ON A STOCHASTIC $p(\omega, t, x)$-LAPLACE EQUATION

Guy Vallet, Petra Wittbold and Aleksandra Zimmermann

Abstract

A stochastic forcing of a non-linear singular/degenerated parabolic problem of $p(\omega, t, x)$-Laplace type is proposed in the framework of Orlicz Lebesgue and Sobolev spaces with variable random exponents. We give a result of existence and uniqueness of the solution, for additive and multiplicative problems.

Keywords: p-Laplace, random variable exponent, stochastic forcing.
AMS classification: 35K92, 46E30, 60H15.

§1. Introduction

We are interested in a result of existence, uniqueness and stability of solutions to:

$$
(P, h) \begin{cases}d u-\Delta_{p(\cdot)} u d t=h(\cdot, u) d w & \text { in } \Omega \times(0, T) \times D, \\ u=0 & \text { on } \Omega \times(0, T) \times \partial D, \\ u(0, \cdot)=u_{0} & \text { in } L^{2}(D) .\end{cases}
$$

where $T>0, D \subset \mathbb{R}^{d}$ is a bounded Lipschitz domain, $Q:=(0, T) \times D, w=\left\{w_{t}, \mathcal{F}_{t} ; 0 \leq\right.$ $t \leq T\}$ is a Wiener process on the classical Wiener space $(\Omega, \mathcal{F}, P) ; h=h(\omega, t, x, \lambda)$ is a Carathéodory function on $\Omega \times Q \times \mathbb{R}$, uniformly Lipschitz continuous with respect to λ, $\Delta_{p(\cdot)} u=\operatorname{div}\left(|\nabla u|^{p(\omega, t, x)-2} \nabla u\right)$ with a variable exponent $p: \Omega \times Q \rightarrow(1, \infty)$ satisfying the following conditions:
($p 1$) $1<p^{-}:=\operatorname{essinf}_{(\omega, t, x)} p(\omega, t, x) \leq p^{+}:=\operatorname{ess}_{\sup }^{(\omega, t, x)}{ }^{p}(\omega, t, x)<\infty$,
(p2) ω a.s. in $\Omega,(t, x) \mapsto p(\omega, t, x)$, is log-Hölder continuous, i.e. there exists $C \geq 0$ (which might depend on ω) such that, for all $(t, x),(s, y) \in Q$,

$$
\begin{equation*}
|p(\omega, t, x)-p(\omega, s, y)| \leq \frac{C}{\ln \left(e+\frac{1}{|(t, x)-(s, y)|}\right)} \tag{1}
\end{equation*}
$$

($p 3$) progressive measurability of the variable exponent, i.e.

$$
\Omega \times[0, t] \times D \ni(\omega, s, x) \mapsto p(\omega, s, x)
$$

is $\mathcal{F}_{t} \times \mathcal{B}(0, t) \times \mathcal{B}(D)$-measurable for all $0 \leq t \leq T$.
($p 4$) h is a Carathéodory function in the sense that:
for any $\lambda \in \mathbb{R}, h(\cdot, \lambda) \in N_{W}^{2}\left(0, T, L^{2}(D)\right)$, the space of predictable processes with values in $L^{2}(D)$ (see G. Da Prato et al. [3] for example),
and, $P \otimes \mathcal{L}^{d+1}$-a.e., $\lambda \in \mathbb{R} \rightarrow h(\omega, t, x, \lambda) \in \mathbb{R}$ is continuous. Moreover, h is a Lipschitzcontinuous function of the variable λ, uniformly with respect to the other variables.

Problems with variable exponent (i.e. when the exponent p depends on the time-space arguments) have been intensively studied since the years 2000. For the basic definitions and properties of variable exponent Lebesgue and Sobolev spaces we refer to [4]. The main physical motivation was induced by the modelization of electrorheological fluids. For example one can study the case of coupled problems, where the exponent $p=p(v(t, x))$ depends on a solution v of a coupled PDE (see e.g. [1] and the references therein). Since reality is complex, it can be interesting to consider stochastic perturbations acting on both equations, i.e.

$$
d u+A(u, v) d t=f d w, \quad d v+B(v) d t=g d w
$$

This motivates our interest to study the toy problem (P, h) with variable exponent p depending on ω, t and x with suitable measurability assumptions with respect to a given filtration. The predictability and the pathwise Hölder continuity of the solution v are formally compatible with the technical assumptions we have to impose on the variable exponent p, since, for technical reasons, we need to consider log-Hölder continuous exponents with respect to (t, x).

§2. Function spaces

Let us define

$$
N_{W}^{2}\left(0, T ; L^{2}(D)\right):=L^{2}\left(\Omega \times(0, T) ; L^{2}(D)\right)
$$

endowed with $d t \otimes d P$ and the predictable σ-algebra \mathcal{P}_{T} generated by the products $\left.] s, t\right] \times A$, $0 \leq s<t \leq T, A \in \mathcal{F}_{s}$, which is the space of predictable and therefore Itô integrable stochastic processes. Let $S_{W}^{2}\left(0, T ; H_{0}^{k}(D)\right)$ be the subset of simple, predictible processes with values in $H_{0}^{k}(D)$ for sufficiently large values of k. Note that $S_{W}^{2}\left(0, T ; H_{0}^{k}(D)\right)$ is densely imbedded into $N_{W}^{2}\left(0, T ; L^{2}(D)\right)$. The following function space serves as the variable exponent version of the classical Bochner space setting: there exists a full-measure set $\tilde{\Omega} \subset \Omega$ such that we can define

