Stability of the solutions FOR A SINGULAR AND SUBLINEAR ELLIPTIC PROBLEM

Paul Sauvy

Abstract

We give here some additional stability and qualitative properties for the solutions of a singular and sublinear elliptic absorption problem which has already been studied in Giacomoni-Mâagli-Sauvy [5].

Keywords: Stability, elliptic problem, sub and supersolutions method.
AMS classification: 35B35, 35J20.

§1. Introduction and recalls

The objective of the present paper is to give some additional results concerning the stability and other qualitative properties of the solutions of a quasilinear and singular problem (P_{λ}), which has been studied in Giacomoni-Mâagli-Sauvy [5]. Before giving more details about our main results, let us start by recalling the framework of [5].

In [5], the authors have considered the following quasilinear and singular problem:

$$
-\Delta_{p} u=\mathbf{1}_{\{u>0\}} K(x)\left(\lambda u^{q}-u^{r}\right) \quad \text { in } \Omega ;\left.\quad u\right|_{\partial \Omega}=0, \quad u \geq 0 \quad \text { in } \Omega,
$$

where Ω is a C^{2} bounded domain of $\mathbb{R}^{N}, 1<p<\infty, \lambda>0$ is a positive parameter. In the right-hand side of the equation, the exponents q and r satisfy $-1<r<q<p-1$ and $K \in C(\Omega)$ is a positive function having a singular behaviour near the boundary $\partial \Omega$. Precisely, $K(x)=d(x)^{-k} L(d(x))$ in Ω, with $d(x)$ the distance from $x \in \Omega$ to the boundary, $0<k<p$ and L a Karamata function, which is a lower positive perturbation satisfying $L \in C^{2}((0, D])$ a positive function, with $D:=\operatorname{diam}(\Omega)$, defined as follows:

$$
\begin{equation*}
L(t)=\exp \left(\int_{t}^{D} \frac{z(s)}{s} d s\right) \tag{1.1}
\end{equation*}
$$

with $z \in C([0, D]) \cap C^{1}((0, D])$ and $z(0)=0$. Let us just recall that (1.1) implies that

$$
\begin{equation*}
\forall \varepsilon>0, \quad \lim _{t \rightarrow 0^{+}} t^{\varepsilon} L(t)=0 \quad \text { and } \quad \lim _{t \rightarrow 0^{+}} t^{-\varepsilon} L(t)=+\infty . \tag{1.2}
\end{equation*}
$$

The authors have discussed the existence of positive or compact-support solutions of $\left(\mathrm{P}_{\lambda}\right)$ with respect to the blow-up rate k of the singularity $K(x)$. Precisely, they have proved the existence of a critical value for the blow-up rate k separating existence and non-existence of positive solutions for problem (P_{λ}). In particular, the first case (existence of positive solutions) is investigated in the following theorem:

Theorem 1 (See [5, Theorem 2.1]). When $k<1+r$, there exists a constant $\Lambda_{1}>0$ such that:

1. For $\lambda>\Lambda_{1},\left(P_{\lambda}\right)$ admits a positive weak solution.
2. Any weak solution of $\left(P_{\lambda}\right)$ is $C^{1, \beta}(\bar{\Omega})$, for some $0<\beta<1$.
3. For $\lambda<\Lambda_{1},\left(P_{\lambda}\right)$ has no positive solution.

The critical parameter $\Lambda_{1}>0$ is defined as follows: $\Lambda_{1}:=\inf \left\{\lambda>0 \mid u_{\lambda}>0\right.$ a.e. in $\left.\Omega\right\}$, where $u_{\lambda} \in \mathrm{W}_{0}^{1, p}(\Omega) \cap \mathrm{L}^{\infty}(\Omega)$ is a maximal solution to $\left(\mathrm{P}_{\lambda}\right)$ obtained by a sub and supersolution method. In particular, we have $u_{\lambda} \leq \bar{u}_{\lambda}$ a.e. in Ω, where $\bar{u}_{\lambda} \in \mathrm{W}_{0}^{1, p}(\Omega)$ is a supersolution to $\left(\mathrm{P}_{\lambda}\right)$. Precisely, $\bar{u}_{\lambda}:=\bar{M} v$ in Ω, where \bar{M} is a positive constant sufficiently large and v is the unique solution of problem

$$
\begin{equation*}
-\Delta_{p} v=K(x) v^{q} \quad \text { in } \Omega ;\left.\quad v\right|_{\partial \Omega}=0, \quad v \geq 0 \quad \text { in } \Omega . \tag{Q}
\end{equation*}
$$

Moreover, from Moser iterations technique, we can prove that $v \in \mathrm{~L}^{\infty}(\Omega)$ and from Lieber$\operatorname{man}[9], v \in C^{1, \alpha}(\bar{\Omega})$, for some $0<\alpha<1$. Then, v behaves like the distance to the boundary function in Ω (see [5, Lemma 3.3]). It is also proved in this paper the existence of a parameter $\lambda_{*}>0$ such that for any $\lambda \in\left(0, \lambda_{*}\right), u_{\lambda} \equiv 0$ in Ω.

Accordingly, natural issues deriving from Theorem 1 for problem $\left(\mathrm{P}_{\lambda}\right)$ concern the precise behaviour (with respect to the distance to the boundary) of the positive solution u_{λ} with $\lambda>\Lambda_{1}$, the existence or non-existence of a non-trivial solution for the critical problem ($\mathrm{P}_{\Lambda_{1}}$) and the stability of the solutions u_{λ} with $\lambda \geq \Lambda_{1}$ to $\left(\mathrm{P}_{\lambda}\right)$. In the general case studied in [5], those above questions have not been reached and remain open. In this paper, our goal is to answer these questions in the particular case of the Laplacian operator (i.e. when $p=2$) with a concave right hand side $K(x)\left(\lambda u^{q}-u^{r}\right)$ with respect to u; that is to say with

$$
\begin{equation*}
-1<r<0 \quad \text { and } \quad 0<q<1 . \tag{1.3}
\end{equation*}
$$

Precisely, in the next section (Section 2), we prove that the positive solutions constructed in Theorem 1 (point 1.) behave like the distance to the boundary function. Next, in Section 3, we investigate the critical case $\lambda=\Lambda_{1}$. We prove the existence of a unique almost everywhere positive solution of $\left(\mathrm{P}_{\Lambda_{1}}\right)$. Finally, in Section 4, we prove the stability of the positive solutions of problem $\left(\mathrm{P}_{\lambda}\right)$ with $\lambda>\Lambda_{1}$ and the semi-stability of the almost everywhere positive solution of $\left(\mathrm{P}_{\Lambda_{1}}\right)$.

