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Abstract. We study a Nitsche’s eXtended Finite Element Method for an elliptic interface
problem, approximated by nonconforming finite elements on triangular meshes. In order
to bound the consistency error, we add some stabilisation on the sides cut by the inter-
face. We show stability of the discrete formulation and optimal a priori error estimates,
which are robust with respect to the geometry and to the diffusion parameters. Finally, we
present a numerical example illustrating the theoretical results.
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§1. Introduction

Several finite element methods have been proposed in the last years in order to take into
account discontinuities which are not necessarily aligned with the mesh. One of them is
NXFEM (Nitsche’s eXtended Finite Element Method), introduced by A. Hansbo and P.
Hansbo in [6] and based on the use of Nitsche’s method to treat the transmission condi-
tions on the interface. It uses standard finite element spaces, which are enriched on the cells
cut by the interface such that the degrees of freedom are doubled on these cells. Some re-
cent developments of NXFEM concern its robustness with respect to the geometry (see for
instance [2] or [1]), its a posteriori analysis or its application to different model problems,
such as fluid flow or fluid-structure interaction.

At our knowledge, NXFEM has been used so far with continuous finite elements. Our
goal is to extend it to the case of nonconforming elements on triangular meshes. Besides their
small stencil, nonconforming elements present other advantages such as inf-sup stability for
Stokes equations or robustness with respect to small parameters and locking.

For P1-continuous elements, the degrees of freedom are associated to the nodes, which
belong to only one of the sub-domains delimited by the interface. Meanwhile, the degrees
of freedom of the Crouzeix-Raviart P1-nonconforming elements [4] are associated to the
edges, so those associated to the cut edges belong to two sub-domains simultaneously. Con-
sequently, this leads to some difficulties in the estimation of the consistency error.

In this paper, we focus on an elliptic equation with discontinuous coefficients and we
discretise it by P1-nonconforming elements on triangular meshes which are not aligned with
the interface. To tackle the previously mentioned difficulty, we propose to add, in addition
to the usual stabilisation on the interface specific to NXFEM, some stabilisation on the cut
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edges which compensate the nonconformity error. The weights used for the definition of the
means as well as the stabilisation parameters in each sub-domain are chosen in order to get
robustness of the method with respect to the geometry and to the diffusion parameters. We
show the well-posedness of the discrete problem as well as a priori error estimates.

Another approach, based on the modification of the nonconforming finite elements such
that the new degrees of freedom are associated to only one sub-domain, is studied in [5].
No additional term is then necessary to ensure the stability, but the difficulty now lies in
estimating the interpolation error in a robust way.

The outline of the paper is as follows. Section 2 contains the notation and the presentation
of the original NXFEM method for conforming finite elements, whereas in Section 3 we
introduce the extension to the nonconforming case. The aim of Section 4 is threefold: we are
concerned with the stability of the formulation, the consistency error and the interpolation
error. Numerical tests are presented in Section 5, confirming the optimal convergence rate
predicted by the theoretical results.

The extension to a nonconforming finite element approximation of the Stokes equations
in the presence of an interface can be found in [5].

§2. Original NXFEM with conforming finite elements

Let Ω a bounded domain ofR2, with polygonal boundary ∂Ω and an internal smooth boundary
Γ dividing Ω into open sets Ωin and Ωex. We consider the same model problem as in [6]:

−div (κ∇u) = f in Ωin ∪Ωex,
u = 0 on ∂Ω,

[u] = 0 on Γ,
[κ∇u · n] = g on Γ,

(1)

where f ∈ L2(Ω), g ∈ L2(Γ) and n is the unit normal to the interface Γ oriented from Ωin

towards Ωex. For the sake of simplicity, we suppose that κ is a piecewise constant coefficient,
discontinuous across Γ and taking the values κin and κex in the sub-domains Ωin and Ωex.
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Figure 1: Underlying meshes for the domains Ωin and Ωex.

