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PROGRESSIVE ORTHOGONAL
WAVELETS: A REVIEW

Florin Avram, Anca Deliu and Baiqiao Deng

Abstract. The concept of progressive wavelets, or wavelets supported on a half-line, has
been introduced a long time ago by Björn Jawerth, for the purpose of analyzing moving
images. Subsequently, it has fallen somewhat in between the fields of wavelet analysis
and signal processing. Our paper is an attempt to unify these two strands of literature
and review the current state of knowledge on this topic, with accent on splines based
examples.
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§1. Introduction

Progressive wavelets. In this paper we review and reexamine some results of [9, 3, 4] on a
class of wavelets proposed by Björn Jawerth.

Definition 1. Progressive orthogonal wavelets are real valued functions φ(x) ∈ L2(R+), with
φ(x) = 0 for x < 0 satisfying:

1. The L2 orthogonality of integer translates φ(x − k), k ∈ Z.

2. A functional equation:

σ(x) = φ(x) −
N−1∑
k=1

αkφ(x − k) =

I −
N−1∑
k=1

αkT
k

 φ(x), (1)

where α1, α2, ..., αN−1 are real numbers, N is an integer, I denotes the identity operator,
and T denotes the translation operator defined by

T f (x) = f (x − 1).

Note that

φ(x) = σ(x) x in [0, 1],
φ(x) = σ(x) + α1σ(x − 1) x in [1, 2],
φ(x) = σ(x) + α1σ(x − 1) + (α2 + α2

1)σ(x − 2) x in [2, 3],
φ(x) = σ(x) + α1σ(x − 1) + (α2 + α2

1)σ(x − 2) + (α3 + 2α2α1 + α3
1)σ(x − 3) x in [3, 4],

...

φ(x) = σ(x) + β1σ(x − 1) + β2σ(x − 2) + ... + βnσ(x − n) x in [n, n + 1].
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Explicit expressions for the coefficients βn are given in Theorem 4. The fact that φ(x) is given
by a combination involving more and more of the translates of σ to the right when x increases
suggests the name "progressive function". Since φ(x) is completely determined by σ, we call
σ an updating function. Such a function may be used to profit in designing wavelets via
multiresolution analysis [3, 4].

Solving the transfer functional equation (1). Looking for solutions of (1) such that
φ(x), φ(x − 1), ... are orthogonal on L2(R) is formally equivalent to a MA (moving averages)
model of time series, from the point of view of "operator calculus" based on the operator T .
The formal solution of (1) is:

φ(x) = (α(T ))−1 σ(x), where α(z) = 1 −
N−1∑
k=1

αkzk (2)

will be called the transfer function. There are several ways to make sense out of this, as long
as α(z) , 0 on the unit circle |z| = 1, by the famous Wiener Lemma (see [17, 12, 14, 7]).
Definition 2. A Laurent series α(z) =

∑
k αkzk is said to belong to the Wiener class W, if it

has coefficient sequence αk in `1(Z), and if α(z) , 0, for all z on the unit circle |z| = 1 (see [1,
p. 140]).

Alternatively, if we put z = e−it and α̃(t) = α(z) = α(e−it) =
∑

k αke−ikt, t ∈ [0, 2π) we
say that the periodic function α̃(t) is in the Wiener class W if its Fourier sequence αk is in
`1(Z), and if α(t) , 0 for all t ∈ [0, 2π) (see [7, p.179]). Note that if α̃(t) ∈ W, then α̃(t) is
continuous on [0, 2π), since its Fourier series converges absolutely.
Lemma 1. a) Wiener’s Lemma. If α(z) ∈ W, then there exists β(z) = 1

α(z) =
∑

k∈N βkzk ∈ W,
for some sequence {βk} ∈ `1( Z).

b) Sylvester’s Lemma. If α(z) = (1 − λ1z)(1 − λ2z)...(1 − λnz) = 1 + α1z + ... + αnzn, is a
polynomial, then {βk} satisfy the recurrence