$$
X_{\omega}(Q):=\left\{u \in L^{2}(Q) \cap L^{1}\left(0, T ; W_{0}^{1,1}(D)\right) \mid \nabla u \in\left(L^{p(\omega,)}(Q)\right)^{d}\right\}
$$

which is a reflexive Banach space for all $\omega \in \tilde{\Omega}$ with respect to the norm

$$
\|u\|_{X_{\omega}(Q)}=\|u\|_{L^{2}(Q)}+\|\nabla u\|_{L^{p(\omega)}(Q)} .
$$

$X_{\omega}(Q)$ is a parametrization by ω of the space

$$
X(Q):=\left\{u \in L^{2}(Q) \cap L^{1}\left(0, T ; W_{0}^{1,1}(D)\right) \mid \nabla u \in\left(L^{p(t, x)}(Q)\right)^{d}\right\}
$$

which has been introduced in [5] for the case of a variable exponent depending on (t, x). For the basic properties of $X(Q)$, we refer to [5]. For $u \in X_{\omega}(Q)$, it follows directly from the definition that $u(t) \in L^{2}(D) \cap W_{0}^{1,1}(D)$ for almost every $t \in(0, T)$. Moreover, from $\nabla u \in L^{p(\omega,)}(Q)$ and Fubini's theorem it follows that $\nabla u(t, \cdot)$ is in $L^{p(\omega, t,)}(D)$ a.e. in $(0, T)$.

Let us introduce the space

$$
\mathcal{E}:=\left\{u \in L^{2}(\Omega \times Q) \cap L^{p^{-}}\left(\Omega \times(0, T) ; W_{0}^{1, p^{-}}(D)\right) \mid \nabla u \in L^{p(\cdot)}(\Omega \times Q)\right\}
$$

which is a reflexive Banach space with respect to the norm

$$
u \in \mathcal{E} \mapsto\|u\|_{\mathcal{E}}=\|u\|_{L^{2}(\Omega \times Q)}+\|\nabla u\|_{L^{p^{(e)}(\Omega \times Q)}} .
$$

Thanks to Fubini's theorem, $u \in \mathcal{E}$ implies that $u(\omega) \in X_{\omega}(Q)$ a.s. in Ω and, since Poincaré's inequality is available with respect to (t, x), independently of $\omega, u \in \mathcal{E}$ implies also $u(\omega, t) \in$ $L^{2}(D) \cap W_{0}^{1, p(\omega, t,)}(D)$ for almost all $(\omega, t) \in \Omega \times(0, T)$.

§3. Main result

Definition 1. A solution to (P, h) is a function $u \in L^{2}\left(\Omega ; C\left([0, T] ; L^{2}(D)\right)\right) \cap N_{W}^{2}\left(0, T ; L^{2}(D)\right) \cap$ \mathcal{E}, such that, for almost every $\omega \in \Omega, u(0, \cdot)=u_{0}$, a.e. in D and for all $t \in[0, T]$,

$$
u(t)-u_{0}-\int_{0}^{t} \Delta_{p(\cdot)} u d s=\int_{0}^{t} h(\cdot, u) d w
$$

holds a.s. in D; or, equivalently, in the weak-sense:

$$
\partial_{t}\left[u(t)-\int_{0}^{t} h(\cdot, u) d w\right]-\Delta_{p(\cdot)} u=0 \text { in } X_{\omega}^{\prime}(Q)
$$

Theorem 1. There exists a unique solution to (P, h). Moreover, if u_{1}, u_{2} are the solutions to $\left(P, h_{1}\right),\left(P, h_{2}\right)$ respectively, then:

$$
\begin{align*}
& E\left[\sup _{t}\left\|\left(u_{1}-u_{2}\right)(t)\right\|_{L^{2}(D)}^{2}+\int_{Q}\left(\left|\nabla u_{1}\right|^{p(\cdot)-2} \nabla u_{1}-\left|\nabla u_{2}\right|^{p(\cdot)-2} \nabla u_{2}\right) \cdot \nabla\left(u_{1}-u_{2}\right) d(t, x)\right] \\
\leq & C E \int_{Q}\left|h_{1}\left(\cdot, u_{1}\right)-h_{2}\left(\cdot, u_{2}\right)\right|^{2} d(t, x) . \tag{2}
\end{align*}
$$

§4. Proof of the main result

Our aim is to prove first a result of well-posedness of (P, h) in the additive case, i.e. when $h \in N_{W}^{2}\left(0, T ; L^{2}(D)\right)$ is not a function of u :
Proposition 2. For any $h \in N_{W}^{2}\left(0, T ; L^{2}(D)\right)$, there exists a unique solution to (P, h). Moreover, if u_{1}, u_{2} are the solutions to $\left(P, h_{1}\right),\left(P, h_{2}\right)$ respectively, then:

$$
\begin{align*}
& E\left(\sup _{t}\left\|\left(u_{1}-u_{2}\right)(t)\right\|_{L^{2}(D)}^{2}+\int_{Q}\left(\left|\nabla u_{1}\right|^{p(\cdot)-2} \nabla u_{1}-\left|\nabla u_{2}\right|^{p(\cdot)-2} \nabla u_{2}\right) \cdot \nabla\left(u_{1}-u_{2}\right) d(t, x)\right) \\
\leq & C E \int_{Q}\left|h_{1}-h_{2}\right|^{2} d(t, x) . \tag{3}
\end{align*}
$$