So, from now, in problem $\left(\mathrm{P}_{\lambda}\right)$ we suppose that $p=2$ and that the exponents q and r satisfy the assumption (1.3).

§2. Behaviour of the solution $\boldsymbol{u}_{\boldsymbol{\lambda}}$

In this context we first get a precise behaviour in Ω of our maximal solution u_{λ} for $\lambda>\Lambda_{1}$.
Proposition 2. Assume that $\lambda>\Lambda_{1}$. Then, there exist two constants $C_{1}, C_{2}>0$ (depending on λ) such that, for all $x \in \Omega, C_{1} d(x) \leq u_{\lambda}(x) \leq C_{2} d(x)$.

Proof. Let us choose $\lambda^{\prime} \in\left(\Lambda_{1}, \lambda\right)$ and consider $\varphi \in C^{2}(\Omega) \cap C^{1, \alpha}(\bar{\Omega})$, for some $0<\alpha<1$, solution to

$$
-\Delta \varphi=K(x) u_{\lambda^{\prime}}^{q} \quad \text { in } \Omega ;\left.\quad \varphi\right|_{\partial \Omega}=0
$$

By the Hopf's Lemma (see for instance Evans [4, Lemma p. 330]), φ behaves like the distance function in Ω. Moreover, for $\varepsilon>0$ sufficiently small, $w:=u_{\lambda^{\prime}}+\varepsilon \varphi$ is a subsolution of (P_{λ}) in Ω. Indeed, if (1.3) is satisfied and $\lambda^{\prime}+\varepsilon \leq \lambda$, we have

$$
-\Delta w=K(x)\left\{\left(\lambda^{\prime}+\varepsilon\right) u_{\lambda^{\prime}}^{q}-u_{\lambda^{\prime}}^{r}\right\} \leq K(x)\left(\lambda w^{q}-w^{r}\right) \quad \text { in } \Omega .
$$

Then, choosing M sufficiently large in the definition of \bar{u}_{λ} and using the same lower- and upper-solution method as in [5, Proposition 4.1], we get $w \leq u_{\lambda} \leq \bar{u}_{\lambda}$ in Ω. Since both w and \bar{u}_{λ} behave like the distance function, the proof of Proposition 2 is now complete.

§3. About the critical problem ($\mathbf{P}_{\Lambda_{1}}$)

In Theorem 1, the existence of a critical value $\Lambda_{1}>0$ separating existence and non-existence of a positive solution to $\left(\mathrm{P}_{\lambda}\right)$ is proved. However, it is not clear if there exists a positive solution $u_{\Lambda_{1}}$ to $\left(\mathrm{P}_{\Lambda_{1}}\right)$. The present section deals with the positiveness of $u_{\Lambda_{1}}$.

First, let us prove the existence of a non-trivial solution of $\left(\mathrm{P}_{\Lambda_{1}}\right)$. For that, we use the precise behaviour of the solutions of $\left(\mathrm{P}_{\lambda}\right)$, for $\lambda>\Lambda_{1}$, given in Proposition 2. Let $v \in$ $C_{0}(\Omega) \cap C^{1, \alpha}(\bar{\Omega})$, for some $0<\alpha<1$, be the unique solution to (Q). Then for $\lambda>\Lambda_{1}$, we define

$$
\begin{equation*}
U_{\lambda}:=\lambda^{\frac{1}{1-q}} v \quad \text { in } \Omega . \tag{3.1}
\end{equation*}
$$

This function U_{λ} is the unique solution of the problem

$$
\begin{equation*}
-\Delta w=\lambda K(x) w^{q} \quad \text { in } \Omega ;\left.\quad w\right|_{\partial \Omega}=0, \quad w>0 \quad \text { in } \Omega, \tag{P}
\end{equation*}
$$

and behaves like the distance function in Ω (see [5, Lemma 3.3]). Furthermore, U_{λ} is also a supersolution to problem (P_{λ}) and, from the lower- and upper-solutions method, we have that $\lambda \mapsto U_{\lambda}$ is increasing on $\left(\Lambda_{1},+\infty\right)$. Then, we first prove the following lemma:
Lemma 3. Let $\lambda>\Lambda_{1}$ and let $u_{\lambda} \in C^{1, \beta}(\bar{\Omega})$, for some $0<\beta<1$, be the positive maximal solution of $\left(P_{\lambda}\right)$ we proved in Theorem 1. Then, $u_{\lambda} \leq U_{\lambda}$ in Ω.

Proof. In the proof, we use the uniqueness of the solution to problem (Q). Precisely, let us notice that $\underline{v}:=u_{\lambda}$ is a subsolution to (Q). Then, let us define $\bar{v}:=M V$ in Ω, where $M>0$ is taken large enough and V is the unique solution of problem

$$
\begin{equation*}
-\Delta V=K(x) \quad \text { in } \Omega ;\left.\quad V\right|_{\partial \Omega}=0 . \tag{3.2}
\end{equation*}
$$

Using a regularity result due to Gui-Lin [8], $V \in C_{0}(\bar{\Omega}) \cap C^{1, \alpha}(\bar{\Omega})$, for some $0<\alpha<1$ and thanks to the Hopf's Lemma, V behaves like the distance function in Ω. Then, for $M>0$ large enough, using the sub-homogeneity of problem $(\mathrm{Q}), \bar{v}$ is a supersolution to (Q). Moreover using the behaviour of u_{λ} given by Proposition 2, for M large enough, $\underline{v} \leq \bar{v}$ in Ω. Then, we consider the following monotone iterative scheme: for $n \in \mathbb{N}^{*}$,

$$
\begin{equation*}
-\Delta v_{n}=\lambda K(x) v_{n-1}^{q} \quad \text { in } \Omega ;\left.\quad v_{n}\right|_{\partial \Omega}=0, \tag{n}
\end{equation*}
$$

with $v_{0}:=\underline{v}$ in Ω. By induction on $n,\left(\mathrm{Q}_{n}\right)$ admits a unique solution $v_{n} \in C_{0}(\Omega) \cap C^{1, \alpha}(\bar{\Omega})$, for some $0<\alpha<1$. Moreover, using the weak maximum principle, for all $n \in \mathbb{N}^{*}$,

$$
\begin{equation*}
u_{\lambda}=\underline{v} \leq v_{n} \leq v_{n+1} \leq \bar{v} \quad \text { in } \Omega . \tag{3.3}
\end{equation*}
$$