α(T )β j = 0, j ≥ 1, β0 = 1, βi = 0,∀i < 0,⇔
n∑

k=0

αkβ j−k = 0, j ≥ 1, β0 = 1, βi = 0,∀i < 0,

where T (β j) = β j−1 and α0 = 1. Moreover {β j} are given explicitly by the Newton divided
differences:

β j = (λ j+n−1)[λ1,λ2,....λn] :=
n∑

i=1

λ
j+n−1
i∏

k,i(λi − λk)
(3)

Furthermore, the solution for the nonhomogeneous recurrence

α(T )xk = εk, k ≥ 1,

is xk =
∑k−1

j=0 β jεk− j. βk is called the "fundamental solution"of the operator α(T )�
For α(z) ∈ W, one may

1. Apply Fourier transform on both sides of (1) and solve for φ̂(ξ), yielding

φ̂(ξ) =
σ̂(ξ)
α(e−iξ)

= β(e−iξ)σ̂(ξ) =

 ∞∑
k=0

βke−ikξ

 σ̂(ξ). (4)
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2. Or, with N finite, one may factor α(z) as in Lemma 1 b), and develop β(z) = 1/α(z) in
a power series

∑∞
k=0 βnzn, using partial fractions. The formal result

φ(x) =

∞∑
k=0

βkσ(x − k) (5)

converges for α(z) ∈ W by Wiener’s Lemma.
Remark 1. A further step, already investigated in [4], is to consider analytic scaling symbols
s(z). In this paper we restrict ourselves to the easier polynomial case, since here we may
exploit the power series expansion of reciprocals of polynomials due to Sylvester (3), and
that makes it possible to establish a relation between the scaling symbol f (z) of φ(x) and α(z)
– see (15) below.

Refinable updating functions. In this paper we suppose that the updating function sat-
isfies a two scale refinement equation

1
2
σ(

x
2

) =

N∑
j=0

s jσ(x − j)⇔ σ̂(w) = s(e−iw/2)σ̂(w/2). (6)

Following [5], we assume that the polynomial symbol

s(z) =

N∑
j=0

s jz j

has real coefficients, s0 > 0, sN > 0, all its roots are in the left half-plane z : Re(z) ≤ 0, at
least two of them in z : Re(z) < 0, and that s(−1) = 0, s(1) = 1. It follows then [5] that the
refinement equation (6) has a unique solution satisfying

∫ ∞
−∞

σ(x)dx = 1, and that σ(x) is
continuous, non-negative and has support in [0,N].
Example 1. In the special case s j ≥ 0,

∑
j s j = 1, the solution σ(x) of the refinement equation

(6) may be interpreted as the probability density function of an absolutely continuous random
variable X satisfying

2X L
= X + Y,

where X,Y are independent, and P(Y = j) = s j for j = 0, ...,N. The probability density of X
satisfies the equation (6).
Example 2. In the important special case s(z) = ( z+1

2 )N , σ(x) is the uniform B-spline BN of
degree N − 1 with knots 0, ...,N.

The autocorrelation function. For any σ ∈ L2(R), let us introduce the functions

[σ,σ](x) =

∫
R

σ(x + y)σ(y)dy, Cσ(z) =

N−1∑
n=−N+1

[σ,σ](n)zn (7)

called respectively autocorrelation function and autocorrelation symbol. By the Poisson sum-
mation formula [10, Thm.6.5.3], the autocorrelation function is related to σ by:∑

n∈Z

∣∣∣σ̂(ξ + 2πn)
∣∣∣2 =

∑
n∈Z

[σ,σ](n)e−inξ = Cσ(e−iξ). (8)
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The following orthogonality condition for translates of a scaling function can be found in
many references – see for example [11, Thm 5].

Theorem 2.

a) For any function φ ∈ L2(R), {φ(x − n) : n ∈ Z} is an orthonormal family if and only if∑
n∈Z

|φ̂(ξ + 2πn)|2 = 1,∀ξ ∈ R§. (9)

b) Smith-Barnwell condition. If φ satisfies a two-scale refinement equation φ(x) = 2
∑

k fkφ(2x−
k) ⇐⇒ φ̂(2w) = f (e−iw)φ̂(w), where f (z) =

∑
k∈Z fkzk, then (9) is equivalent to

f (z) f (z−1) + f (−z) f (−z−1) = 1 =⇒ | f (e−iw)|2 + | f (−e−iw)|2 = 1.

