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Abstract. For some structured matrices, such as SBD matrices or nonsingular M–matrices,
some results on intervals of these matrices are presented.
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§1. Introduction

A matrix with all its principal minors positive is called a P–matrix. Interval results (i.e.,
results for intervals of matrices) for P–matrices and their subclasses have been obtained in
the last decades. For instance, see [8] for P–matrices and the usual entrywise ordering. An
important subclass of P–matrices with applications to many fields (such as Statistics, Approx-
imation Theory, Combinatorics, Economy, or Computer Aided Geometric Design) is given
by the nonsingular totally positive matrices. Let us recall that a matrix is called totally pos-
itive (TP) if all its minors are nonnegative. If they are all positive, then the matrix is called
strictly totally positive (STP). Interval results for TP matrices with the checkerboard ordering
can be seen in [7, 9, 1].

The class of SBD matrices is a subclass of P–matrices that contains nonsingular TP ma-
trices as well as their inverses [3, 4]. In Section 2, we present this class of SBD matrices and
some preliminary results. In Section 3, we provide some interval results for SBD matrices
with an ordering generalizing checkerboard ordering. We also present the class of SSBD ma-
trices, which contains STP matrices and their inverses. Some important properties of these
matrices are derived. An interval result for SSBD matrices is also provided.

Finally, in Section 4 we consider another important subclass of P–matrices: the nonsin-
gular M–matrices. After defining a partial ordering for these matrices, an interval result is
included.

§2. Preliminary results

Given k ∈ {1, 2, . . . , n} let Qk,n be the set of increasing sequences of k positive integers less
than or equal to n. Given α = (α1, . . . , αk) ∈ Qk,n, we define its dispersion number by
d(α) = αk −α1 − (k− 1). Observe that if d(α) = 0 then α consists of k consecutive integers. If
α, β ∈ Qk,n, we denote by A[α|β] the k×k submatrix of A containing rows numbered by α and
columns numbered by β. Let us recall that submatrices A[α] := A[α|α] are called principal
submatrices. We also define a principal minor as the determinant of a principal submatrix,
det A[α]. We also denote by αc the increasingly rearranged {1, . . . , n} \ α. Then, we denote
A(α|β) := A[αc|βc].

Let k be a positive integer and let us consider a k–vector of signs ε = (ε1, . . . , εk) with
ε j ∈ {±1} for all j ≤ k, ε is called a signature. Given a signature sequence ε = (ε1, . . . , εn−1),
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let us define a diagonal matrix Kε = diag(k1, . . . , kn) with ki satisfying

k1 = 1, ki ∈ {−1, 1} ∀ i = 2, . . . , n, ki = ε1 · · · εi−1 ∀ i = 2, . . . , n. (1)

Observe that
kiki+1 = εi, ∀i = 1, . . . , n − 1. (2)

Let A be a nonsingular n×n matrix. Suppose that we can write A as a product of bidiagonal
matrices

A = L(1) · · · L(n−1)DU(n−1) · · ·U(1), (3)

where D = diag(d1, . . . , dn), and, for k = 1, . . . , n − 1, L(k) and U(k) are unit diagonal lower
and upper bidiagonal matrices respectively, with off-diagonal entries l(k)

i := (L(k))i+1,i and
u(k)

i := (U(k))i,i+1, (i = 1, . . . , n − 1) satisfying

1. di , 0 for all i,

2. l(k)
i = u(k)

i = 0 for i < n − k,

3. l(k)
i = 0⇒ l(k−s)

i+s = 0 for s = 1, . . . , k − 1 and
u(k)

i = 0⇒ u(k−s)
i+s = 0 for s = 1, . . . , k − 1.

Then we denote (3) by BD(A), a bidiagonal decomposition of A.
Let us consider a class of matrices with a signed bidiagonal decomposition presented

in [4].

Definition 1. Given a signature ε = (ε1, . . . , εn−1) and a nonsingular n × n matrix A, we say
that A is an SBD matrix with signature ε if there exists a BD(A) such that

1. di > 0 for all i,

2. l(k)
i εi ≥ 0, u(k)

i εi ≥ 0 for 1 ≤ k ≤ n − 1 and n − k ≤ i ≤ n − 1.

We say that A is an SBD matrix if it is SBD for some signature ε.

By Proposition 4.1 of [4], all the principal minors of SBD matrices are positive and then
SBD matrices form a subclass of P–matrices.

It is possible to characterize SBD matrices in terms of nonsingular TP matrices, as the
following result shows (see Theorem 3.1 of [4]).