Then, with the above Lipschitz principle, one will get the result in the multiplicative case, $i . e$. when h can be a function of u.
4.1. The additive case for $h \in S_{W}^{2}\left(0, T ; H_{0}^{k}(D)\right)$

Proposition 3. For $q \geq \max \left(2, p^{+}\right), 0<\varepsilon \leq 1$ and any $h \in N_{W}^{2}\left(0, T ; L^{2}(D)\right)$ there exists

$$
u^{\varepsilon} \in L^{2}\left(\Omega, C\left([0, T] ; L^{2}(D)\right)\right) \cap N_{W}^{2}\left(0, T ; L^{2}(D)\right) \cap L^{q}\left(\Omega \times(0, T) ; W_{0}^{1, q}(D)\right)
$$

and a set $\tilde{\Omega} \subset \Omega$ of total probability 1 on which $u(0, \cdot)=u_{0}$ a.e. in D and

$$
\begin{equation*}
u^{\varepsilon}(t)-u_{0}-\int_{0}^{t}\left[\varepsilon \Delta_{q} u^{\varepsilon}+\Delta_{p(\cdot)} u^{\varepsilon}\right] d s=\int_{0}^{t} h d w \tag{4}
\end{equation*}
$$

in $W^{-1, q^{\prime}}(D)$ for all $t \in[0, T]$.
Proof: For $q \geq \max \left(2, p^{+}\right)$and $\varepsilon>0$, the operator

$$
A: \Omega \times(0, T) \times W_{0}^{1, q}(D) \rightarrow W^{-1, q^{\prime}}(D), \quad A(\omega, t, u)=-\varepsilon \Delta_{q} u-\Delta_{p(\omega, t, x)} u
$$

is monotone with respect to u for a.e. $(\omega, t) \in \Omega \times(0, T)$ and progressively measurable, i.e. for every $t \in[0, T]$ the mapping

$$
A: \Omega \times(0, t) \times W_{0}^{1, q}(D) \rightarrow W^{-1, q^{\prime}}(D), \quad(\omega, s, u) \mapsto A(\omega, s, u)
$$

is $\mathcal{F}_{t} \times \mathcal{B}(0, t) \times \mathcal{B}\left(W_{0}^{1, q}(D)\right)$-measurable. In particular, $-A$ satisfies the hypotheses of [7, Theorem 2.1, p. 1253], therefore for any $\varepsilon>0$ there exists a continuous process with values in $L^{2}(D)$ solution to the problem (4). Then, [3, Prop.3.17 p.84] and [7, Theorem 2.3, p. 1254] yield $u^{\varepsilon} \in L^{2}\left(\Omega, C\left([0, T] ; L^{2}(D)\right)\right)$.
Proposition 4. For any simple process $\bar{h} \in S_{W}^{2}\left(0, T ; H_{0}^{k}(D)\right)$, there exist a unique $u \in \mathcal{E} \cap$ $L^{2}\left(\Omega, C\left([0, T] ; L^{2}(D)\right)\right)$ and a full-measure set $\tilde{\Omega} \in \mathcal{F}$ such that for all $\omega \in \tilde{\Omega}$ we have $u(0, \cdot)=u_{0}$ a.e. in D and

$$
\begin{equation*}
u(t)-u_{0}-\int_{0}^{t} \Delta_{p(\cdot)} u d s=\int_{0}^{t} \bar{h} d w \tag{5}
\end{equation*}
$$

holds a.e. in D for all $t \in[0, T]$. In particular u is a solution to (P, \bar{h}) in the sense of Definition 1.

Proof: For the first part of the proof, mainly based on deterministic arguments, we can repeat the arguments of [2]: If we set $v^{\varepsilon}:=u^{\varepsilon}-\int_{0}^{t} h d w$, such that $v^{\varepsilon}(0)=u_{0}$, then u^{ε} satisfies (4), iff there exists a full-measure set $\tilde{\Omega} \in \mathcal{F}$ such that

$$
\begin{equation*}
\partial_{t} v^{\varepsilon}-\varepsilon \Delta_{q}\left(v^{\varepsilon}+\int_{0}^{t} \bar{h} d w\right)-\Delta_{p(\cdot)}\left(v^{\varepsilon}+\int_{0}^{t} \bar{h} d w\right)=0 \tag{6}
\end{equation*}
$$

in $L^{q^{\prime}}\left(0, T ; W^{-1, q^{\prime}}(D)\right)$ for all $\omega \in \tilde{\Omega}$. Testing (6) with v^{ε} to get a priori estimates, we can use classical (monotonicity) arguments to conclude that pointwise for every $\omega \in \tilde{\Omega}$ we have the following convergence results, passing to a (not relabeled) subsequence if necessary, :
1.) $v^{\varepsilon} \rightharpoonup v$ in $X_{\omega}(Q)$ and $L^{\infty}\left(0, T ; L^{2}(D)\right)$ weak-*,
2.) for any $t, v^{\varepsilon}(t) \rightarrow v(t)$ in $L^{2}(D)$,
3.) $\int_{Q}\left|\nabla v^{\varepsilon}-\nabla v\right|^{p(\omega, t, x)} d x d t \rightarrow 0$.