So, for all $x \in \bar{\Omega}$, let us define $\tilde{v}(x):=\lim _{n \rightarrow+\infty} v_{n}(x)$. Moreover $\left(v_{n}\right)_{n \in \mathbb{N}}$ is bounded in $\mathrm{H}_{0}^{1}(\Omega)$, then passing to the limit in $\left(\mathrm{Q}_{n}\right), \tilde{v}$ is a weak solution to $\left(\overline{\mathrm{P}}_{\lambda}\right)$. Passing to the limit in (3.3), $\tilde{v}(x)$ behaves as the distance function in Ω. Therefore, from the uniqueness of the solution to $\left(\overline{\mathrm{P}}_{\lambda}\right)$, $\tilde{v}=U_{\lambda}$ in Ω. The proof is now complete.

The next result shows the existence and the positivity of an extremal solution $u_{\Lambda_{1}}$ for the problem (P_{λ}) ($u_{\Lambda_{1}}$ may vanish on a Lebesgue's measure-zero set).
Proposition 4. Problem $\left(\mathrm{P}_{\Lambda_{1}}\right)$ admits a non-trivial weak solution $u_{\Lambda_{1}} \in C^{1, \beta}(\bar{\Omega})$, for some $0<\beta<1$. Moreover,

$$
\begin{equation*}
\int_{\Omega} K(x) u_{\Lambda_{1}}^{r} \varphi_{1} d x<+\infty . \tag{3.4}
\end{equation*}
$$

As a consequence, $u_{\Lambda_{1}}>0$ a.e. in Ω.
Proof. Let $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ be a decreasing sequence converging to Λ_{1}. For all $n \in \mathbb{N}$, let us consider $u_{\lambda_{n}}$ the maximal solution to ($\mathrm{P}_{\lambda_{n}}$) given in Theorem 1. So for all $n \in \mathbb{N}$, $u_{\lambda_{n+1}}$ is a subsolution of $\left(\overline{\mathrm{P}}_{\lambda_{n}}\right)$ and using Lemma 3, $u_{\lambda_{n+1}} \leq U_{\lambda_{n+1}} \leq U_{\lambda_{n}}$ in Ω. Then, by the lower- and upper-solution method as it is used in the proof of Theorem 1, we construct $\tilde{u}_{\lambda_{n}}$ solution to $\left(\mathrm{P}_{\lambda_{n}}\right)$ between $u_{\lambda_{n+1}}$ and $U_{\lambda_{n}}$. Hence, by maximality of $u_{\lambda_{n}}$, it follows that

$$
\begin{equation*}
0<u_{\lambda_{n+1}} \leq u_{\lambda_{n}} \leq U_{\lambda_{0}} \quad \text { in } \Omega \tag{3.5}
\end{equation*}
$$

So let us define for all $x \in \bar{\Omega}, u_{\Lambda_{1}}(x):=\lim _{n \rightarrow+\infty} u_{\lambda_{n}}(x) \in\left[0, U_{\lambda_{0}}(x)\right]$. To prove (3.4), let us choose $\gamma \in(0,1), \varepsilon>0$ (small enough) and consider the function $\psi:=\left(\varphi_{1}+\varepsilon\right)^{\gamma}-\varepsilon^{\gamma} \in H_{0}^{1}(\Omega)$ as a test function. Then, a direct computation gives

$$
-\Delta \psi=-\gamma(\gamma-1)\left|\nabla \varphi_{1}\right|^{2}\left(\varphi_{1}+\varepsilon\right)^{\gamma-2}+\lambda_{1} \varphi_{1} \gamma\left(\varphi_{1}+\varepsilon\right)^{\gamma-1} \geq 0 \quad \text { in } \Omega .
$$

For all $n \in \mathbb{N}$,

$$
\left\langle-\Delta u_{\lambda_{n}}, \psi\right\rangle_{\mathrm{H}^{-1}(\Omega) \times \mathrm{H}_{0}^{1}(\Omega)}=\int_{\Omega} K(x)\left(\lambda_{n} u_{\lambda_{n}}^{q}-u_{\lambda_{n}}^{r}\right) \psi d x \geq 0 .
$$

Thus, we get

$$
\int_{\Omega} K(x) u_{\lambda_{n}}^{r} \psi d x \leq \lambda_{n} \int_{\Omega} K(x) u_{\lambda_{n}}^{q} \psi d x
$$

and passing to the limit as $\varepsilon \rightarrow 0$ and as $\gamma \rightarrow 1$, the Lebegue's dominated convergence theorem yields

$$
\int_{\Omega} K(x) u_{\lambda_{n}}^{r} \varphi_{1} d x \leq \lambda_{n} \int_{\Omega} K(x) u_{\lambda_{n}}^{q} \varphi_{1} d x .
$$

Finally, since for all $n \in \mathbb{N}, u_{\lambda_{n}} \leq U_{\lambda_{0}}$ in Ω, we have

$$
\begin{equation*}
\int_{\Omega} K(x) u_{\lambda_{n}}^{r} \varphi_{1} d x \leq \Lambda_{1} \int_{\Omega} K(x) U_{\lambda_{0}}^{q} \varphi_{1} d x<+\infty . \tag{3.6}
\end{equation*}
$$

Passing to the limit in (3.6), the monotone convergence theorem provides estimate (3.4).