Theorem 1. Let A = (ai j)1≤i, j≤n be a nonsingular matrix and let ε = (ε1, . . . , εn−1) be a
signature sequence. Then A is SBD with signature ε if and only if KεAKε = |A| := (|ai j|)1≤i, j≤n

is TP, where Kε is a diagonal matrix satisfying (1).

Observe that the class of SBD matrices contains nonsingular TP matrices as well as their
inverses. In fact, by Corollary 3.3 of [4], A−1 is TP if and only if A is SBD with signature
(−1, . . . ,−1). A detailed study of SBD matrices, with many properties, accurate computations
and relation with other classes of important matrices, can be found in [3] and [4].

Let us recall that <,≤ is used to denote the usual entrywise partial ordering on matrices;
that is, given A = (ai j)1≤i, j≤n and B = (bi j)1≤i, j≤n we say that A < B (resp., A ≤ B) if ai j < bi j

(resp., ai j ≤ bi j) for all i, j ∈ {1, . . . , n}. We also write 0 < A (resp., 0 ≤ A) if 0 < ai j (resp.,
0 ≤ ai j) for all i, j ∈ {1, . . . , n}. As we can see in Example 3.2.1 of [6], if we have 0 < A < B
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two TP matrices, then not all matrices C such that A ≤ C ≤ B need to be TP. A similar
comment can be applied to SBD matrices. In fact, let us consider

A =

(
2 1
1 1

)
, B =

(
4 5
5 13

)
.

Observe that A and B are TP and so SBD. We have that

C =

(
3 4
4 5

)
satisfies A < C < B but C is not TP and, by Theorem 1, it is not SBD either.

In order to obtain intervals of TP matrices we need to define a different matrix order-
ing. Let us recall the checkerboard ordering (see [1], [6]). Let us denote the matrices
Jn = diag(1,−1, . . . , (−1)n−1) and A∗ := JnAJn. Then we have that A ≤∗ B if and only if
A∗ ≤ B∗.

In [1] we can find the following result for intervals of nonsingular TP matrices.

Theorem 2. Let A, B,Z ∈ Rn×n with A ≤∗ Z ≤∗ B. If A, B are nonsingular TP matrices, then
Z is nonsingular TP.

Let us observe that, as in the previous example, this ordering does not guarantee that
given two SBD matrices A, B such that A ≤∗ B, then all matrices C such that A ≤∗ C ≤∗ B
are SBD. Let us consider

A =

(
2 −1
−1 1

)
, B =

(
4 −5
−5 13

)
.

Observe that, by Theorem 1, A and B are SBD. Then

C =

(
3 −4
−4 5

)
satisfies A ≤∗ C ≤∗ B but C is not SBD again by Theorem 1.

Let us define a new matrix ordering that we can use to study intervals of SDB matrices.
Given A, B two n × n SBD matrices with the same signature ε, we consider a matrix Kε =

diag(k1, . . . , kn) satisfying (1). Let us denote A†ε := (JnKε)A(JnKε). Then we consider the
following matrix ordering: A ≤†ε B if and only if A†ε ≤ B†ε .

§3. Intervals of SBD and SSBD matrices

The following result extends Theorem 2 to the class of SBD matrices and uses the new order-
ing to determine the interval of matrices.

Theorem 3. Let A, B,Z ∈ Rn×n with A ≤†ε Z ≤†ε B. If A and B are SBD matrices with the
same signature ε, then Z is SBD with signature ε.

Proof. Let us consider the matrix Kε asociated with A and B, defined as in Theorem 1. Ob-
serve that, since Kε and Jn are diagonal matrices, we have that KεJn = JnKε and then, by
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hypothesis, we have that JnKεAKεJn ≤ JnKεZKεJn ≤ JnKεBKεJn. By Theorem 1, we know
that KεAKε and KεBKε are nonsingular TP matrices. Thus, we can apply Theorem 2 (using
checkerboard ordering) for TP matrices and we conclude that the matrix KεZKε is nonsingu-
lar TP. Then, again by Theorem 1, Z is SBD with signature ε. �

Finally, let us consider the inverse of a TP matrix, which is a particular case of SBD
matrix with signature ε = (−1, . . . ,−1). Since ≤†ε coincides for this ε with the usual ordering
≤ because Kε = Jn, we deduce the following corollary.

Corollary 4. Let A, B,Z ∈ Rn with A ≤ Z ≤ B. If A−1, B−1 are TP, then Z−1 is TP.