Then, passing to the limit in the singular perturbation, v satisfies the problem

$$
\partial_{t} v-\Delta_{p(\cdot)}\left(v+\int_{0}^{t} \bar{h} d w\right)=0
$$

In particular, $\partial_{t} v \in X_{\omega}^{\prime}(Q)$ (see [5]) and $v \in W_{\omega}(Q)$ where one denotes by

$$
W_{\omega}(Q):=\left\{v \in X_{\omega}(Q) \mid \partial_{t} v \in X_{\omega}^{\prime}(Q)\right\} .
$$

Thanks to [5], $W_{\omega}(Q) \hookrightarrow C\left([0, T], L^{2}(D)\right)$ with a continuity constant depending only on T and the time-integration by parts formula is available. Thus, $v \in C\left([0, T] ; L^{2}(D)\right)$ and v is a solution of the above problem in $W_{\omega}(Q)$, for the initial condition u_{0}. Since this solution is unique, no subsequence is needed in the above limits. Then, denoting by $u=v+\int_{0} \bar{h} d w$, the above convergence yields, for all $\omega \in \tilde{\Omega}$:
1.) $u^{\varepsilon} \rightarrow u$ in $L^{2}\left(0, T ; L^{2}(D)\right)$ with $\partial_{t}\left[u-\int_{0} \bar{h} d w\right] \in X_{\omega}^{\prime}(Q)$,
2.) for any $t, u^{\varepsilon}(t) \rightarrow u(t)$ in $L^{2}(D)$,
3.) $\Delta_{p(\omega, t, x)} u^{\varepsilon} \rightharpoonup \Delta_{p(\omega, t, x)} u$ in $X_{\omega}^{\prime}(Q)$,
4.) $\int_{Q}\left|\nabla u^{\varepsilon}-\nabla u\right|^{p(\omega, t, x)} d x d t \rightarrow 0$.

We continue with the argumentation as in [2]: from the previous convergence results, the a priori estimates and since $\nabla \bar{h}$ is bounded, we get uniform estimates that allow us to use Lebesgue Dominated Convergence theorem and therefore it follows that

$$
\begin{equation*}
\forall t, u^{\varepsilon}(t) \rightarrow u(t) \text { in } L^{2}\left(\Omega, L^{2}(D)\right) \quad \text { and } \quad u^{\varepsilon} \rightarrow u \text { in } \mathcal{E} . \tag{7}
\end{equation*}
$$

Note that the above limits in $L^{2}\left(\Omega, L^{2}(D)\right)$ and $L^{2}\left(\Omega, L^{2}(Q)\right)$ are results in standard Bochner spaces, but the measurability of ∇u with respect to $d(t, x) \otimes d P$ deserves our attention. Since ∇u^{ε} and $\nabla u^{\epsilon^{\prime}}$ are globally measurable functions, Lebesgue Dominated Convergence theorem, together with a priori estimates yield

$$
E \int_{Q}\left|\nabla u^{\varepsilon}-\nabla u^{\varepsilon^{\prime}}\right|^{p(\omega, t, x)} d x d t \rightarrow 0
$$

and thus, $\left(\nabla u^{\varepsilon}\right)$ is a Cauchy sequence in $L^{p(\cdot)}(\Omega \times Q)$ and therefore a converging sequence. It is then a direct consequence to see that ∇u is the limit in $L^{p(\cdot)}(\Omega \times Q)$ of ∇u^{ε}.
Then, passing to a (not relabeled) subsequence if needed, it follows that $u^{\varepsilon} \rightarrow u$ a.e. in $\Omega \times Q$. Hence u satisfies (5), or, in other words, $\partial_{t}\left[u-\int_{0}^{t} \bar{h} d w\right]-\Delta_{p(\cdot)} u=0$.
In particular, since \bar{h} is regular, one gets that $u-\int_{0}^{t} \bar{h} d w \in \mathcal{E}$ with $\partial_{t}\left[u-\int_{0}^{t} \bar{h} d w\right] \in \mathcal{E}^{\prime}$.
We need now to prove that $u \in L^{2}\left(\Omega, C\left([0, T], L^{2}(D)\right)\right)$. We already know that $u: \Omega \times Q \rightarrow$ $L^{2}(D)$ is a stochastic process. Since $u(\omega, \cdot) \in W_{\omega}(Q) \hookrightarrow C\left([0, T], L^{2}(D)\right)$ for a.e. $\omega \in \Omega$, the measurability follows from [3, Prop.3.17 p.84] with arguments as in [6, Cor. 1.1.2, p.8]. Then, a.s. in Ω, the equation satisfied by u yields $\partial_{t} v-\Delta_{p(\cdot)} u=0$, so that, for almoste every $t \in[0, T]$,

$$
\frac{1}{2} \frac{d}{d t}\|v(t)\|_{L^{2}(D)}^{2}+\int_{D}|\nabla u|^{p(\omega, t, x)-2} \nabla u \cdot \nabla v d x=0 .
$$

Since, ω a.s.,

$$
\sup _{t \in[0, T]}\|v(\omega, t, \cdot)\|_{L^{2}(D)}^{2} \leq\left\|u_{0}\right\|_{L^{2}(D)}^{2}+2 \int_{0}^{T} \int_{D} \frac{1}{p^{-}}|\nabla u|^{p(\omega, s, x)}+\frac{1}{\left(p^{\prime}\right)^{-}}\left|\int_{0}^{s} \nabla \bar{h} d w\right|^{p^{\prime}(\omega, s, x)} d x d s
$$