To complete the proof, we still have to show that $u_{\Lambda_{1}}$ is a non-trivial weak solution of the extremal problem $\left(\mathrm{P}_{\Lambda_{1}}\right)$. First, notice that $\left(u_{\lambda_{n}}\right)_{n \in \mathbb{N}}$ is bounded in $\mathrm{H}_{0}^{1}(\Omega)$. Indeed, we have for all $n \in \mathbb{N}$,

$$
\int_{\Omega}\left|\nabla u_{\lambda_{n}}\right|^{2} d x \leq \int_{\Omega} \lambda_{n} K(x) u_{\lambda_{n}}^{q+1} d x \leq \int_{\Omega} \lambda_{0} K(x) U_{\lambda_{0}}^{q+1} d x<+\infty .
$$

So, identifying the limits in $\mathcal{D}^{\prime}(\Omega)$, up to a subsequence denoted in the same way, $u_{\lambda_{n}} \xrightarrow[n \rightarrow+\infty]{ }$ $u_{\Lambda_{1}}$ in $\mathrm{H}_{0}^{1}(\Omega)$ and a.e. in Ω. Let $\varphi \in \mathcal{D}(\Omega)$, then we get

$$
\begin{equation*}
\forall n \in \mathbb{N}, \quad \int_{\Omega} \nabla u_{\lambda_{n}} . \nabla \varphi d x=\int_{\Omega} K(x)\left(\lambda_{n} u_{\lambda_{n}}^{q}-u_{\lambda_{n}}^{r}\right) \varphi d x . \tag{3.7}
\end{equation*}
$$

In (3.7), it is easy to get the convergence of both the left hand side and the positive part of the right hand side. Concerning the negative part, since $u_{\Lambda_{1}}>0$ a.e. in Ω, we have that $K(x) u_{\lambda_{n}}^{r} \varphi \underset{n \rightarrow+\infty}{ } K(x) u_{\Lambda_{1}}^{r} \varphi$ a.e in Ω. Moreover, from estimate (3.6), for almost every $x \in \Omega$, $\left|K(x) u_{\lambda_{n}}^{r} \varphi\right| \leq K(x) u_{\Lambda_{1}}^{r}|\varphi| \in \mathrm{L}^{1}(\Omega)$. So, the Hölder inequality ensures that (3.4) holds. Hence, by the Lebesgue's dominated convergence theorem we pass to the limit as $n \rightarrow+\infty$ in (3.7) and it follows that $u_{\Lambda_{1}}$ is a non-trivial weak solution to $\left(\mathrm{P}_{\Lambda_{1}}\right)$. Finally, the $C^{1, \beta}(\bar{\Omega})$ regularity of $u_{\Lambda_{1}}$ follows from Theorem 1 .

Now, we show the uniqueness of the extremal positive solution $u_{\Lambda_{1}}$ to $\left(\mathrm{P}_{\Lambda_{1}}\right)$.
Proposition 5. Let $v \in \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{L}^{\infty}(\Omega)$ be a positive solution to $\left(P_{\Lambda_{1}}\right)$. Then, $v=u_{\Lambda_{1}}$ a.e. in Ω.

Proof. Let $v \in \mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{L}^{\infty}(\Omega)$ be a positive solution to $\left(\mathrm{P}_{\Lambda_{1}}\right)$ such that $v \not \equiv u_{\Lambda_{1}}$ in Ω. Since the mapping $t \mapsto \Lambda_{1} t^{q}-t^{r}$ is (strictly) concave on ($0,+\infty$), the convex combination $w:=$ $t u_{\Lambda_{1}}+(1-t) v$, with $0<t<1$, is a (strict) subsolution of $\left(\mathrm{P}_{\Lambda_{1}}\right)$ in Ω. We now prove that it implies the existence of a positive solution to a problem $\left(\mathrm{P}_{\lambda^{\prime}}\right)$ with $\lambda^{\prime}<\Lambda_{1}$ close enough to Λ_{1}, from which we get a contradiction. Let $\varphi \in C^{1, \alpha}(\bar{\Omega})$, for a fixed $0<\alpha<1$, the unique solution to

$$
-\Delta \varphi=K(x)\left(\Lambda_{1} w^{q}-w^{r}\right) \quad \text { in } \Omega ;\left.\quad \varphi\right|_{\partial \Omega}=0 .
$$

By the weak maximum principle, $\varphi \geq w$ in Ω and by the strong maximum principle of Brézis-Nirenberg [2], there exists $\varepsilon>0$ small enough such that $\varphi(x) \geq(w+\varepsilon V)(x)$ and $(\varphi-\varepsilon V)(x) \geq \varepsilon d(x)$, for $x \in \Omega$. Furthermore, $-\Delta(\varphi-\varepsilon V) \leq K(x)\left[\Lambda_{1}(\varphi-\varepsilon V)^{q}-(\varphi-\varepsilon V)^{r}-\varepsilon\right]$ in Ω, where V is defined in (3.2). Thus, using lower- and upper-solutions method as in [5, Proposition 4.1] of this chapter, we prove the existence of $w_{1} \in C^{1, \alpha}(\bar{\Omega})$, for some $0<\alpha<1$, solution of

$$
-\Delta w_{1}=K(x)\left(\Lambda_{1} w_{1}^{q}-w_{1}^{r}-\varepsilon\right) \quad \text { in } \Omega ;\left.\quad w_{1}\right|_{\partial \Omega}=0
$$

It follows from the weak maximum principle that $w_{1}(x) \geq(\varphi-\varepsilon V)(x) \geq \varepsilon d(x)$ in Ω. Then, let $\lambda^{\prime} \in\left(0, \Lambda_{1}\right)$ and $\varepsilon^{\prime} \in\left(0,\left(\lambda^{\prime} / \Lambda_{1}\right) \varepsilon\right)$ be such that

$$
\left(\lambda^{\prime} / \Lambda_{1}\right)^{\frac{1}{r}} w_{1} \leq \varepsilon^{\prime} V+\left(\lambda^{\prime} / \Lambda_{1}\right) w_{1} \quad \text { in } \Omega .
$$

Setting $w_{2}:=\varepsilon^{\prime} V+\left(\lambda^{\prime} / \Lambda_{1}\right) w_{1}$ in Ω, we get

$$
-\Delta w_{2} \leq K(x)\left(\lambda^{\prime} w_{1}^{q}-\left(\lambda^{\prime} / \Lambda_{1}\right) w_{1}^{r}-\left(\lambda^{\prime} / \Lambda_{1}\right) \varepsilon+\varepsilon^{\prime}\right) \leq K(x)\left(\lambda^{\prime} w_{2}^{q}-w_{2}^{r}\right) \quad \text { in } \Omega .
$$

By choosing λ^{\prime} close enough to $\Lambda_{1}, w_{2} \geq w_{1}$ in Ω. Finally, by a sub and supersolution method, we conclude on the existence of a positive solution of the problem $\left(\mathrm{P}_{\lambda^{\prime}}\right)$, which proves the uniqueness of $u_{\Lambda_{1}}$ among the almost everywhere positive solution to $\left(\mathrm{P}_{\Lambda_{1}}\right)$.

