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FACTORIZATION OF VANDERMONDE
MATRICES AND THE NEWTON FORMULA

Jesús Carnicer, Yasmina Khiar and Juan Manuel Peña
Abstract. We revisit the connection between the Lagrange polynomial interpolation
problem and the linear systems of equations with Vandermonde coefficient matrices. We
present several related algorithms that can be computed to high relative accuracy (HRA).
In fact, we propose an algorithm to compute the triangular matrices of the Crout factor-
ization and their inverses with high relative acurracy.
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§1. Introduction

In the last years, the research on algorithms with HRA is being a very active field in Nu-
merical Linear Algebra. These algorithms have been obtained for some structured classes of
matrices. One of these classes of matrices is given by the totally positive matrices, which are
matrices with all their minors nonnegative. Nonsingular totally positive matrices can be fac-
torized as a product of nonnegative bidiagonal matrices. This factorization is unique under
certain restrictions (see [4]) and provides a natural parameterization of nonsingular totally
positive matrices. In [7] it was shown that, if we know the bidiagonal factorization of a
nonsingular totally positive matrix with HRA, then many algebraic problems associated with
these matrices can be calculated with HRA, including the computation of its eigenvalues and
singular values, its inverse or its triangular factorization.

The Vandermonde matrix is the coefficient matrix of a linear system for solving a La-
grange interpolation problem. The interpolation points are usually called nodes. A Van-
dermonde matrix with increasing nonnegative nodes is nonsingular totally positive and in
[3] it was proved that the mentioned bidiagonal decomposition can be obtained with HRA.
In contrast to the previous result, in this paper we present algorithms with HRA even for
Vandermonde matrices that are not totally positive. Further results on the stability of linear
systems with Vandermonde matrices can be found in [5], [6] and on the stability of totally
positive linear systems can be found in [1] and [8].

There are several triangular factorizations for a nonsingular matrix. The Crout factoriza-
tion decomposes the matrix as a product of a lower triangular matrix and an upper triangular
matrix with unit diagonal. The Crout factorization of a Vandermonde matrix is closely related
with the Newton interpolation formula. The stability of the Newton formula might depend
on the order of the nodes (see [9]). Therefore it is important to consider different orderings
of the nodes in a Vandermonde matrix as we perform in this paper.

The layout of this paper is as follows. Section 2 relates the Lagrange interpolation for-
mula with the inverse of a Vandermonde matrix. Section 3 shows how to obtain the Crout
factorization, V = LU, of a Vandermonde matrix using the Newton interpolation formula. In
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Section 4 it is suggested an algorithm for computing the inverses L−1 and U−1. Finally, in
Section 5 we apply the previous results to compute V−1, L, L−1, U and U−1 with HRA.

§2. Lagrange formula and the inverse of a Vandermonde matrix

A classical problem in approximation theory is the Lagrange interpolation problem.

Lagrange interpolation problem. Let U be an (n + 1)-dimensional function space. Given
distinct nodes x0, . . . , xn and given values f0, . . . , fn, find u ∈ U such that u(xi) = fi,
i = 0, . . . , n.

The interpolant can be obtained in different spaces and can be expressed in terms of
different bases. If (u0, . . . , un) is a basis of U, we can write the solution u in the form u =∑n

i=0 ciui and the interpolation problem is reduced to solve the linear system

M
(u0, . . . , un

x0, . . . , xn

)
c = f,

where c = (c0, . . . , cn)T , f = ( f0, . . . , fn)T in Rn+1 and

M
(u0, . . . , un

x0, . . . , xn

)
= (u j(xi))i, j=0,...,n

in R(n+1)×(n+1), denotes the collocation matrix of the basis at the nodes. Here we use the
convention that the first index of rows and columns is 0 instead of 1, so that the corresponding
dimension is n + 1.