with a right side in $L^{1}(\Omega)$, one gets that $u, v \in L^{2}\left(\Omega ; C\left([0, T], L^{2}(D)\right)\right.$.
Lemma 5. Proposition 2 holds for any $h \in S_{W}^{2}\left(0, T ; H_{0}^{k}(D)\right)$. More precisely, for $h_{n}, h_{m} \in$ $S_{W}^{2}\left(0, T ; H_{0}^{k}(D)\right)$ let u_{n} be the solution to $\left(P, h_{n}\right)$ and u_{m} be the solution to $\left(P, h_{m}\right)$. There exist constants $K_{1}, K_{2} \geq 0$ such that for any $m, n \in \mathbb{N}$,

$$
\begin{align*}
& E\left(\left\|u_{n}\right\|_{C\left([0, T] ; L^{2}(D)\right)}^{2}\right)+E \int_{Q}\left|\nabla u_{n}\right|^{p(\cdot)} d(t, x) \leq K_{1}\left(\left\|h_{n}\right\|_{L^{2}(\Omega \times Q)}^{2}+\left\|u_{0}\right\|_{L^{2}(D)}^{2}\right) \tag{8}\\
& E\left(\left\|\left(u_{n}-u_{m}\right)\right\|_{C\left([0, T] ; L^{2}(D)\right)}^{2}\right)+E \int_{Q}\left(\left|\nabla u_{n}\right|^{p(\cdot)-2} \nabla u_{n}-\left|\nabla u_{m}\right|^{p(\cdot)-2} \nabla u_{m}\right) \cdot \nabla\left(u_{n}-u_{m}\right) d(t, x) \\
& \leq K_{2}\left\|h_{n}-h_{m}\right\|_{L^{2}(\Omega \times Q)}^{2} \tag{9}
\end{align*}
$$

Proof: Using the Itô formula in (4) it follows that for all $t \in[0, T]$ a.s. in Ω we have

$$
\begin{aligned}
\left\|u_{n}^{\varepsilon}(t)\right\|_{L^{2}(D)}^{2} & +2 \int_{0}^{t} \int_{D}\left|\nabla u_{n}^{\varepsilon}\right|^{p(\cdot)} d x d s \\
& \leq 2 \int_{0}^{t} \int_{D} h_{n} u_{n}^{\varepsilon} d x d w+\int_{0}^{t} \int_{D} h_{n}^{2} d x d s+\left\|u_{0}\right\|_{L^{2}(D)}^{2}
\end{aligned}
$$

or, by subtracting (4) with h_{m} from (4) with h_{n},

$$
\begin{aligned}
\left\|\left[u_{n}^{\varepsilon}-u_{m}^{\varepsilon}\right](t)\right\|_{L^{2}(D)}^{2} & +2 \int_{0}^{t} \int_{D}\left(\left|\nabla u_{n}^{\varepsilon}\right|^{p(\cdot)-2} \nabla u_{n}^{\varepsilon}-\left|\nabla u_{m}^{\varepsilon}\right|^{p(\cdot)-2} \nabla u_{m}^{\varepsilon}\right) \cdot \nabla\left(u_{n}^{\varepsilon}-u_{m}^{\varepsilon}\right) d x d s \\
& \leq 2 \int_{0}^{t} \int_{D}\left[h_{n}-h_{m}\right]\left(u_{n}^{\varepsilon}-u_{m}^{\varepsilon}\right) d x d w+\int_{0}^{t} \int_{D}\left(h_{n}-h_{m}\right)^{2} d x d s
\end{aligned}
$$

Thus, by passing to the limit with $\varepsilon \rightarrow 0$, to the supremum over t and then taking the expectation, it follows that ($c \geq 0$ being a constant)

$$
\begin{align*}
E\left(\sup _{t \in[0, T]}\left\|u_{n}(t)\right\|_{L^{2}(D)}^{2}\right) & +E \int_{0}^{T} \int_{D}\left|\nabla u_{n}\right|^{p(\cdot)} d x d s \\
& \leq c E\left(\sup _{t \in[0, T]} \int_{0}^{t} \int_{D} h_{n} u_{n} d x d w\right)+c\left\|h_{n}\right\|_{L^{2}(\Omega \times Q)}^{2}+c\left\|u_{0}\right\|_{L^{2}(D)}^{2}, \tag{10}\\
E\left(\sup _{t \in[0, T]}\left\|\left[u_{n}-u_{m}\right](t)\right\|_{L^{2}(D)}^{2}\right) & +E \int_{0}^{T} \int_{D}\left(\left|\nabla u_{n}\right|^{p(\cdot)-2} \nabla u_{n}-\left|\nabla u_{m}\right|^{p(\cdot)-2} \nabla u_{m}\right) \cdot \nabla\left(u_{n}-u_{m}\right) d x d s \\
& \leq c E\left(\sup _{t \in[0, T]} \int_{0}^{t} \int_{D}\left[h_{n}-h_{m}\right]\left(u_{n}-u_{m}\right) d x d w\right)+c\left\|h_{n}-h_{m}\right\|_{L^{2}(\Omega \times Q)}^{2} . \tag{11}
\end{align*}
$$