Let us now study intervals of another class of matrices: strictly SBD matrices. An n × n
matrix A is said to be strictly SBD, or SSBD, with signature ε if there exists a matrix Kε =

diag(k1, . . . , kn) satisfying (1) such that KεAKε is STP. We say that A is SSBD if it is SSBD
for some signature ε.

Now, let us recall formula (1.32) of [2],

det(JnA−1Jn)[α | β] =
det A(β | α)

det A
, for α, β ∈ Qkn . (4)

Let us also recall that, by Theorem 3.3 of [2], an n × n matrix A is TP if and only if JnA−1Jn

is TP. The following lemma extends this result to STP matrices and it is a consequence of
formula (4).

Lemma 5. Let A be an n × n nonsingular matrix. Then A is STP if and only if JnA−1Jn is
STP.

The following result and Corollary 7 extend Theorem 3.1 and Corollary 3.3 of [4], valid
for SBD matrices, to SSBD matrices. The class of SSBD matrices is closed for the inversion
of matrices, as the following result shows.

Proposition 6. Let A be an n × n nonsingular matrix. Then A is SSBD with signature ε =

(ε1, . . . , εn−1) if and only if A−1 is SSBD with signature −ε = (−ε1, . . . ,−εn−1).

Proof. Recall that, by definition of SSBD matrices, A is SSBD with signature ε if and only
if KεAKε (= |A|) is STP, where Kε = diag(k1, . . . , kn) is a matrix satisfying (1). By Lemma 5,
|A| is STP if and only if Jn|A|−1Jn is STP. Observe that (KεAKε)−1 = |A|−1 = KεA−1Kε and so,
A−1 = Kε|A|−1Kε. Thus, we have K̂εA−1K̂ε = Jn|A|−1Jn = |A−1|, where K̂ε := KεJn = JnKε =

diag(k1,−k2, . . . , (−1)n−1kn) and then, by Theorem 1, A−1 is SSBD with signature −ε if and
only if Jn|A|−1Jn is STP. �

Taking into account that A is STP if and only if it is SSBD with signature (1, . . . , 1) and
Proposition 6, we can deduce that inverses of STP matrices are SSBD matrices.

Corollary 7. Let A be a nonsingular matrix. If A−1 is STP, then A is SSBD with signature
(−1, . . . ,−1).

By Theorem 4.3 of [11] we know that STP matrices are characterized by a (unique)
bidiagonal decomposition BD(A) such that

1. di > 0 for all i ≤ n,

2. l(k)
i > 0, u(k)

i > 0, k = 1, . . . , n − 1, i = n − k, . . . , n − 1.
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The following result characterizes SSBD matrices in terms of its bidiagonal decomposi-
tion.
Proposition 8. Let A be an n × n nonsingular matrix. Then A is SSBD with signature ε =

(ε1, . . . , εn−1) if and only if there exists a BD(A) such that
1. di > 0 for all i ≤ n,

2′. εil
(k)
i > 0, εiu

(k)
i > 0, k = 1, . . . , n − 1, i = n − k, . . . , n − 1.

Proof. A is SSBD with signature ε if and only if KεAKε is STP, where Kε = diag(k1, . . . , kn)
satisfies (1). As we have seen above, we have that KεAKε is STP if and only if it has a
bidiagonal decomposition KεAKε = L̂(1) · · · L̂(n−1)D̂Û(n−1) · · · Û(1), with D̂ and L̂(k), Û(k), for
all k ≤ n − 1, satisfying conditions 1 and 2 above.

Observe that we have

A = KεL̂(1) · · · L̂(n−1)D̂Û(n−1) · · · Û(1)Kε

= (KεL̂(1)Kε) · · · (KεL̂(n−1)Kε)(KεD̂Kε)(KεÛ(n−1)Kε) · · · (KεÛ(1)Kε).

If we denote, for all k = 1, . . . , n − 1, L(k) := KεL̂(k)Kε, U(k) := KεÛ(k)Kε and D := KεD̂Kε =

D̂, it is easy to check that condition 2 (for L̂(k), Û(k) and KεAKε) and condition 2′ (for L(k),U(k)

and A) are equivalent because kiki+1 = εi for all i = 1, . . . , n − 1 by (2). Thus, the result
follows. �

The following lemma provides a formula for the sign of the minors of certain matrices.
Lemma 9. Let A be an n× n matrix, ε = (ε1, . . . , εn−1) a signature and Kε = diag(k1, . . . , kn)
a matrix satisfying (1). Then

det(KεAKε)[α | β] =

 k∏
i=1

max(αi−1,βi−1)∏
j=min(αi,βi)

ε j

 det A[α | β] (5)

for all α, β ∈ Qk,n and k ≤ n.