If we take U as the space of the polynomials of degree less than or equal to n, Pn, then
the Lagrange interpolation problem has always a unique solution. In order to solve it, we
express the interpolation polynomial respect to the monomial basis, m = (m0, . . . ,mn), where
m j(x) = x j, j = 0, . . . , n. Setting p(x) = m(x)T c =

∑n
j=0 c jx j. Then the problem is reduced to

the linear system Vc = f, where

V = V(x0, . . . , xn) := M
(m0,m1, . . . ,mn

x0, x1, . . . , xn

)
=


1 x0 · · · xn

0
1 x1 · · · xn

1
...

...
1 xn · · · xn

n

 (1)

is the Vandermonde matrix with nodes x0, . . . , xn. Note that V is a nonsingular matrix for
any distinct x0, . . . , xn because of the unisolvence of the Lagrange polynomial interpolation
problem. Thus the solution of the interpolation problem is

p = mTc, c = V−1f. (2)

The functions
l j(x) =

∏
k, j

x − xk

x j − xk
, j = 0, . . . , n,



Factorization of Vandermonde matrices and the Newton formula 55

form the Langrange basis l = (l0, . . . , ln)T . It is well-known that the solution of the Lagrange
polynomial interpolation problem can be expressed by the Lagrange formula

p = lTf. (3)

From (2) and (3), it follows that lTf = mTV−1f, and, as this relation must hold for all f, we
deduce that

lT = mTV−1.

So the matrix of change of basis between the Lagrange basis and the monomial basis is the
inverse of the Vandermonde matrix. Expanding the elements of the Lagrange basis in terms
of monomials, we obtain the (i, j) entry of V−1

v(−1)
i j =

(−1)n−i ∑
k1<···<kn−i∈{0,...,n}\{ j} xk1 · · · xkn−i∏

k, j(x j − xk)
. (4)

§3. Newton formula and the Crout factorization

If we express the polynomial interpolant in terms of the Newton basis, ω = (ω0, . . . , ωn) with

ω j(x) = (x − x0) · · · (x − x j−1), j = 0, . . . , n,

we obtain the Newton formula
p = ωT d, (5)

where d = (d0, . . . , dn), is the vector of divided differences, d j := [x0, . . . , x j] f , j = 0, . . . , n.
The collocation matrix of the Newton basis at the nodes x0, . . . , xn is

L := M
(ω0, . . . , ωn

x0, . . . , xn

)
=



1 0 0 · · · 0
1 x1 − x0 0 · · · 0

1 x2 − x0 (x2 − x0)(x2 − x1)
. . .

...
...

...
. . . 0

1 xn − x0 (xn − x0)(xn − x1) · · · (xn − x0) · · · (xn − xn−1)


,

(6)
whose (i, j) entry is li j = ω j(xi) =

∏ j−1
k=0(xi − xk), j ≤ i. Note that L is a lower triangular

matrix because w j(xi) = 0, if j > i. Evaluating (3) at each node, we deduce that the vector of
divided differences, d, is the solution of the linear system ω(xi)T d = fi, i = 0, . . . , n, that is,

Ld = f. (7)

The entries of the matrix L can be computed by recurrence, leading to the following
algorithm

li0 = 1, i = 0, . . . , n,
li j = li, j−1(xi − x j−1), i = j, . . . , n, j = 1, . . . , n. (8)
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If we apply the Newton formula,

p(x) = (ω0(x), . . . , ωn(x))


[x0] f

[x0, x1] f
...

[x0, . . . , xn] f

 ,
to f (x) = 1, x, . . . , xn, we obtain

mT = ωT M
( m0,m1, . . . ,mn

[x0], [x0, x1], . . . , [x0, . . . , xn]

)
. (9)

Taking into account that [x0, . . . , xi]m j = 0 if i > j, we deduce that the matrix of change of
basis between the Newton basis and the monomial basis is the upper triangular matrix

U := M
( m0,m1, . . . ,mn

[x0], [x0, x1], . . . , [x0, . . . , xn]

)
=



1 x0 x2
0 · · · xn

0
0 1 [x0, x1]x2 · · · [x0, x1]xn

0 0 1
. . .

...
...