Using Burkholder, Hölder and Young inequalities on (10) we get for any $\gamma>0$

$$
\begin{align*}
E\left(\sup _{t \in[0, T]} \int_{0}^{t} \int_{D} h_{n} u_{n} d x d w\right) & \leq 3 E\left(\int_{0}^{T}\left(\int_{D} h_{n} u_{n} d x\right)^{2} d s\right)^{1 / 2} \tag{12}\\
& \leq 3 E\left(\int_{0}^{T}\left\|h_{n}\right\|_{L^{2}(D)}^{2}\left\|u_{n}\right\|_{L^{2}(D)}^{2} d t\right)^{1 / 2} \\
& \leq 3 E\left[\left(\sup _{t \in[0, T]}\left\|u_{n}\right\|_{L^{2}(D)}^{2}\right)^{1 / 2}\left(\int_{0}^{T}\left\|h_{n}\right\|_{L^{2}(D)}^{2}\right)^{1 / 2}\right] \\
& \leq 3 \gamma E\left(\sup _{t \in[0, T]}\left\|u_{n}\right\|_{L^{2}(D)}^{2}\right)+\frac{3}{\gamma}\left\|h_{n}\right\|_{L^{2}(\Omega \times Q)}^{2}
\end{align*}
$$

and similarly on (11),

$$
\begin{align*}
& E\left(\sup _{t \in[0, T]} \int_{0}^{t} \int_{D}\left(h_{n}-h_{m}\right)\left(u_{n}-u_{m}\right) d x d w\right) \tag{13}\\
& \leq 3 \gamma E\left(\sup _{t \in[0, T]}\left\|u_{n}-u_{m}\right\|_{L^{2}(D)}^{2}\right)+\frac{3}{\gamma}\left\|h_{n}-h_{m}\right\|_{L^{2}(\Omega \times Q)}^{2} .
\end{align*}
$$

Plugging (12) into (10), (13) into (11) and choosing $\gamma>0$ small enough yield Lemma 5.
Remark 1. It is an open question if the Itô formula is directly available for a solution of (5) since we are not in Bochner spaces: the stochastic energy has to be defined in different Banach spaces depending on $t \in[0, T]$ and $\omega \in \Omega$. That is why we need to apply the Itô formula to u^{ε}, and then pass to the limit. But then, only an inequality is obtained.
4.2. Existence for arbitrary $h \in N_{W}^{2}\left(0, T ; L^{2}(D)\right)$

Proposition 6. For any $h \in N_{W}^{2}\left(0, T ; L^{2}(D)\right)$, there exists a unique $u \in \mathcal{E} \cap L^{2}\left(\Omega ; C\left([0, T] ; L^{2}(D)\right)\right.$ $\cap N_{W}^{2}\left(0, T ; L^{2}(D)\right)$ such that a.s.

$$
\begin{equation*}
u(t)-u_{0}-\int_{0}^{t} \Delta_{p(\cdot)} u d s=\int_{0}^{t} h d w \tag{14}
\end{equation*}
$$

for all $t \in[0, T]$, a.e. in D.
Proof: For any $h \in N_{W}^{2}\left(0, T ; L^{2}(D)\right)$, there exists a sequence $\left(h_{n}\right) \subset S_{W}^{2}\left(0, T ; H_{0}^{k}(D)\right)$ converging to h in $N_{W}^{2}\left(0, T ; L^{2}(D)\right)$. Let $\left(u_{n}\right) \in \mathcal{E} \cap L^{2}\left(\Omega, C\left([0, T] ; L^{2}(D)\right)\right)$ be the sequence of corresponding solutions to $\left(P, h_{n}\right)$. From (8) it follows that $\left(u_{n}\right)$ is a bounded sequence in $\mathcal{E} \cap$ $L^{2}\left(\Omega, C\left([0, T] ; L^{2}(D)\right)\right)$ and (9) ensures that $\left(u_{n}\right)$ is a Cauchy sequence in $L^{2}\left(\Omega ; C\left([0, T] ; L^{2}(D)\right)\right.$. Hence there exists $u \in \mathcal{E} \cap L^{2}\left(\Omega ; C\left([0, T] ; L^{2}(D)\right)\right)$ such that $u_{n} \rightharpoonup u$ in \mathcal{E} and $u_{n} \rightarrow u$ in $L^{2}\left(\Omega ; C\left([0, T] ; L^{2}(D)\right)\right)$.
Moreover there exists a full-measure set $\tilde{\Omega} \in \mathcal{F}$ such that, passing to a (not relabeled) subsequence if necessary, $u_{n} \rightarrow u$ in $C\left([0, T] ; L^{2}(D)\right)$ for all $\omega \in \tilde{\Omega}$. In particular, $u(0, \cdot)=u_{0}$ a.e. in D for all $\omega \in \tilde{\Omega}$.
For $\mu=d(t, x) \otimes d P$ we have

$$
\int_{\Omega \times Q}\left|\nabla u_{n}-\nabla u_{m}\right|^{p(\cdot)} d \mu=\int_{1<p<2}\left|\nabla u_{n}-\nabla u_{m}\right|^{p(\cdot)} d \mu+\int_{p \geq 2}\left|\nabla u_{n}-\nabla u_{m}\right|^{p(\cdot)} d \mu
$$

Then, from (9) and the fundamental inequality ([8, Section 10]), for any $\xi, \eta \in \mathbb{R}^{d}$:

$$
\left(|\xi|^{p-2} \xi-|\eta|^{p-2} \eta\right) \cdot(\xi-\eta) \geq\left\{\begin{array}{l}
2^{2-p}|\xi-\eta|^{p}, p \geq 2 \\
(p-1)|\xi-\eta|^{2}\left(1+|\eta|^{2}+|\xi|^{2}\right)^{\frac{p-2}{2}}, 1 \leq p<2
\end{array}\right.
$$