Corollary 3. Let σ(x) be an updating function in L2(R) and let φ be a progressive function
in L2(R) satisfying (1) with N finite. Then, {φ(x − n) : n ∈ Z} is an orthonormal sequence if
and only if ∑

n∈Z

∣∣∣σ̂(ξ + 2πn)
∣∣∣2 = Cσ(e−iξ) =

∣∣∣α(e−iξ)
∣∣∣2 for any ξ ∈ R.

Proof. By Theorem 2 the translates {φ(x − n) : n ∈ Z} are orthonormal if and only if∑
n∈Z

∣∣∣̂φ(ξ + 2πn)
∣∣∣2 = 1 (10)

The corollary follows by equation 4 and the periodicity of α(e−iξ):∑
n∈Z

|σ̂(ξ + 2πn)|2

|α(e−i(ξ+2πn))|2
=

∑
n∈Z |σ̂(ξ + 2πn)|2

|α(e−i(ξ))|2
= 1 (11)

§2. Progressive wavelets with polynomial transfer function

We collect now several results on progressive wavelets scattered in the literature.

Theorem 4. Let σ(x) ∈ L2(R) with support [0,N] for a positive integer N. Assume that
[σ,σ](N − 1) , 0, where [σ,σ] denotes the autocorrelation of σ defined in (7), and let
C(z) = Cσ(z) denote the autocorrelation symbol. Then,

§As a corollary, the translates of any function φ⊥(x) obtained by

φ̂⊥(w) =
φ̂(w)√∑

k∈Z |̂φ(w + 2πk)|2

provide an orthonormal base of the space V0 generated by {φ(x − k), k ∈ Z}. Finally, applying a "mirror filter"
(−1)k p1−k yields a wavelet function ψ(x) =

∑
k(−1)k p1−kφ

⊥(2x− k) whose scaled translates enjoy also orthogonality
between the spaces Vn, n ∈ Z at different scales.
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1. If C(z) =
∑

n∈Z

∣∣∣σ̂(ξ + 2πn)
∣∣∣2 > 0, for |z| = 1, then there exists a unique canonical

spectral factor α(z) ∈ W satisfying

α(z)α(z−1) = C(z) =⇒ |α(z)|2 = C(z), z = e−iξ,

and having no roots in the interior of the unit circle |z| = 1. If z1, ...zN−1 are the roots
of C(z) outside the unit disc, |zk | > 1, k = 1, ...,N − 1, then

α(z) =
√

A
N−1∏
k=1

(z − zk) = α0 + α1z + ... + αN−1zN−1

where A = (−1)N−1[σ,σ](N − 1)/
∏N−1

k=1 z̄k > 0
Furthermore, αk = 0 for all k ≥ N in (1) and max{k : αk , 0} = N − 1.

2. As a consequence, the coefficients βk of the reciprocal series satisfy the "Yule-Walker
recursion" §

β j = α1β j−1 + α2β j−2 + ... + αN−2β j−N+2 + αN−1β j−N+1, β0 = 1, βi = 0,∀i < 0. (12)

Moreover the {β j} are given explicitly in terms of the roots of α(z) by (3), and decay
exponentially.

3. The {βn} are given explicitly in terms of the coefficients of α(z) by

βn =
∑

k1+2k2+3k3+...+mkm=n

(
k1 + k2 + · · · + km

k1, k2, ..., km

)
αk1

1 α
k2
2 α

k3
3 · · ·α

km
m , (13)

where ki ≥ 0 for 0 ≤ i ≤ N − 1 , m = n for 0 ≤ n ≤ N − 1, m = N − 1 for n > N − 1, and(
k1 + k2 + · · · + km

k1, k2, ..., km

)
=

(k1 + k2 + · · · + km)!
k1!k2! · · · km!

are the multinomial coefficients.