Proof. Let us consider the matrix Kε = diag(k1, . . . , kn) and the sequences α = (α1, . . . , αk),
β = (β1, . . . , βk). Observe that we have

det(KεAKε)[α | β] = (kα1 · · · kαk )(kβ1 · · · kβk ) det A[α | β]
= (kα1 kβ1 · · · kαk kβk ) det A[α | β]. (6)

Since Kε = diag(k1, . . . , kn) satisfies (1), we can write, for any i ∈ {1, . . . , k},

εmin(αi,βi) · · · εmax(αi−1,βi−1) = (kmin(αi,βi)kmin(αi,βi)+1)(kmin(αi,βi)+1kmin(αi,βi)+2)
· · · (kmax(αi−1,βi−1)kmax(αi,βi))

= kmin(αi,βi)kmax(αi,βi) = kαi kβi .

Taking into account the previous formula and (6), we can derive that

det(KεAKε)[α | β] =

k∏
i=1

εmin(αi,βi) · · · εmax(αi−1,βi−1),

and so, formula (5) holds. �
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The following result characterizes SSBD matrices in terms of a reduced number of mi-
nors, extending Theorem 4.1 of [10] for STP matrices to the class of SSBD matrices. The
proof of this proposition is a consequence of Theorem 4.1 of [10] and Lemma 9.

Proposition 10. Let A be an n × n matrix. Then A is SSBD with signature ε = (ε1, . . . , εn−1)
if and only if for every pair of sequences α = (α1, . . . , αk), β = (β1, . . . , βk) ∈ Qk,n (k ≤ n)
with d(α) = d(β) = 0 such that either α1 = 1 or β1 = 1, we have k∏

i=1

max(αi−1,βi−1)∏
j=min(αi,βi)

ε j

 det A[α | β] > 0. (7)

Intervals of strictly totally positive matrices were considered in Theorem 3.6 of [13] (see
also [7]).

Theorem 11. Let A, B,Z ∈ Rn×n with A ≤∗ Z ≤∗ B. If A and B are strictly TP matrices, then
Z is a strictly TP matrix.

The following result extends Theorem 11 to the class of SSBD matrices. The proof of
this result is analogous to that of Theorem 3 and it uses the definition of SSBD matrices and
Theorem 11.

Theorem 12. Let A, B,Z ∈ Rn×n with A ≤†ε Z ≤†ε B. If A and B are SSBD with the same
signature ε, then Z is SSBD with signature ε.

§4. Intervals of M–matrices

Intervals of other classes of matrices have also been considered. For instance, in [8] intervals
of P–matrices and related matrices were considered. In this section we study intervals of a
different class of matrices: the well-known nonsingular M–matrices, which appear in many
applications in fields such as economy, linear programming, dynamical systems or biology
(see [5]). Nonsingular M–matrices also form a subclass of P–matrices. Let us recall that
the set of n–square matrices with nonpositive off–diagonal entries is denoted by Zn := {A =

(ai j)1≤i, j≤n | ai j ≤ 0 if i , j}. A nonsingular matrix A ∈ Zn is an M–matrix if A−1 has
nonnegative entries, A−1 ≥ 0 (see, for instance, Theorem 2.5.3 of [12]). An n × n matrix is a
Z–matrix if A ∈ Zn.

The following result deals with intervals of M–matrices.

Theorem 13. Let A, B,Z ∈ Rn×n with JnA−1Jn ≤ JnZ−1Jn ≤ JnB−1Jn and Z a nonsingular
Z–matrix. If A and B are nonsingular M–matrices, then Z is a nonsingular M–matrix.

Proof. Let us denote JnA−1Jn = (âi j)1≤i, j≤n, JnB−1Jn = (b̂i j)1≤i, j≤n, JnZ−1Jn = (ẑi j)1≤i, j≤n.
Since A = (ai j)1≤i, j≤n, B = (bi j)1≤i, j≤n are M–matrices, we know that A−1, B−1 ≥ 0. Thus,

it can be checked that (−1)i+ jâi j, (−1)i+ jb̂i j ≥ 0, for all i, j ∈ {1, . . . , n}.
Observe that, since JnA−1Jn ≤ JnZ−1Jn ≤ JnB−1Jn by hypothesis, we have that (−1)i+ jẑi j ≥

0 for all i, j ∈ {1, . . . , n}. Thus, 0 ≤ Z−1.
�
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