It follows first that

$$
\begin{equation*}
\int_{p \geq 2}\left|\nabla u_{n}-\nabla u_{m}\right|^{p(\cdot)} d \mu \leq 2^{p^{+}-2} K_{2}\left\|h_{n}-h_{m}\right\|_{L^{2}(\Omega \times Q)}^{2} \tag{15}
\end{equation*}
$$

then, from the generalized Young inequality it follows for any $0<\epsilon<1$,

$$
\begin{align*}
& \int_{1<p<2}\left|\nabla u_{n}-\nabla u_{m}\right|^{p(\cdot)} d \mu \\
&= \int_{1<p<2} \frac{\left|\nabla u_{n}-\nabla u_{m}\right|^{p(\cdot)}}{\left(1+\left|\nabla u_{n}\right|^{2}+\left|\nabla u_{m}\right|^{2}\right)^{p(\cdot) \cdot \frac{2 p(\cdot)}{4}}}\left(1+\left|\nabla u_{n}\right|^{2}+\left|\nabla u_{m}\right|^{2}\right)^{p(\cdot) \frac{2-p(\cdot)}{4}} d \mu \\
& \leq \int_{1<p<2} \epsilon \frac{\mid \nabla u_{n}-\nabla(\cdot)-2}{p(\cdot)} \\
&\left(1+\left|\nabla u_{n}\right|^{2}+\left|\nabla u_{m}\right|^{2}\right)^{\frac{2-p(\cdot)}{2}} d \mu+\epsilon \int_{1<p<2}\left(1+\left|\nabla u_{n}\right|^{2}+\left|\nabla u_{m}\right|^{2}\right)^{\frac{p(\cdot)}{2}} d \mu \\
& \leq \frac{1}{\epsilon\left(p^{-}-1\right)} \int_{1<p<2}(p-1) \frac{\left|\nabla u_{n}-\nabla u_{m}\right|^{2}}{\left(1+\left|\nabla u_{n}\right|^{2}+\left|\nabla u_{m}\right|^{2}\right)^{\frac{2-p()}{2}}} d \mu+K_{3} \epsilon \tag{16}\\
& \leq \frac{1}{\epsilon\left(p^{-}-1\right)} K_{2}\left\|h_{n}-h_{m}\right\|_{L^{2}(\Omega \times Q)}^{2}+K_{3} \epsilon,
\end{align*}
$$

since the sequence $\left(u_{n}\right)$ is bounded in $L^{p(\cdot)}(\Omega \times Q)$ and μ is a finite measure.
From (15), (16) and $\lim _{n, m}\left\|h_{n}-h_{m}\right\|_{L^{2}(\Omega \times Q)}^{2}=0$ it follows that ∇u_{n} is a Cauchy sequence in $L^{p(\cdot)}(\Omega \times Q)$, thus a converging sequence.
In conclusion, u_{n} converges to u in $\mathcal{E} \cap L^{2}\left(\Omega ; C\left([0, T] ; L^{2}(D)\right)\right) \cap N_{W}^{2}\left(0, T ; L^{2}(D)\right)$ and, by a standard argument based on the Nemytskii operator induced by the Carathéodory function $G:(\omega, t, x, \xi) \in \Omega \times Q \times \mathbb{R}^{d} \mapsto|\xi|^{p(\omega, t, x)-2} \xi \in \mathbb{R}^{d},\left|\nabla u_{n}\right|^{p(\cdot)-2} \nabla u_{n}$ converges to $|\nabla u|^{p(\cdot)-2} \nabla u$ in $L^{p^{\prime(\cdot)}}(\Omega \times Q)$ since $|G(\omega, t, x, \xi)|^{p^{\prime}(\omega, t, x)}=|\xi|^{p(\omega, t, x)}$.

Let us recall that, for any $n \in \mathbb{N}, u_{n}$ satisfies

$$
\begin{equation*}
\partial_{t}\left(u_{n}-\int_{0}^{t} h_{n} d w\right)-\Delta_{p(\cdot)} u_{n}=0 \tag{17}
\end{equation*}
$$

in \mathcal{E}^{\prime}. Now we can choose a (not relabeled) subsequence of $\left(u_{n}\right)$ such that all previous convergence results hold true. For any test function $\phi(\omega, t, x)=\rho(\omega) \gamma(t) v(x)$ with $\rho \in L^{\infty}(\Omega)$, $\gamma \in \mathcal{D}([0, T))$ and $v \in \mathcal{D}(D)$ we have

$$
\begin{align*}
& \left\langle\partial_{t}\left(u_{n}-\int_{0}^{t} h_{n} d w\right), \phi\right\rangle_{\mathcal{E}^{\prime}, \mathcal{E}}=\int_{\Omega}\left\langle\partial_{t}\left(u_{n}-\int_{0}^{t} h_{n} d w\right), \phi\right\rangle_{X_{\omega}^{\prime}, X_{\omega}} d P \\
= & -\int_{\Omega}\left\langle\left(u_{n}-\int_{0}^{t} h_{n} d w\right), \partial_{t} \phi\right\rangle_{X_{\omega}^{\prime}, X_{\omega}} d P-\int_{\Omega \times D} u_{0} \varphi(\omega, 0, x) d x d P . \tag{18}
\end{align*}
$$

In particular u_{n} satisfies

$$
\begin{equation*}
-\int_{\Omega \times Q}\left(u_{n}-\int_{0}^{t} h_{n} d w\right) \cdot \partial_{t} \phi+\left|\nabla u_{n}\right|^{p(\cdot)-2} \nabla u_{n} \cdot \nabla \phi d \mu-\int_{\Omega \times D} u_{0} \varphi(\omega, 0, x) d x d P=0 \tag{19}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Therefore, using our convergence results, we are able to pass to the limit in (19) and obtain

$$
\begin{equation*}
\partial_{t}\left(u-\int_{0}^{t} h d w\right)-\Delta_{p(\cdot)} u= \tag{20}
\end{equation*}
$$

in \mathcal{E}^{\prime}. (20), and a classical argument of separability, imply that a.s.