4. Let now φ(x) be defined by
φ(x) =

∑
n≥0

βnσ(x − n), (14)

where the convergence is uniform, since βn decay exponentially. Then, φ satisfies the
functional equation (1) and {φ(x − k) : k ∈ Z} is an orthonormal sequence.

5. If σ(x) is refinable with symbol s(z), then so is the function φ(x), with refinement equa-
tion

φ(x) = 2
∑

k

fkφ(2x − k),

§This recursion is used a lot in time series, for example when inverting the transfer function, in order to switch
from an autoregressive to a moving average model, or viceversa. Note that the famous Fibonacci recursion induced
by α(z) = 1 − z − z2, is not "acceptable/stationary" due to one root smaller z = 0.618034 < [−1, 1] which induces
non-exponential decay. Before using this model, this root must be replaced by its reciprocal.
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and scaling symbol f (z) given by

f (z) = s(z)
α(z)
α(z2)

⇔ F(z) := f (z) f (z−1) = s(z)s(z−1)
C(z)
C(z2)

= S (z)
C(z)
C(z2)

. (15)

Proof.

1. This follows by the well-known Fejér-Riesz lemma (see e.g. [8, p. 235], [13, p. 330]),
since C(z) ∈ W by (8) (i.e. C(e−inξ) > 0,∀ξ ∈ R). Furthermore, The leading term of
C(z) is [σ,σ](N − 1)zN−1. Comparing coefficients with the (possibly infinite) Laurent
series α(z)α(z−1), we conclude that max{k : αk , 0} = N − 1.

2. This widely used result (for example in signal processing and time series) may be easily
checked.

3. For a proof, see for example [4].

4. It is easy to check that (14) satisfies (1). Taking then Fourier transform, we find that

∑
n∈Z

|φ̂(ξ + 2πn)|2 =

∑
n∈Z

∣∣∣σ̂(ξ + 2πn)
∣∣∣2∣∣∣α(e−iξ)

∣∣∣2 = 1.

and hence the translates φ(x − k) are orthonormal by Corollary 3.

5. Following [9, (43)], let us look for a refinement relation φ̂(2w) = f (e−iw)φ̂(w). Using
φ̂(w) =

σ̂(w)
α(e−iw) and σ̂(2w) = s(e−iw)σ̂(w) we find

φ̂(2w) =
σ̂(2w)
α(e−2iw)

=
s(e−iw)
α(e−2iw)

σ̂(w) =
s(e−iw)α(e−iw)
α(e−2iw)

φ̂(w).

Putting z = e−iw yields (15)�

§3. Linear B-spline progressive wavelets

Recall that the linear B-spline/"roof" function

Λ(x) =


x if 0 ≤ x ≤ 1
2 − x if 1 ≤ x ≤ 2
0 otherwise

,

satisfies the two-scale relation

Λ(x) =
1
2

Λ(2x) + Λ(2x − 1) +
1
2

Λ(2x − 2), (16)

with scaling symbol

s(z) = (
1 + z

2
)2.
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For ν ≥ 0, let Vν
R be the closure in L2 of the subspace spanned by the functions Λν,k for

k ≥ 0, and let Wν
R be the orthogonal complement of Vν

R in Vν+1
R . We want to construct an

orthonormal basis of V0
R of the form {φ(x − k) : k ≥ 0}, with a progressive function φ defined

by φ(x) = CΛ(x) + αφ(x − 1), with constants α and C = Cα determined so that the set of
translates {φ(x − k)} is orthonormal.
Theorem 5. a) The functional equation

φ(x) = CΛ(x) + αφ(x − 1), (17)

admits a unique solution φ = φα ∈ L2(R) when |α| < 1. Moreover

φ(x) = C
∑
k≥0

αkΛ(x − k). (18)

b) The function φ satisfies the scaling equation

φ(x) = 2
∑
k≥0

fkφ(2x − k),

where the filter coefficients fk are given by

f0 = 1
4 , f1 = 1

2 −
α
4 f2 = 1

4 (1 − α),

f2k+1 = f2k+2 = 1−α
4 αk, for k ≥ 1

Proof a) The equation (17) can be written as

(I − αT )φ = CΛ,

and for |α| < 1, the unique solution φ is given by the Neumann series (18).
b) Write