...
. . .

. . . [x0, . . . , xn−1]xn

0 0 · · · 0 1


.

(10)
Applying Leibniz’s rule for divided differences to m j(x) = xm j−1(x), we have that

[x0, . . . , xi]m j = xi[x0, . . . , xi]m j−1 + [x0, . . . , xi−1]m j−1,

that is, ui j = ui−1, j−1 + xiui, j−1. This formula suggests the following algorithm for computing
the entries of U

u00 = 1, u0 j = x0u0, j−1, j = 1, . . . , n,
uii = 1, ui j = ui−1, j−1 + xiui, j−1, j = i + 1, . . . , n, i = 1, . . . , n. (11)

Considering the collocation matrices at x0, . . . , xn corresponding to the bases in formula
(9), we deduce that

M
(m0,m1, . . . ,mn

x0, x1, . . . , xn

)
= M

(ω0, ω1, . . . , ωn

x0, x1, . . . , xn

)
U,

which implies that
V = LU, (12)

that is, the matrices L and U form the (unique) Crout factorization of the Vandermonde ma-
trix, where L is a lower triangular matrix whose diagonal entries are the pivots of the gaussian
elimination and U is an upper triangular matrix with unit diagonal.

The LU factorization is used frequently to solve linear systems. In order to solve Vc = f,
with V = LU, we consider the following two triangular systems

Ld = f, Uc = d.

The solution of the system Vc = f is reduced to the successive resolution of these triangular
systems with matrices L and U. These systems link the solution with an intermediate vector
d, the vector of the divided differences, and, therefore, they are directly related with the
Newton formula.
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§4. Inverse triangular matrices

Let L and U be the triangular matrices in (6) and (10) respectively. Comparing the Lagrange
formula and the Newton formula we obtain

l(x)T f = ω(x)T d

and, using (7), we have the relation l(x)T f = ω(x)T L−1f for all f ∈ Rn+1, and so we deduce
that

l(x)T = ω(x)T L−1.

Therefore, the inverse L−1 is the matrix of change of basis between the Lagrange basis and
the Newton basis, and it follows that

L−1 = M
( l0, l1, . . . , ln
[x0], [x0, x1], . . . , [x0, . . . , xn]

)
.

The previous formula does not provide the entries of L−1 explicitly, but it describes them
in terms of divided differences. A second option uses the formula

[x0, . . . , xi] f =

i∑
j=0

f (x j)∏
k∈{0,...,i}\{ j}(x j − xk)

.

In order to simplify the notation, notice that

ω′i+1(x j) =
∏

k∈{0,...,i}\{ j}

(x j − xk),

which allows us to establish the following relation between d and f

di =

i∑
j=0

f j

ω′i+1(x j)
, i = 0, . . . , n.

By (7), d = L−1f, and we deduce that the (i, j) entry of the matrix L−1 is

l(−1)
i j =

1
ω′i+1(x j)

=
1∏

k∈{0,...,i}\ j(x j − xk)

when j ≤ i and 0 otherwise. Then we can compute L−1 as follows

l(−1)
i j = −

l(−1)
i−1, j

xi − x j
, j = 0, . . . , i − 1, l(−1)

ii =
1∏i−1

j=0(xi − x j)
, i = 0, . . . , n. (13)

In order to get the inverse of the matrix U, we start with the relation between the Newton
basis and the monomial basis

(ω0(x), . . . , ωn(x)) = (m0(x), . . . ,mn(x))U−1.
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Taking into account that the entries u(−1)
i j , i = 0, . . . , j, are the coefficients of ω j with

respect to the monomial basis (m0, . . . ,m j), we can compare the coefficients in the relation
ω j(x) = (x − x j−1)ω j−1(x) and obtain the algorithm

u(−1)
00 = 1, u(−1)

0 j = −x j−1u(−1)
0, j−1, j = 1, . . . , n,

u(−1)
ii = 1, u(−1)

i j = u(−1)
i−1, j−1 − x j−1u(−1)

i, j−1, j = i + 1, . . . , n, i = 1, . . . , n. (14)

§5. Accurate LU factorization of a Vandermonde matrix

A quantity X can be obtained with high relative accuracy (HRA) if the relative error of the
computed value X̂ can be bounded as follows:

||X − X̂||
||X||

≤ Cu,

where C is a positive constant independent of the arithmetic precision and u is the unit round-
off.