Let (Th)h be a regular family of triangulations of Ω, each Th consisting of triangles.
We denote by T Γ

h = {T ∈ Th; T ∩ Γ , ∅} the set of cut cells and we also introduce T i
h ={

T ∈ Th; T ∩Ωi , ∅
}

for i = in, ex, see Figure 1. Sh denotes the set of sides of the triangula-
tion Th, while Si, cut

h denotes the set of cut sides contained in Ωi and Snc
h the set of uncut sides
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of Th. It is useful to introduce ΓT = T ∩ Γ for any T ∈ T Γ
h . For a given side S ∈ Sh, we fix

once for all a unit normal nS ; if S is situated on the boundary ∂Ω, then nS coincides with the
outward normal nΩ.

For x ∈ Γ and v a piecewise smooth function, we set

vin(x) = lim
ε−→0

v(x − εn), vex(x) = lim
ε−→0

v(x + εn)

and we define its jump across Γ as well as the following weighted means by:

[v] = vin − vex, {v} = αexvex + αinvin, {v}∗ = αinvex + αexvin,

where the weights satisfy αin + αex = 1 and 0 < αin, αex < 1.
We next recall the NXFEM formulation of (1), introduced in [6] for the case of a piece-

wise linear, continuous finite approximation on a mesh of Ω which is not aligned with the
interface Γ. The idea is to use standard finite element spaces but to double the degrees of
freedom on all the cut cells (see Figure 1), and to treat the transmission conditions on Γ

weakly, by means of Nitsche’s method [7].
Let the finite dimensional spaces:

W i
h = {v ∈ H1(Ωi

h); v|T ∈ P1, ∀T ∈ T i
h, v|∂Ω = 0}, i = in, ex

and let the product space Wh = W in
h ×Wex

h . Let us introduce:

ah(uh, vh) =

∫
Ωin∪Ωex

κ∇uh · ∇vh −

∫
Γ

{κ∇uh · n}[vh] −
∫

Γ

{κ∇vh · n}[uh] + γ
∑

T∈T Γ
h

∫
ΓT

γT [uh][vh],

lh(vh) =

∫
Ω

f vh +

∫
Γ

g{vh}∗,

where γ > 0 is a stabilisation parameter and where the coefficients (αin, αex, γT ) are defined
as follows:

αin =
κex|T in|

κex|T in| + κin|T ex|
, αex =

κin|T ex|

κex|T in| + κin|T ex|
, γT =

κinκex|ΓT |

κin|T ex| + κex|T in|
.

We use here above the expressions proposed in [2, 1], which ensure robustness of the method
with respect to both the mesh-interface geometry and to the diffusion parameters, under stan-
dard assumptions on the interface.

Then the discrete problem reads:

uh ∈ Wh, ah (uh, vh) = lh(vh), ∀vh ∈ Wh. (2)

It is well-known cf. [6] that (2) is consistent and stable for γ sufficiently large, with respect
to the norm:

‖v‖2h =
∑

i=in,ex

‖κ1/2∇v‖20,Ωi +
∑

T∈T Γ
h

|ΓT |‖{κ∇v · n}‖20,ΓT
+

∑
T∈T Γ

h

γT ‖[v]‖20,ΓT
. (3)
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One can improve the robustness with respect to the previous norm by replacing |ΓT | in front

of {κ∇v · n} by the weight
|ΓT |

γT hT
, see [5]. This classically yields the a priori error estimate:

‖u − uh‖h ≤ C inf
vh∈Wh

‖u − vh‖h.

In the case of a smooth solution u = (uin, uex) ∈ H2(Ωin) × H2(Ωex), one retrieves an
optimal convergence rate O(h) by using the global interpolation operator Lh =

(
Lin

h ,L
ex
h

)
:

H2(Ωin) × H2(Ωex) −→ W in
h ×Wex

h , defined as follows:

v|Ωi −→ Eiv|Ω −→ (L∗h ◦ E
i)v|Ω −→ (L∗h ◦ E

i)v|Ωi
h

=: Li
hv, i = in, ex. (4)

Here above, Ei denotes a continuous extension operator from H2(Ωi) to H2(Ω) and L∗h is the
Lagrange interpolation operator associated to the mesh Th of Ω. See [6] for more details.