φ(x) = (1 − αT )−1Λ(x) = (1 − αT )−1D2(2s(T ))Λ(x) = (1 − αT )−1D2(2s(T ))(1 − αT )φ(x),
(19)

where D2 is the dilation operator by 2, and s(z) = ( 1+z
2 )2. Using T kD2 = D2T

2k, we find that

φ(x) =
1
4

(
∑
k≥0

αkT k)D2(1 + T )2(1 − αT )φ(x)

=
1
4

D2(
∑
k≥0

αkT 2k)(1 + 2T + T 2)(1 − αT )φ(x)

=
1
4

D2(
∑
k≥0

αkT 2k)(1 + T (2 − α) + T 2(1 − 2α) − αT 3)φ(x)

=
1
4

D2(I + T (2 − α) +
∑
k≥1

T 2k(αk + αk−1(1 − 2α)) + T
∑
k≥1

T 2k(αk(2 − α) − αk−1α))φ(x)

=
1
4

D2(I + T (2 − α) +
∑
k≥1

T 2k(αk−1(1 − α)) + T
∑
k≥1

T 2k(αk(1 − α)))φ(x)

�
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Theorem 6. The family {φα(x − k) : k ≥ 0} is an orthonormal basis for V0
R if and only if

α = −2 +
√

3 and C2 = C2
α = −6α = 3

2 (1 + α2) .

Proof: It will be enough to determine α so that

< φα(x), φα(x − 1) >= 0

< φα(x), φα(x) >= 1.

By using that < Λ(x),Λ(x) >= 2
3 and < Λ(x),Λ(x − 1) >= 1

6 , these equations lead to a
system of equations in C and α

C2 1
6 + α = 0

C2 2
3 + C2α 1

6 = 1

with solution α = −2 +
√

3 ∈ (−1, 1) and C2 = C2
α = −6α.

Remark 2. We may verify that the symbol f (z) satisfies the Smith–Barnwell condition f (z) f (z−1)+
f (−z) f (−z−1) = 1 when α = −2 +

√
3.

§4. B-spline progressive wavelets

B-splines. The mth order cardinal B-splines Nm(x) are the densities of a sum of m indepen-
dent U[0, 1] r.v.’s. They are defined recursively by convolution:

Nm(x) = (Nm−1 ∗ N1) (x) =

∫
R

Nm−1(x − t)N1(t)dt,m ≥ 2 (20)

where N1 is the characteristic function of the unit interval [0, 1). The corresponding Fourier
transforms are ∫ ∞

−∞

e−iwtNm(t) = (
1 − e−iw

iw
)m = (eiw/2 sin(w/2)

iw/2
)m.

Nm is supported on [0,m], and is symmetric with respect to the center of its support m
2 ,

i.e.
Nm

(m
2

+ x
)

= Nm

(m
2
− x

)
.

The two scale symbol of Nm is sm(z) = ( 1+z
2 )m [2, (3.4.6)], and the corresponding two

scale relation is [2, (3.4.7)]

1
2

Nm(x/2) = 2−m
m∑

j=0

(
m
j

)
Nm(x − j) = sm(T )Nm(x).

The autocorrelation of the cardinal B-splines is

[Nm,Nm](x) =

∫
R

Nm(x + y)Nm (y)dy = N2m(m + x),m ≥ 1,

and the autocorrelation symbol (8) is:
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∑
n∈Z

∣∣∣∣N̂m(ξ + 2πn)
∣∣∣∣2 =

∑
n∈Z

[Nm,Nm](n) =
∑
n∈Z

N2m(m+n)e−inξ =

m−1∑
n=−m+1

N2m(m+n)e−inξ = E2m(e−iξ).

