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Abstract. Let A be a real line arrangement and D(A) the module of A–derivations
view as the set of polynomial vector fields which possess A as an invariant set. We first
characterize polynomial vector fields having an infinite number of invariant lines. Then
we prove that the minimal degree of polynomial vector fields fixing only a finite set of
lines inD(A) is not determined by the combinatorics ofA.

§1. Introduction

LetA = {L1, . . . , Ln} be a real line arrangement in R2. Denote by |A| = n the number of lines
of the arrangement and by SingA the set of singular points of A, i.e. the intersection points
between lines. We define by L(A) = {∅ , Li ∩ L j | Li, L j ∈ A} ∪ A the intersection poset of
A partially ordered by reverse inclusion of the subsets, which codifies the combinatorial data
ofA.

The influence of combinatorics of line arrangements over the properties of its realizations
on different ambient spaces (as R2, C2, F2

p and its projectives) was largely studied, e.g. [1],
[5], [7]. A classical object is the module of A–derivations of a line arrangement A, denoted
byD(A) or the module of logarithmic 1–forms Ω1(A) (see [6]).

In this note, we study the relation between A, the poset L(A), and the module D(A).
Our approach is first to give a dynamical interpretation of D(A) as the set of polynomial
vector fields owning A as invariant set. Using this point of view, we are able to characterize
the geometry of the set D(A) (Proposition 1 and 2). We introduce the notion of maximal
line arrangement for a given polynomial vector field, to characterize those having an infinite
number of invariant lines (Theorem 5). Finally, we prove that the minimal degree d f (A) of
the elements in D(A) fixing only a finite set of lines is not determined by the combinatorics
of a line arrangement A (Theorem 7). Related results on polynomial vector fields and lines
arrangements can be found from a different point of view in [2] and [8].

§2. Line arrangements and vector fields

For a line L ∈ A, consider αL : R2 → R an associated affine form such that L = kerαL. The
defining polynomial of A is given by Q(A) =

∏
L∈A αL. Let DerR(R[x, y]) be the algebra of

R-derivations of R[x, y].



62 Benoît Guerville-Ballé and Juan Viu-Sos

Definition 1. Let A be a line arrangement and Q = Q(A) its defining polynomial. The
module of A–derivations is the R[x, y]-module defined by D(A) = {χ ∈ DerR(R[x, y]) |
χQ ∈ IQ}, where IQ is the ideal generated by Q.

Remark 1. From the definition, it is easy to deduce the following characterization by lines
D(A) =

⋂
L∈A{χ ∈ DerR(R[x, y]) | χαL ∈ IαL }, where IαL is the ideal generated by αL.

As DerR(R[x, y]) coincide with polynomials vector fields on the plane, we obtain a dy-
namical interpretation of D(A): the elements of D(A) correspond to the polynomial vector
fields admittingA as invariant set. We use this point of view in the following.

The required condition for derivations inD(A) is equivalent to the definition of algebraic
invariant set in complex dynamical systems: a complex algebraic curve C = { f = 0} is
invariant by a polynomial vector field χ if there exists K ∈ C[x, y] such that χ f = K f (see [3]).
Since real line arrangements are defined by products of real affine forms, this condition also
holds geometrically.

§3. Structure theorems

Let DerR(Rd[x, y]) = {χ = P∂x + Q∂y | deg P, deg Q ≤ d} and Fd(D(A)) = D(A) ∩
DerR(Rd[x, y]), defining an ascending filtration of D(A) by degree. We denote by Dd(A) =

Fd(D(A)) \ Fd−1(D(A)) the set of polynomial vector fields of degree d fixing A. Consider
C(d) the R-linear space of coefficients of a pair of polynomials of degree less than d. We have
C(d) = R(d+1)(d+2)/2 ⊕ R(d+1)(d+2)/2 ' R(d+1)(d+2). Using the classical properties of an ideal, we
have:

Proposition 1 (Structure of polynomial vector fields). Let A be a line arrangement. For
each d ∈ N, the set Fd(D(A)) is a vector sub-space of the set of coefficients C(d).

Proposition 2 (Structure of fixed line arrangements). Let χ be a polynomial vector field.
The set Fn(χ) of arrangements with n lines fixed by χ is an algebraic sub-variety of

(
RP2

)n

(view as the set of the coefficients αi, βi, γi defining the lines ofA).