§3. Extension to nonconforming finite elements

In what follows, we are interested in the discretisation of the interface problem (1) by Crouzeix-
Raviart nonconforming elements [4]. We recall that their degrees of freedom are given by
1
|S |

∫
S v for any side S ∈ Sh, such that the finite element space associated to the triangulation

T i
h (of sides Si

h) is defined by

V i
h =

{
ϕ ∈ L2(Ωi

h); ϕ|T ∈ P1, ∀T ∈ T i
h,

∫
S

[
ϕ
]
S = 0, ∀S ∈ Si

h

}
, i = in, ex,

where [·]S denotes the jump across S ; on a boundary side, the jump is equal to the trace.
As in the conforming case, we introduce the product space Vh = V in

h × Vex
h and we define

a global interpolation operator Ih = (Iin
h ,I

ex
h ) following the previous approach (4). This

ensures
∫

S (Ii
hv − v) = 0 on any side S ∈ Si

h, but this property clearly does not hold on the
segments of cut sides: ∫

S
Ii

hv ,

∫
S
v, ∀S ∈ Si,cut

h i = in, ex.

Consequently, we cannot estimate the consistency error on the cut sides:∑
i=in, ex

∑
S∈Si,cut

h

∫
S
κi∇u · nS [vh]S .

To overcome this difficulty, we propose in this paper to add some stabilisation terms in
order to balance the previous consistency error.
Remark 1. Another solution, which consists in modifying the basis functions on the cut cells
such that the corresponding interpolation operator satisfies

∫
S (Ii

hv − v) = 0 on any cut side
S ∈ Si,cut

h , was proposed in [5].
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For this purpose, we first define the jump and weighted mean of a piecewise smooth,
discontinuous function v on a segment S ∈ Si,cut

h of a cut side. For an interior segment S ,
we denote by T l and T r the two neighbour cells such that the normal nS is oriented from T l

towards T r. We denote then v|T l = vl, v|T r = vr and we set

[v]S = vl − vr, {v}S = βlvl + βrvr,

where the weights βl, βr satisfy βl + βr = 1 and 0 < βl, βr < 1. The same definition of the
jump is employed on a side completely contained in Ωi. If S is situated on ∂Ω, then the jump
and the mean coincide with the trace. We refer to Figure 2 for additional notation.

T ex,l

Γ

T ex,r

T in,rT in,l

S ∈ Sex,cut
h

S ∈ S in,cut
h

Figure 2: Notations related to adjacent cut cells.

We next introduce the bilinear forms:

Ah (uh, vh) = −
∑

i=in,ex

∑
S∈Si,cut

h

∫
S
{κ∇uh · nS }S [vh]S + {κ∇vh · nS }S [uh]S ,

Ji
h (uh, vh) =

∑
S∈Si,cut

h

∫
S
δi

S [uh]S [vh]S ,

Jh (uh, vh) =
∑

i=in,ex

δi Ji
h (uh, vh) ,

where δi > 0 (i = in, ex) are stabilisation parameters. These terms are similar to those
of Nitsche’s method, except that they are written on the segments of cut sides and that the
coefficients δi

S as well as the weights βl, βr are different. We take:

βl =
|T i,l|

|T i,l| + |T i,r |
, βr =

|T i,r |

|T i,l| + |T i,r |
, δi

S =
κi|S |∣∣∣T l,i
∣∣∣ +

∣∣∣T r,i
∣∣∣ (5)

and we consider the discrete problem:

uh ∈ Vh, (ah + Ah + Jh) (uh, vh) = lh (vh) , ∀vh ∈ Vh. (6)

§4. Stability and error estimates

In what follows, we are interested in the well-posedness of (6) and in error bounds.
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4.1. Stability

The discrete space Vh is equipped with the norm

[[v]]2 = ‖v‖2h + Jin
h (v, v) + Jex

h (v, v) .

Lemma 1. For all S ∈ Si,cut
h (i = in, ex), one has:

‖{κ∇uh · ns}S ‖
2
0,S ≤ δ

i
S

(
||κ1/2∇uh||

2
0,T i,l + ||κ1/2∇uh||

2
0,T i,r

)
.