(21)
Here

Em(z) =

m−1∑
j=−m+1

Nm(m + j)z j,

is the well-known Euler-Frobenius Laurent polynomial [15].
The monic polynomials Ẽm(z) = m!Em(z) satisfy the recursion [15, (2.1.9)]

Ẽm(z) = (1 + mz)Ẽm−1(z) + z(1 − z)Ẽ′m−1(z), Ẽ0(z) = 1 =⇒

Ẽ1(z) = z + 1,

Ẽ2(z) = z2 + 4z + 1,

Ẽ3(z) = z3 + 11z2 + 11z + 1,

Ẽ4(z) = z4 + 26z3 + 66z2 + 26z + 1,

Ẽ5(z) = E5(z) = z5 + 57z4 + 302z3 + 302z2 + 57z + 1,

Ẽ6(z) = z6 + 120z5 + 1191z4 + 2416z3 + 1191z2 + 120z + 1.

The symmetry of Ẽ2m(z) = z−mE2m(z) =
∑m

k=−m akzk is useful for performing the Riesz-
Fejer factorization of E2m(z), providing a degree reduction from 2m to m – see [6, Sec.
2.3:Roots method]. Indeed, put z + z−1 = w § . Using

zk + z−k = (z + z−1)k −

k−1∑
j=1

(
k
j

)
zk−2 j

yields
(z + z−1)2 = w2 − 2, (z + z−1)3 = w3 − 3w

and thus

Ẽ2(z) = w + 4, Ẽ4(z) = w2 + 26w + 64, Ẽ6(z) = w3 + 120w2 + 1188w + 2176

(the first allows to recover the linear spline case by solving z + z−1 = −4).
For more properties and results about B-splines one can refer to [15, 16]. See also [9,

Table II] for a list of "valid scaling symbols" F(z) associated to B-splines.

Example 3. Consider now the quadratic B-spline N3(x). The corresponding progressive
function φ satisfies the functional equation

φ(x) + α1φ(x − 1) + α2φ(x − 2) = CN3(x) (22)

§An alternative to express cos(kx), k = 1, ...,m as functions of cos(x)k , k = 1, ...,m, and ultimately switch to
y = cos(x) ∈ [−1, 1].
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where C = Cα =

√
20
11 (1 + α2

1 + α2
1).

Solving w2 + 26w + 64 = 0 wields w1,2 = −13 ±
√

105, and each of the wi roots yields a
unique "reciprocal root" in the unit circle

z1 =
2

−13 −
√

105 −
√

270 + 26
√

105
, z2 =

1
2

(
−13 +

√
105 +

√
270 − 26

√
105

)
.

The transfer function is (1−zz1)(1−zz2) = 1+α1z+α2z2 where α1 = 13−
√

135 + 4
√

30, α2 =

2
(
8 +
√

30
)
−

√
375 + 64

√
30.

The general results of Theorem 4 are again confirmed in this case.

Theorem 7. Let φ be the progressive function that satisfies the equation

φ(x) = CN3(x) + α1φ(x − 1) + α2φ(x − 2)

and let
φ(x) = C

∑
k≥0

βkN3(x − k), (23)

where the coefficients βk are given inductively by β0 = 1, β1 = α1 and for k ≥ 2, βk =

α1βk−1 +α2βk−2. Then the function φ satisfies the scaling equation φ(x) = 2
∑

k≥0 fkφ(2x− k),
with filter coefficients given by

2 f0 = 1
2 f2k−1 = −α2βk−3 + (1 − 3α1 − 3α2)βk−2 + (3 − α1)βk−1
...
2 f2k = βk + (−α1 − 3a2)βk−2 + (3 − 3α1 − α2)βk−1.

In particular 2 f0 = 1, 2 f1 = 3 − α1 2 f2 = 3 − 2α1 − α2....

Remark 3. We may check again using Mathematica for example that (15) holds:

f (z) = s(z)
α(z)
α(z2)

= (
1 + z

2
)3 (1 − α1z − α2z2)

(1 − α1z2 − α2z4)
.
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