Remark 1. This kind of argument has been introduced by Brezis et al. [1] for convex nonlinearities.

§4. About the stability of the solution u_{λ}

Now for $\lambda>\Lambda_{1}$, let us focus on the stability of the maximal solutions u_{λ} of Theorem 1. For that, we use some variational methods extracted from [6] and [7]. Let us define the energy functional \mathcal{E}_{λ} by

$$
\mathcal{E}_{\lambda}(v):=\int_{\Omega}|\nabla v|^{2} d x+r \int_{\Omega} K(x) u_{\lambda}^{r-1} v^{2} d x-\lambda q \int_{\Omega} K(x) u_{\lambda}^{q-1} v^{2} d x
$$

for all $\lambda>\Lambda_{1}$ and all $v \in \mathrm{H}_{0}^{1}(\Omega)$; and set $\Lambda(\lambda):=\inf \left\{\mathcal{E}_{\lambda}(v) \mid v \in \mathrm{H}_{0}^{1}(\Omega),\|v\|_{\mathrm{L}^{2}(\Omega)}=1\right\}$, the first eigenvalue of the linearised operator associated to $\left(\mathrm{P}_{\lambda}\right)$.
Definition 1. The maximal solution u_{λ} of problem (P_{λ}) is said to be stable (resp. semi-stable) if and only if $\Lambda(\lambda)>0($ resp. $\Lambda(\lambda) \geq 0)$.

For more details concerning stability of solutions, we refer to the book of L. Dupaigne [3]. First, we observe that $\Lambda(\lambda)$ is well defined thanks to Proposition 2 and Hardy's inequality. Indeed, for all $v \in \mathrm{H}_{0}^{1}(\Omega)$ and $\varepsilon>0$ small enough,

$$
\begin{align*}
\mathcal{E}_{\lambda}(v) & \geq\|v\|_{\mathrm{H}_{0}^{1}(\Omega)}-\lambda q \int_{\Omega \backslash \Omega_{\varepsilon}} K(x) u_{\lambda}^{q-1} v^{2} d x-\lambda q \int_{\Omega_{\varepsilon}} K(x) u_{\lambda}^{q-1} v^{2} d x \\
& \geq\|v\|_{\mathrm{H}_{0}^{1}(\Omega)}-\lambda q C_{\varepsilon}\|v\|_{\mathrm{L}^{2}(\Omega)}-\lambda q \varepsilon^{q+1-k} C\|v\|_{\mathrm{H}_{0}^{1}(\Omega)} \tag{4.1}\\
& \geq \frac{1}{2}\|v\|_{\mathrm{H}_{0}^{1}(\Omega)}^{2}-\lambda q C_{\varepsilon}\|v\|_{\mathrm{L}^{2}(\Omega)} \geq C_{0}>-\infty,
\end{align*}
$$

with $\Omega_{\varepsilon}:=\{x \in \Omega \mid d(x)<\varepsilon\}$. Using the maximality of the solution u_{λ}, we now prove that $\Lambda(\lambda)>0$, for every $\lambda>\Lambda_{1}$.

4.1. Study of a regularised problem

Let $\varepsilon_{0}>0$. So, for $\varepsilon \in\left(0, \varepsilon_{0}\right)$, we consider the following perturbed problem:

$$
-\Delta u_{\varepsilon}=\lambda K(x)\left(u_{\varepsilon}+\varepsilon\right)^{q}-\frac{K(x) u_{\varepsilon}}{\left(u_{\varepsilon}+\varepsilon\right)^{1-r}} \quad \text { in } \Omega,\left.\quad u_{\varepsilon}\right|_{\partial \Omega}=0, \quad u_{\varepsilon} \geq 0 \quad \text { in } \Omega . \quad\left(\mathrm{P}_{\lambda, \varepsilon}\right)
$$

Let us prove that $\left(\mathrm{P}_{\lambda, \varepsilon}\right)$ admits a maximal solution. Observe that u_{λ} the maximal solution to $\left(\mathrm{P}_{\lambda}\right)$ constructed in Theorem 1 is a subsolution of $\left(\mathrm{P}_{\lambda, \varepsilon}\right)$. To get a suitable supersolution of problem ($\mathrm{P}_{\lambda, \varepsilon}$), we consider the following problem:

$$
-\Delta v=\lambda K(x)(v+\varepsilon)^{q} \quad \text { in } \Omega,\left.\quad v\right|_{\partial \Omega}=0, \quad v \geq 0 \quad \text { in } \Omega . \quad\left(\overline{\mathrm{P}}_{\lambda, \varepsilon}\right)
$$

Proposition 6. Problem $\left(\overline{\mathrm{P}}_{\lambda, \varepsilon}\right)$ has a maximal solution $\bar{u}_{\lambda, \varepsilon} \in C^{1, \alpha}(\bar{\Omega})$, for some $0<\alpha<1$ satisfying $U_{\lambda} \leq \bar{u}_{\lambda, \varepsilon} \leq M V$ in Ω, where U_{λ} and V are respectively defined in (3.1) and (3.2) and $M>0$ is chosen large enough. Moreover, for $0<\varepsilon^{\prime} \leq \varepsilon<\varepsilon_{0}, \bar{u}_{\lambda, \varepsilon^{\prime}} \leq \bar{u}_{\lambda, \varepsilon}$ in Ω.