Proof. Using that κ∇uh is piecewise constant, 0 < βl, βr < 1 and βl + βr = 1, it follows by
Cauchy-Schwarz inequality that∫

S
{κ∇uh · ns}

2
S ≤ β

l
∫

S
|κ∇uh|

2
T i,l + βr

∫
S
|κ∇uh|

2
T i,r =

βl|S |
|T i,l|

∫
T i,l
|κ∇uh|

2 +
βr |S |
|T i,r |

∫
T i,r
|κ∇uh|

2.

Thanks to the expressions (5), we get that∫
S
{κ∇uh · ns}

2
S ≤

|S |
|T i,l| + |T i,r |

∫
T i,l∪T i,r

|κ∇uh|
2 = δi

S

∫
T i,l∪T i,r

|κ1/2∇uh|
2,

which proves the lemma. �

This result immediately implies the uniform continuity of the bilinear form Ah(·, ·). For
γ, δin and δex sufficiently large, we deduce in a standard way (by using Young’s inequality)
the uniform stability of the approximation method:

(ah + Ah + Jh)(vh, vh) ≥ C[[vh]]2, ∀vh ∈ Vh.

Therefore, problem (6) is well-posed.
In order to estimate the a priori error, we use Strang’s lemma:

[[u − uh]] ≤ C
(

inf
vh∈Vh

[[u − vh]] + sup
vh∈Vh

(ah + Ah + Jh)(u − uh, vh)
[[vh]]

)
.

The first term represents the interpolation error and the second one, the consistency error due
to the nonconformity of the approximation.

In what follows, we bound each term under a standard regularity assumption.

4.2. Consistency error

Lemma 2. Assume (uin, uex) ∈ H2(Ωin) × H2(Ωex). Then one has that

(ah + Ah + Jh) (u, vh) − lh(vh) =
∑

S∈Snc
h

∫
S
κ∇u · nS [vh]S , ∀vh ∈ Vh.
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Proof. Note first that for (uin, uex) ∈ H2(Ωin) × H2(Ωex), the trace of ∇ui on a given side
is well-defined and moreover, [u]S = 0 for any segment S ∈ Si,cut

h (as well as on any side
completely contained in Ωi). This implies Jh(u, vh) = 0 for any vh ∈ Vh.

An integration by part yields, for all vh ∈ Vh:

ah(u, vh) − lh(vh) =
∑

S∈Snc
h

∫
S
κ∇u · nS [vh]S +

∑
i=in, ex

∑
S∈Si,cut

h

∫
S
κ∇u · nS [vh]S .

Noting that [κ∇u · nS ]S = 0 for any S ∈ Si,cut
h and therefore,

Ah(u, vh) = −
∑

i=in,ex

∑
S∈Si,cut

h

∫
S
{κ∇u · nS }S [vh]S = −

∑
i=in,ex

∑
S∈Si,cut

h

∫
S
κ∇u · nS [vh]S ,

we immediately get the announced result. �

Then the consistency error estimate is immediate.

Lemma 3. Assume (uin, uex) ∈ H2(Ωin)×H2(Ωex). There exists a constant C > 0 independent
of the discretisation and of the interface, such that

sup
vh∈Vh

(ah + Ah + Jh)(u − uh, vh)
[[vh]]

≤ C h |κ1/2u|2,Ωex∪Ωin .

Proof. We use the discrete problem (6) and the previous Lemma to write, for any vh ∈ Vh:

(ah + Ah + Jh) (u − uh, vh) =
∑

S∈Snc
h

∫
S
κ∇u · nS [vh]S =

∑
S∈Snc

h

∫
S
κ∇(u − Ihu) · nS [vh −CS ]S ,

where Ih is the usual Crouzeix-Raviart interpolation operator; CS denotes any constant on
S . The last equality holds true because [CS ]S = 0,

∫
S [vh]S = 0 on any non-cut side S and

κ∇Ihu · nS is constant on S . The rest of the proof is classical, cf. for instance [3]. �

4.3. Interpolation error
We assume here, for the sake of simplicity, that ΓT is a segment for all T ∈ T Γ

h and that:

∃C < 1 s.t. |S | ≤ C|S̃ |, ∀S ∈ Si,cut
h (i = in, ex), (7)

where S̃ is the whole side containing the cut segment S ; the general case can be found in [5].