In [2], it was shown we can compute with high relative accuracy the products, quotients
and true additions (addition of numbers with the same sign) of expressions that can be com-
puted with high relative accuracy. The subtractions (addition of numbers with the opposite
sign) are permitted only with initial data of the problem, as shown in [2]. If we perform the
computations with high relative accuracy, we can ensure that the relative errors are of the
order of the roundoff unit, with independence of the conditioning of the problem.

It is well-known that the inverse of a Vandermonde matrix with nonnegative increasing
nodes can be computed with HRA because the matrix is totally nonnegative and its bidiag-
onal factorization can be obtain with high relative accuracy (see [3] and [7]). However, the
following result shows that such computation is possible whenever all distinct nodes have the
same nonstrict sign and for all possible order configurations of the nodes.

Theorem 1. Let V be the Vandermonde matrix in (1) corresponding to a sequence of distinct
nodes of the same nonstrict sign. Then, V−1 can be computed with HRA.

Proof. Formula (4) expresses the entries of V−1 as a quotient. The denominator is a product
of differences of nodes (the initial data). The numerator is up to a sign a sum of terms. Such
terms are products of nodes and have the same sign. �

We have the following results about the matrices L and U and their inverses. For the
matrices L and L−1 there are no restrictions on the nodes, that is, HRA can be ensured for all
posible signs and order configurations of the nodes.

Theorem 2. Let L be the lower triangular matrix in (6). Then L and L−1 can be computed
with HRA for any distinct nodes, xi, i = 0, . . . , n, using algorithms (8) and (13), respectively.

Proof. The algorithms (8) and (13) only use subtractions of nodes (the initial data) and prod-
ucts and quotients of them. �

In contrast to Theorem 2, the following result requires the same restrictions on the nodes
as in Theorem 1 to ensure that U and U−1 can be computed with HRA.
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Theorem 3. Let U be the upper triangular matrix in (10) corresponding to a sequence of
nodes with the same nonstrict sign. Then U and U−1 can be computed with HRA, using
algorithms (11) and (14), respectively.

Proof. Let us first assume that all nodes are nonnegative, that is, xi ≥ 0 for all i = 0, . . . , n.
According to (11), the first row and the diagonal have nonnegative entries that can be

computed using only products of initial data. The elements ui j, j = i + 1, . . . , n, i = 1, . . . , n,
are computed by adding two nonnegative terms. Thus HRA can be ensured for the entries of
U.

Analogously, we see from (14) that the (i, j) entries in the first row and the diagonal of
U−1 have the same sign as (−1)i+ j and can be computed with HRA. Then we see that the
elements u(−1)

i j , j = i + 1, . . . , n, i = 1, . . . , n, are the sum of two terms that can be computed
with HRA, both of them with the same sign as (−1)i+ j.

Now let us assume that all nodes are nonpositive. Then, we have that

V(x0, . . . , xn) = V(−x0, . . . ,−xn)S , S :=


1
−1

. . .

(−1)n

 ,
that is, the Vandermonde matrix coincides with a Vandermonde matrix with nonnegative
nodes up to a change of sign in the columns. Let LU and L2U2 be the Crout factorizations
of V(x0, . . . , xn) and V(−x0, . . . ,−xn), respectively. Taking into account LU = (L2S )(S U2S ),
we deduce from the uniqueness of the Crout factorization that

L = L2S , U = S U2S . (15)

Therefore, (−1)i+ jui j and u(−1)
i j are nonnegative. Now the proof follows analogously to the

case of nonnegative nodes taking into account that the additions in algorithm (11) and (14)
sum terms of the same sign. �
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