Proof. Proposition 6 follows from the lower- and upper-solution method. Indeed, U_{λ} is a subsolution of $\left(\overline{\mathrm{P}}_{\lambda, \varepsilon}\right)$ independent of ε. Moreover, since V is bounded in Ω, there exists $C>0$ independent of M and ε such that $\lambda(V+\varepsilon / M)^{q} \leq C$ in Ω. Then,

$$
-\Delta(M V)-K(x)(M V+\varepsilon)^{q} \geq M^{q} K(x)\left[M^{1-q}-C\right] \geq 0 \quad \text { in } \Omega
$$

for $M>0$ large enough. Thus, $M V$ is a supersolution to $\left(\bar{P}_{\lambda, \varepsilon}\right)$ and the existence of the maximal solution $\bar{u}_{\lambda, \varepsilon}$ follows. For $\varepsilon^{\prime} \in(0, \varepsilon), \bar{u}_{\lambda, \varepsilon^{\prime}}$ is a subsolution of $\left(\overline{\mathrm{P}}_{\lambda, \varepsilon}\right)$ such that $\bar{u}_{\lambda, \varepsilon^{\prime}} \leq$ $M V$ in Ω. Therefore, from the maximality of the solution $\bar{u}_{\lambda, \varepsilon}$, the second inequality follows.

Proposition 7. Problem $\left(P_{\lambda, \varepsilon}\right)$ has a maximal solution $u_{\lambda, \varepsilon} \in C^{1, \alpha}(\bar{\Omega})$, for some $0<\alpha<1$, such that $u_{\lambda} \leq u_{\lambda, \varepsilon} \leq \bar{u}_{\lambda, \varepsilon}$ in Ω. Moreover for $0<\varepsilon^{\prime} \leq \varepsilon<\varepsilon_{0}$, we have $u_{\lambda, \varepsilon^{\prime}} \leq u_{\lambda, \varepsilon}$ in Ω.

Proof. We consider the following iterative scheme:

$$
-\Delta u_{\varepsilon}^{n}+\frac{K(x) u_{\varepsilon}^{n}}{\left(u_{\varepsilon}^{n-1}+\varepsilon\right)^{1-r}}=\lambda K(x)\left(u_{\varepsilon}^{n-1}+\varepsilon\right)^{q} \quad \text { in } \Omega ; \quad u_{\varepsilon}^{n} \mid \partial \Omega=0, \quad u_{\varepsilon}^{n} \geq 0 \quad \text { in } \Omega, \quad\left(\mathrm{P}_{\lambda, \varepsilon}^{n}\right)
$$

with $u_{\varepsilon}^{0}=\bar{u}_{\lambda, \varepsilon}$. By induction on $n,\left(\mathrm{P}_{\lambda, \varepsilon}^{n}\right)$ admits a unique solution $u_{\varepsilon}^{n} \in C^{2}(\Omega) \cap C(\bar{\Omega})$. Indeed, for $n=1$ we get a solution u_{ε}^{1} of $\left(\mathrm{P}_{\lambda, \varepsilon}^{1}\right)$ as a minimizer of the functional E_{1} defined for all $v \in \mathrm{H}_{0}^{1}(\Omega)$ by

$$
E_{1}(v):=\int_{\Omega}|\nabla v|^{2} d x+\frac{1}{2} \int_{\Omega} \frac{K(x) v^{2}}{\left(\bar{u}_{\lambda, \varepsilon}+\varepsilon\right)^{1-r}} d x-\lambda \int_{\Omega} K(x)\left(\bar{u}_{\lambda, \varepsilon}+\varepsilon\right)^{q} v d x .
$$

Moreover,

$$
-\Delta\left(u_{\varepsilon}^{1}-\bar{u}_{\lambda, \varepsilon}\right)+K(x)\left[\frac{u_{\varepsilon}^{1}-\bar{u}_{\lambda, \varepsilon}}{\left(\bar{u}_{\lambda, \varepsilon}+\varepsilon\right)^{1-r}}\right] \leq 0
$$

in $\mathrm{H}^{-1}(\Omega)$. Then by the weak maximum principle, $u_{\varepsilon}^{1} \leq \bar{u}_{\lambda, \varepsilon}$ in Ω. And similarly, $u_{\lambda} \leq u_{\varepsilon}^{1}$ in Ω. Now, let $n \in \mathbb{N}^{*}$. By the same method we prove the existence of u_{ε}^{n} solution of $\left(\mathrm{P}_{\lambda, \varepsilon}^{n}\right)$ such that $u_{\lambda} \leq u_{\varepsilon}^{n} \leq \bar{u}_{\lambda, \varepsilon}$ in Ω. Moreover, we have

$$
-\Delta\left(u_{\varepsilon}^{n+1}-u_{\varepsilon}^{n}\right)+K(x)\left[\frac{u_{\varepsilon}^{n+1}}{\left(u_{\varepsilon}^{n}+\varepsilon\right)^{1-r}}-\frac{u_{\varepsilon}^{n}}{\left(u_{\varepsilon}^{n-1}+\varepsilon\right)^{1-r}}\right]=K(x)\left[\left(u_{\varepsilon}^{n}\right)^{q}-\left(u_{\varepsilon}^{n-1}\right)^{q}\right] \quad \text { in } \mathrm{H}^{-1}(\Omega) .
$$

So choosing $\left(u_{\varepsilon}^{n+1}-u_{\varepsilon}^{n}\right)^{+} \in \mathrm{H}_{0}^{1}(\Omega)$, we get

$$
\int_{\Omega} K(x)\left[\left(u_{\varepsilon}^{n}\right)^{q}-\left(u_{\varepsilon}^{n-1}\right)^{q}\right]\left(u_{\varepsilon}^{n+1}-u_{\varepsilon}^{n}\right)^{+} d x \leq 0
$$

and

$$
\begin{aligned}
\int_{\Omega} K(x)\left[\frac{u_{\varepsilon}^{n+1}}{\left(u_{\varepsilon}^{n}+\varepsilon\right)^{1-r}}-\frac{u_{\varepsilon}^{n}}{\left(u_{\varepsilon}^{n-1}+\varepsilon\right)^{1-r}}\right] & \left(u_{\varepsilon}^{n+1}-u_{\varepsilon}^{n}\right)^{+} d x \\
& \geq \int_{\Omega} K(x)\left[\frac{u_{\varepsilon}^{n+1}-u_{\varepsilon}^{n}}{\left(u_{\varepsilon}^{n}+\varepsilon\right)^{1-r}}\right]\left(u_{\varepsilon}^{n+1}-u_{\varepsilon}^{n}\right)^{+} d x \geq 0
\end{aligned}
$$

