x(x + ( 1
4h − 1)) = 0 {x = 0, x = 1 − 1

4h }

3 x ≤ 1
2 x(8x2 − 12x + 6 − 1

h ) = 0 {x = 0, x = 1
4 (3 +

√
2
h − 3)}

x > 1
2 4x3 − 6x2 + ( 1

2h + 3)x − 1 = 0 Cardano’s method [14]

4 x(2x3 − 4x2 + 3x + 1
8h − 1) = 0 Cardano’s method [14]

5 x ≤ 1
2 x(x4 − 5

2 x3 + 5
2 x2 − 5

4 x + 5
16 −

1
32h ) = 0 Ferrari’s method [14]

Table 1: Solving x = hΛl(x) by radicals



A model for relative evolution of 0 and 1, the 2 fixed points of multiplication 119

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

h

x
(h

)

 

 

l =1

l =2

l =3

l =4

l =5

(a) Window [−2, 2] × [−1.5, 2.5]

0.3 0.4 0.5 0.6 0.7

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

h

x
(h

)

 

 

l =1

l =2

l =3

l =4

l =5

(b) Homogenisation path around ( 1
2 ,

1
2 )

Figure 2: Analytic solution x(h)

3.2. Picard iterations
The general form of the Picard iterations (3) when fh(x) = h(1 − |2x − 1|l) and l ∈ {2, 3, 4, 5}
is illustrated for l = 4 in the first row of Figure 3 (a), where x0 = 1

2 and the index n for the
plotted iterates xn varies between 200 and 400. The complete set of figures can be found in
[14]. The windows containing chaos shrink as l is increased. In the second row of Figure 3
(a), the Picard iterations are plotted together with the analytic solution x(h) as a dashed line.
It can be observed that a part of the analytic solution x(h) different from 0 is attained by the
Picard iterations between (h = 1

8 , x = 0) and the first bifurcation from period 1 to 2 on the
forward chaos around (h = 0.83, x = 0.765). The analytic solution equal to zero is reached
between the first bifurcation point on the backward chaos around (h = −0.12, x = 0) and
(h = 1

8 , x = 0). A similar behaviour is also observed for l ∈ N, l ≥ 2. By setting x = 0 in
the equation 2x3 − 4x2 + 3x + 1

8h − 1 = 0 of Table 1 when l = 4 we obtain the point (h = 1
8 ,

x = 0). The points (h ≈ 0.83, x ≈ 0.765) and (h ≈ −0.12, x = 0) are obtained experimentally.

3.3. Wavetracks
The wavetracks are the successive iterates by hΛl of the critical point x = 1

2 . They are defined
in [3, chapter 6] as follows: {

w1(h) = hΛl( 1
2 ),

wk(h) = hΛl(wk−1(h)), k ≥ 2. (4)

The definition (4) is an extension of the “supertrack” curves studied in [13] for l = 2. Ac-
cording to (4), w1 = 1 for all l > 0, and w2(h) = h(1 − |2h − 1|l) which depends on l and
satisfies w2(0) = w2(1) = 0, w2( 1

2 ) = 1
2 = w1( 1

2 ) = x( 1
2 ). See Figure 4 where w1 and w2 are

plotted with an asterisk marker and a square marker respectively. The numerical simulations
displayed in Figure 4 confirm that for all n, the wavetracks exactly confine the chaos. If
h ∈ [ 1

2 , 1], straightforward calculation shows that w2(h) ≤ xn(h) ≤ w1(h) = h and if h ≤ h0,
then w1(h) ≤ xn(h) ≤ w2(h) where h0 is such that x(h0) = 0. In the third row of Figure 4 the
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(a) l = 4 (b) l = 1
3 (c) l = 3

4 (d) l = 32

Figure 3: Picard iterations and exact x(h) (dashed line)

first four wavetracks are plotted for l = 4. The wavetracks are found to be smooth for l ∈ N,
l > 1.

§4. Numerical simulations for l positive

In this section we describe experimental results for 0 < l < 1 or l large and l → ∞. In the
absence of available theory, we propose some conjectures. The numerical simulations related
to equation (2) when 0 < l < 1 differ considerably from those of l > 1. The case l = 1 is the
well-known tent map, studied in [12] and [3, chapter 6]. In [14, Section 5] we observed some
peculiar phenomena for 0 < l < 1 which we summarise in the following section.

4.1. 0 < l < 1

For 0 < l ≤ l̃, l̃ ≈ 0.502, we observe that the iterates do not escape to ±∞ and there is
no forward chaos, which is only replaced by the single point ( 1

2 ,
1
2 ). The value 0.502 is

experimentally obtained, see [14, Fig. 20]. Moreover xn converges to x(h) for h ≥ 1, see
for example the second column in Figure 3 (b) where l = 1

3 . The emergence of forward
chaos near h = 1 occurs when l is around 1

2 and when 1
2 < l ≤ 1 the forward chaos expands

gradually for h ∈ [ 1
2 , 1]. The sharp difference in behaviour between l < l̃ and l > l̃, l̃ ≈ 0.502,

can be appreciated when comparing second column where l = 1
3 and the third row where

l = 3
4 in Figure 3.
The exact solutions x(h) are plotted as a dashed line together with the Picard iterations in

in the second row of Figure 3 (b) and (c). One solution is 0 and the other is found by using the
inverse map x 7→ h = x