This last Proposition can be deduced from the following:

Proposition 3 (Invariant line). Let L be a line of R2 defined by the equation αx + βy+ γ = 0,
and let χ = P(x, y)∂x + Q(x, y)∂y be a polynomial vector field on R2. The line L is invariant
for χ if and only if: (i) β = 0 and P(−γ/α, y) = 0, (ii) β , 0 and αP(βy,−αy − γ/β) +

βQ(βy,−αy − γ/β) = 0.

§4. Polynomial vectors fields admitting a finite/infinite number of
invariant lines

In order to characterize efficiently line arrangements as invariant sets of a vector field, we
distinguish them according to finiteness requirements over the set of its invariant lines.

4.1. Finiteness of families of fixed lines
The first step is to obtain conditions on the finiteness of the family of invariant lines. This
leads us to the notion of maximal line arrangement fixed by a polynomial vector field.
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Definition 2. Let χ be a polynomial vector field in the plane. We said that a line arrangement
A is maximal fixed by χ if any line L ∈ R2 invariant by χ belongs toA.

Trivial examples of polynomial vector fields in the plane which do not possess a maximal
line arrangement are: the null vector field, the “central” vector field χc = x∂x + y∂y or the
“parallel” vector field χp = (x + 1)∂y. In Theorem 5 we prove that derivations which do not
admit a maximal fixed arrangement are essentially of these kind.

Definition 3. We said that χ fixes only a finite (resp. an infinite) set of lines if there exists
(resp. does not exist) a maximal arrangement fixed by χ.

Let A be a line arrangement, we consider the partition D(A) = D∞(A) t D f (A) where
D f (A) (resp. D∞(A)) is the subset of elements in D(A) fixing only a finite (resp. infinite)
set of lines. We defineD∞d (A) = Dd(A)∩D∞(A) andD f

d (A) = Dd(A)∩D f (A), for d ∈ N.

Definition 4. A vector field χ is said to be: (i) central if there is a point (x0, y0) ∈ R2 such
that all the vectors (x − x0, y − y0) and

(
P(x, y),Q(x, y)

)
are collinear, (ii) parallel if there is a

vector v such that for all (x, y) ∈ R2, the vectors
(
P(x, y),Q(x, y)

)
and v are collinear.

Let m(A) be the maximal multiplicity of singular points of a line arrangementA, and let
p(A) be the maximal number of parallel lines ofA.

Theorem 4. If d < max(m(A) − 1, p(A)) thenDd(A) = D∞d (A).

Proof. We decompose this proof in two cases.
First, suppose d + 1 < m(A). Up to an affine deformation, we may assume that the

singular point P of multiplicity d + 2 of A is the origin, and that no one of these lines are
vertical (i.e. x = 0). Let y = αix be the d + 2 lines passing by point P. Proposition 3 implies
that for all i ∈ {1, · · · , d + 2} we have

αiP(y,−αiy) + Q(y,−αiy) =

d∑
n=0

( n∑
j=0

(
αian− j, j + bn− j, j

)
(−αi) j

)
yn = 0,

which is equivalent to the system of (d + 2)(d + 1) equations defined, for all n ∈ {0, · · · , d}

and i ∈ {1, · · · , d + 1}, by Eq(n, j) :
n∑

j=0

(
αian− j, j + bn− j, j

)
(−αi) j = 0. We regroup them in d + 1

systems S n formed by the d + 2 equations (indexed by i). These equations are polynomial of
degree n + 1 in αi. We denote by ck the coefficient of αk, that is c0 = bn,0, cn = a0,n and ck =

ak,n−k − bk−1,n−k+1 for k ∈ {1, n − 1}. If we restrict the system S n to their n + 2 first equations,
then we remark that the square system in ck obtained is in fact a Vandermonde system. Since
all the αi are distinct then the system admits a unique solution ck = 0. This implies that
a0,n = 0, bn,0 = 0 and ak,d−k = bk−1,d−k+1 for k ∈ {1, d}. Thus we have yP(x, y) = xQ(x, y),
which is a central vector field.