Hence finally, for any $n \in \mathbb{N}^{*}$, we get $u_{\lambda} \leq u_{\varepsilon}^{n+1} \leq u_{\varepsilon}^{n} \leq \bar{u}_{\lambda, \varepsilon}$ in Ω. For all $x \in \Omega$, we define $u_{\lambda, \varepsilon}(x)=\lim _{n \rightarrow \infty} u_{\varepsilon}^{n}(x)$. We also have for all $n \in \mathbb{N}^{*}$,

$$
\int_{\Omega}\left|\nabla u_{\lambda, \varepsilon}^{n}\right|^{2} d x \leq \int_{\Omega} K(x)\left(u_{\varepsilon}^{n-1}+\varepsilon\right)^{q} u_{\varepsilon}^{n} d x \leq \int_{\Omega} K(x)\left(\bar{u}_{\lambda, \varepsilon}+\varepsilon\right)^{q} \bar{u}_{\lambda, \varepsilon} d x<+\infty .
$$

Hence, $\left(u_{\varepsilon}^{n}\right)_{n \in \mathbb{N}^{*}}$ is bounded in $\mathrm{H}_{0}^{1}(\Omega)$. Therefore, $u_{\lambda, \varepsilon} \in \mathrm{H}_{0}^{1}(\Omega)$ and up to a subsequence denoted in the same way, $u_{\varepsilon}^{n} \xrightarrow[n \rightarrow+\infty]{\longrightarrow} u_{\lambda, \varepsilon}$ in $\mathrm{H}_{0}^{1}(\Omega)$ and a.e. in Ω. So passing to the limit in $\left(\mathrm{P}_{\lambda, \varepsilon}^{n}\right), u_{\lambda, \varepsilon}$ is a weak solution of $\left(\mathrm{P}_{\lambda, \varepsilon}\right)$ satisfying the first inequality of the statement. Finally, the $C^{1, \alpha}(\bar{\Omega})$ regularity of $u_{\lambda, \varepsilon}$ follows from Gui-Lin [8, Theorem 1.1]. Now, let $\varepsilon^{\prime} \in(0, \varepsilon)$. Then, for $n=1$ we have

$$
-\Delta\left(u_{\varepsilon^{\prime}}^{1}-u_{\varepsilon}^{1}\right)+K(x)\left[\frac{u_{\varepsilon^{\prime}}^{1}-u_{\varepsilon}^{1}}{\left(\bar{u}_{\lambda, \varepsilon}+\varepsilon\right)^{1-r}}\right] \leq \lambda K(x)\left[\left(\bar{u}_{\lambda, \varepsilon}+\varepsilon^{\prime}\right)^{q}-\left(\bar{u}_{\lambda, \varepsilon}+\varepsilon\right)^{q}\right] \leq 0 .
$$

Then by the weak maximum principle, $u_{\varepsilon^{\prime}}^{1} \leq u_{\varepsilon}^{1}$ in Ω. For $n \in \mathbb{N}^{*}$, by induction we have

$$
\begin{aligned}
-\Delta\left(u_{\varepsilon^{\prime}}^{n}-\right. & \left.u_{\varepsilon}^{n}\right)+K(x)\left[\frac{u_{\varepsilon^{\prime}}^{n}-u_{\varepsilon}^{n}}{\left(u_{\varepsilon}^{n-1}+\varepsilon\right)^{1-r}}\right] \\
& \leq-\Delta\left(u_{\varepsilon^{\prime}}^{n}-u_{\varepsilon}^{n}\right)+K(x)\left[\frac{u_{\varepsilon^{\prime}}^{n}}{\left(u_{\varepsilon^{\prime}}^{n-1}+\varepsilon^{\prime}\right)^{1-r}}-\frac{u_{\varepsilon}^{n}}{\left(u_{\varepsilon}^{n-1}+\varepsilon\right)^{1-r}}\right] \\
& =\lambda K(x)\left[\left(u_{\varepsilon^{\prime}}^{n-1}+\varepsilon^{\prime}\right)^{q}-\left(u_{\varepsilon}^{n-1}+\varepsilon\right)^{q}\right] \leq 0 .
\end{aligned}
$$

Hence, $u_{\varepsilon^{\prime}}^{n} \leq u_{\varepsilon}^{n}$ in Ω and passing to the limit as $n \rightarrow+\infty$, we finally get the second inequality.

4.2. Semi-stability of the maximal solution $\boldsymbol{u}_{\lambda, \varepsilon}$

Let $u_{\lambda, \varepsilon}$ be the maximal solution of $\left(\mathrm{P}_{\lambda, \varepsilon}\right)$ obtained above and let us define the first eigenvalue of the linearised operator associated to $\left(\mathrm{P}_{\lambda, \varepsilon}\right): \Lambda_{\varepsilon}(\lambda):=\inf \left\{\mathcal{E}_{\lambda, \varepsilon}(v) \mid v \in \mathrm{H}_{0}^{1}(\Omega),\|v\|_{\mathrm{L}^{2}(\Omega)}=1\right\}$, where $\mathcal{E}_{\lambda, \varepsilon}(v)$ is defined for all $v \in \mathrm{H}_{0}^{1}(\Omega)$ by

$$
\begin{align*}
\mathcal{E}_{\lambda, \varepsilon}(v):= & \int_{\Omega}|\nabla v|^{2} d x-\lambda q \int_{\Omega} \frac{K(x) v^{2}}{\left(u_{\lambda, \varepsilon}+\varepsilon\right)^{1-q}} d x \\
& +\int_{\Omega} \frac{K(x) v^{2}}{\left(u_{\lambda, \varepsilon}+\varepsilon\right)^{1-r}} d x+(r-1) \int_{\Omega} \frac{K(x) u_{\lambda, \varepsilon} v^{2}}{\left(u_{\lambda, \varepsilon}+\varepsilon\right)^{2-r}} d x . \tag{4.2}
\end{align*}
$$