Lemma 4. Assume (uin, uex) ∈ H2(Ωin) × H2(Ωex) and (7). There exists a constant C > 0
independent of the discretisation such that

[[u − Ihu]] ≤ C h |κ1/2u|2,Ωex∪Ωin .

Proof. The norm ‖u − Ihu‖h can be bounded similarly to the case of conforming finite ele-
ments, see [6] for the proof. We only focus here on the additional terms

Ji
h(u − Ii

hu, u − Ii
hu) =

∑
S∈Si,cut

h

δi
S ‖[u − I

i
hu]S ‖

2
0,S , i = in, ex. (8)
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Let S ∈ Si,cut
h and let S̃ ∈ Si

h the whole side containing the segment S and T l, T r the
neighbour cells. The trace inequality gives

‖[u − Ii
hu]S ‖0,S ≤‖[Eiu − Ih ◦ E

iu]S ‖0,S̃

≤c|S̃ |1/2
( 1
hT r
‖Eiu − Ih ◦ E

iu‖0,T r + |Eiu − Ih ◦ E
iu|1,T r

+
1

hT l
‖Eiu − Ih ◦ E

iu‖0,T l + |Eiu − Ih ◦ E
iu|1,T l

)
.

The optimal approximation properties of the Crouzeix-Raviart interpolation operatorIh yield:

‖[u − Ii
hu]S ‖0,S ≤ c|S̃ |1/2 h |Eiu|2,T r∪T l .

Using next the expression of δi
S , we deduce that

(δi
S )1/2‖[u − Ii

hu]S ‖0,S ≤c max{

√
|S ||S̃ |
|T i,l|

,

√
|S ||S̃ |
|T i,r |

} h (κi)1/2|Eiu|2,T l∪T r .

The hypothesis (7) implies that |S |hT l ≤ c|T i,l|, |S |hT r ≤ c|T i,r and since |S̃ | ≤ max{hT l , hT r },
it follows that

(δi
S )1/2‖[u − Ii

hu]S ‖0,S ≤ C max{hT l , hT r }(κi)1/2|Eiu|2,T l∪T r .

Finally, thanks to the continuity of the extension operator Ei : H2(Ωi) −→ H2(Ω), we get:

Ji
h(u − Ii

hu, u − Ii
hu)1/2 ≤ C h |κ1/2u|2,Ωi , i = in, ex

and we obtain the desired estimate by summing upon i. �

§5. Numerical experiments

To illustrate the previous results, we consider the same test-case as in [6], where it was discre-
tised by NXFEM with conforming finite elements. The exact solution on Ω =]−1, 1[×]−1, 1[
is given by:

u (x, y) =
r2

κin if r ≤ r0, u (x, y) =
r2

κex −
r2

0

κex +
r2

0

κin if r > r0,

with r =
√

x2 + y2 and r0 = 3/4, see Figure 3(a). The diffusion coefficient is highly discon-
tinuous across Γ: κin = 1 and κex = 103. The values of the stabilisation parameters are γ = 10,
δin = δex = 100. The non-homogeneous Dirichlet boundary condition induces some trivial
modifications of the method; it is treated in the code by Nitsche’s method.

Table 1 shows the computed errors and orders of convergence under mesh refinement,
with N representing the number of cells. We obtain the expected rates, that is O(h) in the
energy norm [[·]] and O(h2) in the L2 norm. In Figure 3(b), we have represented these con-
vergence rates in a log-log scale.
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N energy norm ratio L2-norm ratio
64 3.45e-01 —- 2.83e-02 —-
256 1.68e-01 2.05 6.27e-03 4.52

1024 8.03e-02 2.09 1.41e-03 4.45
4096 3.95e-02 2.03 3.38e-04 4.17

16384 1.97e-02 2.01 8.21e-05 4.11
65536 9.82e-03 2.00 2.02e-05 4.06

Table 1: Convergence in energy and L2 norms with respect to mesh refinement.

κin Ω

Γ

Ωin

Ωex

κex

(a) Domain of the test-case. (b) L2−norm and energy norm convergence rates.

Figure 3: Computational domain and convergence rates in log-log scale.

(a) Exact solution. (b) Computed solution (N = 65536).

Figure 4: Comparison between exact and computed solutions.
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Figure 5: Mesh (1024 elements).
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