1−|2x−1|l . This function presents a cusp in ( 1
2 ,

1
2 ). For 0 < l ≤ l̃, the exact

solution x = 0 is attained by the Picard iteration between the emergence of the backward
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l = 1
3

l = 3
4

l = 4

l = 32

Figure 4: Wavetracks

chaos and h̃, (h̃ is such that x(h̃) = 0). Moreover, the two branches on the orbit map where
h > h̃ and h < h∗, (h∗ is the end of the backward chaos), coincide also with the exact x(h).
For l̃ < l ≤ 1, the Picard iterations attain the solution 0 only between the emergence of the
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backward chaos and h̃. There is also a coincidence between x(h) and the Picard iterations at
the point ( 1

2 ,
1
2 ) where x(h) presents a cusp.

The numerical experiments on the wavetracks for 0 < l < 1 are exemplified in the first
and the second row of Figure 4 where the first 4 wavetracks are plotted together with the
Picard iterations for l = 1

3 and l = 3
4 . We can see that the wavetracks are continuous but

not everywhere smooth and that the first two wavetracks confine the chaos. However for
0 < l < l̃, the lower and upper bounds (w1 = h and w2(h) = h(1 − |2h − 1|l)) are not reached
by xn in the region of the backward chaos. See the first row of Figure 4 for l = 1

3 < l̃. The
phenomenon disappears for l = 3

4 > l̃ (second row of Figure 4). This contrasts with the case
1 < l < ∞ described in Section 3.3.

4.2. l is large
The behaviour of the logistic equation (2) when l is large, is illustrated in Figure 3 (d) when
l = 25 = 32. We can see that the window of stability [h0, h1] for x(h) increases to cover the
open interval ]0, 1[ where h0 is such that x(h0) = 0 and h1 is the first bifurcation from period
1 to 2, see Figure 3 (d) and also the third image in the fourth row of Figure 4. We conjecture
that in the limit l → ∞, the iterates do not escape to ±∞ if and only if h ∈ [0, 1], they vary
in [0, 1] for h = 0 and 1 and describe the segment x = h for h ∈]0, 1[. Furthermore, we also
observe that on ]0, 1[ w2(h) → h = w1(h) as l → ∞, see for instance the first and the third
images of the fourth row of Figure 4, when l = 32. In the limit l → ∞, the backward (resp.
forward) chaos manifests itself as the axis h = 0, x > 0 (resp. h = 1, x < 1).

§5. Relative evolution of the numbers 0 and 1

The relative evolution of numbers 0 and 1 announced in the title of this work is revealed by
the study of the fixed point equation (2). Equation (2) is satisfied if and only if

El(x) = 1 − x
h

where E(x) = |2x − 1| =
|x−1/2|

1/2 is the relative distance of x to the mean value 1
2 . El(x)

measures the degree of heterogeneity between x and h. If x
h gets close to 1 we say that there

is a symbiosis between, or an assimilation of, the variables x and h, thus the map h 7→ x(h)
which satisfies equation (2) and differs from 0 gets close to the identity map 1 : h 7→ x = h
and for this reason we call the function the homogenisation path. In Figure 2 (b) we observe
that the approximation of the identity function 1 around ( 1

2 ,
1
2 ) gets better as l increases. This

situation is confirmed in Figure 3 (d) where l = 32. Furthermore, the Picard iterations in the
first row of Figure 3 (a) and Figure 3 (d) show that through consecutive compositions there
is an evolution and the identity function (which is the first wavetrack) is reached in the limit
n→ ∞ on an increasing open interval in ]0, 1[, as l increases, see the third image of the third
of the fourth row in Figure 4. As l→ ∞, we conjecture that the interval tends to ]0, 1[.

Another model for numerical evolution of the fixed points 0 and 1 is given by the follow-
ing family of logistic equations

y = 1 − m|y|l, l > 0, m ∈ R (5)
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which appears in [1]. In this case the distance |y| from y to 0 raised to the power l, is equal
to the relative distance 1−y

m , that is |y|l =
1−y
m , m , 0. Here |y| is an absolute distance to 0 and

the information in (5) is provided by 0 and 1 only, thus (5) gives an absolute evolution for the
numbers 0 and 1 in contrast to the relative evolution given by (2). A detailed analysis of (5)
and a comparison with (2) can be found in [16].

§6. Conclusions

The analysis of equation (2) by means of the Picard iteration, the exact solution and the
wavetracks has allowed us to exemplify that around ( 1

2 ,
1
2 ), fh(x) = hΛl(x) converges to the

fixed point 1 of f ◦ f = f when l→ ∞ for h ∈]0, 1[ except at the endpoints of this interval.
The unexpected behaviour for 0 < l < l̃ ≈ 0.502 deserves more theoretical study. One

solution to (2) is given by 0 = 0 and the other satisfies x = h for h = 1
2 only. However thanks

to the dynamics between the numbers 0, 1 and 1
2 present in (2) the concept of unit 1 over

R evolves into the identity function 1 over C0(R) when × is replaced by ◦, while 0 remains
invariant (0 = 0). This dynamic evolution is provided by the introduction of the parameter h.
The epistemological significance of the different behaviours of (2) and (5) is discussed in [5].
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