$$
\begin{equation*}
\partial_{t}\left(u-\int_{0}^{t} h d w\right)=\Delta_{p(\cdot)} u, \text { in } X_{\omega}^{\prime}(Q) \hookrightarrow L^{\alpha^{\prime}}\left(0, T ; W^{-1, \alpha^{\prime}}(D)\right) \tag{21}
\end{equation*}
$$

with $\alpha \geq p^{+}+2$. Moreover, a.s.

$$
u-\int_{0}^{t} h d w \in C\left([0, T] ; L^{2}(D)\right)
$$

Thus we can integrate (21) to obtain a.s.

$$
\begin{equation*}
u(t)-u_{0}-\int_{0}^{t} \Delta_{p(\cdot)} u d s=\int_{0}^{t} h d w \tag{22}
\end{equation*}
$$

in $L^{2}(D)$ for all $t \in[0, T]$.
If we assume that $u_{1}, u_{2} \in \mathcal{E} \cap L^{2}\left(\Omega, C\left([0, T] ; L^{2}(D)\right)\right) \cap N_{W}^{2}\left(0, T ; L^{2}(D)\right)$ are both satisfying (14), it follows that a.s. in Ω

$$
\begin{equation*}
\partial_{t}\left(u_{1}-u_{2}\right)-\left(\Delta_{p(\cdot)} u_{1}-\Delta_{p(\cdot)} u_{2}\right)=0 \text { in }\left(X_{\omega}(Q)\right)^{\prime} . \tag{23}
\end{equation*}
$$

Using $u_{1}-u_{2}$ as a test function in (23), and integration by parts in $W_{\omega}(Q)$ we obtain uniqueness.

4.3. Conclusion

Set $h_{1}, h_{2} \in N_{W}^{2}\left(0, T ; L^{2}(D)\right)$ and let u_{1}, u_{2} be solutions to $\left(P, h_{1}\right)$ and $\left(P, h_{2}\right)$. Since

$$
\begin{align*}
& E\left(\left\|\left(u_{1}-u_{2}\right)\right\|_{C\left([0, T] ; L^{2}(D)\right)}^{2}+\int_{Q}\left(\left|\nabla u_{1}\right|^{p(\cdot)-2} \nabla u_{1}-\left|\nabla u_{2}\right|^{p(\cdot)-2} \nabla u_{2}\right) \cdot \nabla\left(u_{1}-u_{2}\right) d(t, x)\right) \\
\leq & C\left\|h_{1}-h_{2}\right\|_{L^{2}(\Omega \times Q)}^{2}, \tag{24}
\end{align*}
$$

we can repeat the arguments of [2] based on Banach's fixed point theorem applied to

$$
\Psi: S \in N_{W}^{2}\left(0, T ; L^{2}(D)\right) \rightarrow u_{S} \in N_{W}^{2}\left(0, T ; L^{2}(D)\right)
$$

where u_{S} is the solution to $(P, h(\cdot, S))$ to deduce the existence of a unique solution u of (P, h) in the sense of Definition 1. From (24) it also follows that (2) holds true and we have finished the proof of Theorem 3.1.

Acknowledgements

The authors acknowledge the Institut Carnot ISIFoR and DGF Project no. ZI 1542/1-1.

References

[1] B. Andreianov, M. Bendahmane, and S. Ouaro. Structural stability for variable exponent elliptic problems. II. The $p(u)$-Laplacian and coupled problems. Nonlinear Anal., 72(12):4649-4660, 2010.
[2] C. Bauzet, G. Vallet, P. Wittbold, and A. Zimmermann. On a p(t,x)-laplace evolution equation with a stochastic force. Stochastic Partial Differential Equations: Analysis and Computations, 1(3):552-570, 2013.
[3] G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions, volume 44 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1992.
[4] L. Diening, P Harjulehto, P Hästö, and M Ruzicka. Lebesgue and Sobolev Spaces with Variable Exponents. Springer, 2011.
[5] L. Diening, P. Nägele, and M. Ruzicka. Monotone operator theory for unsteady problems in variable exponent spaces. Complex Variables and Elliptic Equations, 57:1209-1231, 2012.
[6] J. Droniou. Intégration et espaces de Sobolev à valeurs vectorielles. Technical report, gm3.univ-mrs.fr, 2001.
[7] N. V. Krylov and B. L. Rozovskii. Stochastic evolution equations. In Stochastic differential equations: theory and applications, volume 2 of Interdiscip. Math. Sci., pages 1-69. World Sci. Publ., Hackensack, NJ, 2007.
[8] P. Lindqvist. Notes on the p-laplace equation. Technical report, University of Jyväskylä, Department of Mathematics and Statistics;102, http://www.math.ntnu.no/ lqvist/plaplace.pdf, 2006.
G. Vallet

LMAP - UMR CNRS 5142, IPRA BP 1155, 64013 Pau Cedex, France.
guy.vallet@univ-pau.fr
P. Wittbold, A. Zimmermann

Fakultät für Mathematik, Thea-Leymann-Str. 9, 45127 Essen Germany. petra.wittbold@uni-due.de, zimmermann.aleksandra@uni-due.de