In a second case, assume that d < p(A) thus A has at least d + 1 parallel lines. Then,
without lost of generality, we may assume that these lines are vertical. By Proposition 3, for
any fixed y, P(x, y) = 0 for d+1 distinct values of x, since P is a polynomial of degree smaller
than d. Then P(x, y) = 0 and χ fixes all the vertical lines. �
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4.2. Structure ofD∞(A)

In this subsection, we give a characterization of polynomial vector fields fixing an infinity of
lines, that is:

Theorem 5. Let χ be a polynomial vector field fixing an infinity of lines, then χ is null, central
or parallel.

The proof is based on the following lemma, about the number of singular points in an
arrangement with a countable infinity of lines.

Lemma 6. Let A∞ = {L1, L2, L3, . . .} be an infinite collection of different lines in the plane,
then we have # Sing(A∞) ∈ {0, 1,∞}.

Proof of Theorem 5. Let P(x, y) and Q(x, y) be such that χ = P∂x + Q∂y. We define A∞ =

{L1, L2, L3, . . .} the set (or a subset) of the lines fixed by χ, and we denoted by αi the equation
of Li. Up to now, we assume that we are not in the first case (i.e. (P,Q) , (0, 0)). The vector
field χ fixes only a finite number of lines of A∞ point by point. Indeed, Li is fixed point by
point by χ if and only if αi | P and αi | Q. Since P and Q are polynomials then they have
finite degree, thus only a finite number of αi can divide them. Assume that these lines are
L1, . . . , Lk. Denote by χ′ = P′∂x + Q′∂y the derivation of components P′ = P/(α1 · · ·αk) and
Q′ = Q/(α1 · · ·αk). It is clear that χ and χ′ are collinear vector fields. Thus, if χ′ is central
(resp. parallel) then χ is central (resp. parallel). By construction, the set of points fixed by χ′

(i.e. the common zeros of P′ and Q′) contain the intersection points ofA′∞ = A\{L1, . . . , Lk}.
By Lemma 6 we have 3 possible cases: (i) # Sing(A′∞) = 0, then all the lines of A′∞ are
parallel. By the second part of the proof of Theorem 4, χ′ is a parallel vector field. (ii)
# Sing(A′∞) = 1, then all the lines of A′∞ are concurrent. By the first part of the proof of
Theorem 4, χ′ is a central vector field. (iii) # Sing(A′∞) = ∞, then the polynomial P′ and Q′

have an infinity of zero. Which is impossible since P′ and Q′ are not simultaneously null. �

§5. Minimal degree and combinatorics

Definition 5. We denote by d f (A) the minimal integer d such thatD f
d (A) is not empty.

The study of the number d f (A) is related with the study of the Terao’s conjecture in real
space, which asks about the influence of combinatorics on the module of derivations of an
arrangement when this one is free. In [4] we prove that, in general:

Theorem 7. The minimal degree d f (A) is not determined by L(A).

The proof is composed of two parts. First, we give a purely combinatoric bound for which
module of derivations is composed, up to a certain degree, only by derivations fixing a finite
family of lines.

Theorem 8. LetA be an arrangement. For all 0 < d < min(|A| −m(A) + 1, |A| − p(A)), the
setsDd(A) andD f

d (A) are equal.

Since D∞(A) and D f (A) forms a disjoint partition of D(A), we conclude the following
result from Theorem 4 and 8.

Corollary 9. Let A be an arrangement, ν∞ = max(m(A) − 1, p(A)) and ν f = min(|A| −
m(A) + 1, |A| − p(A). If 0 < d < min(ν∞, ν f ) thenDd(A) = ∅.
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Then, we present two explicit counterexamples of line arrangements. As a first pair, we
consider the configurations (93)1 and (93)2 realized in [9], called the Pappus and non-Pappus
arrangements and denoted by P1 and P2 respectively. Both arrangements have the same
weak combinatorics (i.e. they share the same number of singularities for each multiplicity).
We know that D4(P1) , 0 and D4(P2) = 0, but the previous theorem implies that D4(Pi) =

D
f
4 (Pi) (for i = 1, 2) and thus d f (P1) , d f (P2). The second pair corresponds to Ziegler’s

arrangement Z1 and a small deformation Z2, with same strong combinatorics, i.e. L(Z1) '
L(Z2). In its paper [10], Ziegler proves that D5(Z1) , 0 and D5(Z2) = 0, but the previous
theorem implies thatD5(Zi) = D

f
5 (Zi) (for i = 1, 2) and thus d f (Z1) , d f (Z2).
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