Proposition 8. There exists $\Phi_{\varepsilon} \in \mathcal{H}:=\left\{v \in \mathrm{H}_{0}^{1}(\Omega) \mid\|v\|_{L^{2}}=1\right\}$, non-negative a.e. in Ω such that $\mathcal{E}_{\lambda, \varepsilon}\left(\Phi_{\varepsilon}\right)=\min _{v \in \mathcal{H}} \mathcal{E}_{\lambda, \varepsilon}(v)$. Hence, $\Phi_{\varepsilon} \in \mathcal{C}^{1, \alpha}(\bar{\Omega})$, for some $0<\alpha<1$, and satisfies

$$
\begin{equation*}
-\Delta \Phi_{\varepsilon}=\Lambda_{\varepsilon}(\lambda) \Phi_{\varepsilon}+f_{\lambda, \varepsilon}^{\prime}\left(u_{\lambda, \varepsilon}\right) \Phi_{\varepsilon} \quad \text { in } \Omega,\left.\quad \Phi_{\varepsilon}\right|_{\partial \Omega}=0, \quad \Phi_{\varepsilon} \geq 0 \quad \text { in } \Omega \tag{4.3}
\end{equation*}
$$

where for any $v \in \mathrm{H}_{0}^{1}(\Omega), f_{\lambda, \varepsilon}(v):=\lambda K(x)(v+\varepsilon)^{q}-K(x) v /(v+\varepsilon)^{1-r}$.
Proof. For sake of clarity, we denote in (4.2), $\mathcal{E}_{\lambda, \varepsilon}(v):=\|v\|_{\mathbf{H}_{0}^{\prime}(\Omega)}^{2}-\lambda q I_{1}^{\varepsilon}(v)+I_{2}^{\varepsilon}(v)+(r-1) I_{3}^{\varepsilon}(v)$. Using Hardy's inequality, we get a similar estimate to (4.1) for $\mathcal{E}_{\lambda, \varepsilon}$ and $\Lambda_{\varepsilon}(\lambda) \in \mathbb{R}$. So, let $\left(v_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{H}$ be an associated minimizing sequence. We have, $\left(v_{n}\right)_{n \in \mathbb{N}}$ is bounded in \mathcal{H} (see (4.1)). Therefore, there exist $\Phi_{\varepsilon} \in \mathcal{H}$ and a subsequence still denoted $\left(v_{n}\right)_{n \in \mathbb{N}}$ such that $v_{n} \xrightarrow[n \rightarrow+\infty]{ } \Phi_{\varepsilon}$ weakly in $\mathrm{H}_{0}^{1}(\Omega)$ and strongly in $\mathrm{L}^{2}(\Omega)$ and a.e. in Ω. Then we get $\left\|\Phi_{\varepsilon}\right\|_{\mathrm{H}_{0}^{1}(\Omega)} \leq \liminf _{n \rightarrow+\infty}\left\|v_{n}\right\|_{\mathrm{H}_{0}^{1}(\Omega)}$. Moreover, by Hardy's inequality $\left(v_{n} / d(x)\right)_{n \in \mathbb{N}}$ is bounded in $\mathrm{L}^{2}(\Omega)$; therefore up to a subsequence $v_{n} / d(x) \underset{n \rightarrow+\infty}{\longrightarrow} \Phi_{\varepsilon} / d(x)$ in $\mathrm{L}^{2}(\Omega)$. Then, writing

$$
I_{1}^{\varepsilon}\left(v_{n}\right)=\int_{\Omega} K(x) d(x)\left(u_{\lambda, \varepsilon}+\varepsilon\right)^{q-1}\left(v_{n} / d(x)\right) v_{n} d x
$$

we get that $I_{1}^{\varepsilon}\left(v_{n}\right) \xrightarrow[n \rightarrow+\infty]{\longrightarrow} I_{1}^{\varepsilon}\left(\Phi_{\varepsilon}\right)$. And similarly, $I_{2}^{\varepsilon}\left(v_{n}\right) \xrightarrow[n \rightarrow+\infty]{\longrightarrow} I_{2}^{\varepsilon}\left(\Phi_{\varepsilon}\right)$ and $I_{3}^{\varepsilon}(v) \xrightarrow[n \rightarrow+\infty]{ } I_{3}^{\varepsilon}\left(\Phi_{\varepsilon}\right)$. Hence, $\mathcal{E}_{\lambda, \varepsilon}\left(\Phi_{\varepsilon}\right) \leq \liminf _{n \rightarrow+\infty} \mathcal{E}_{\lambda, \varepsilon}\left(v_{n}\right)$ and $\mathcal{E}_{\lambda, \varepsilon}\left(\Phi_{\varepsilon}\right)=\min _{v \in \mathcal{H}} \mathcal{E}_{\lambda, \varepsilon}(v)=\Lambda_{\varepsilon}(\lambda)$. Since for all $v \in \mathcal{H}, \mathcal{E}_{\lambda, \varepsilon}(v)=\mathcal{E}_{\lambda, \varepsilon}(|v|)$, we can assume $\Phi_{\varepsilon} \geq 0$ a.e in Ω. From variational arguments, Φ_{ε} is a weak solution to (4.3). Finally the $C^{1, \alpha}(\bar{\Omega})$ Hölder regularity of Φ_{ε} follows from Gui-Lin [8, Theorem 1.1].

Proposition 9. Let $\lambda>0$ and $\varepsilon \in\left(0, \varepsilon_{0}\right)$. Then, the solution $u_{\lambda, \varepsilon}$ of $\left(P_{\lambda, \varepsilon}\right)$ is semi-stable.
Proof. Let us argue by contradiction. Suppose that $\Lambda_{\varepsilon}(\lambda)<0$. Let $\varepsilon^{\prime}>0$ and consider $\underline{u}_{\lambda, \varepsilon}:=u_{\lambda, \varepsilon}+\varepsilon^{\prime} \Phi_{\varepsilon}$. Then, we have

$$
-\Delta \underline{u}_{\lambda, \varepsilon}=f_{\lambda, \varepsilon}\left(u_{\lambda, \varepsilon}\right)+\varepsilon^{\prime} f_{\lambda, \varepsilon}^{\prime}\left(u_{\lambda, \varepsilon}\right) \Phi_{\varepsilon}+\varepsilon^{\prime} \Lambda_{\varepsilon}(\lambda) \Phi_{\varepsilon} \quad \text { in } \Omega,
$$

with $f_{\lambda, \varepsilon}$ defined in (4.3). And by a Taylor-Lagrange expansion

$$
f_{\lambda, \varepsilon}\left(\underline{u}_{\lambda, \varepsilon}\right)=f_{\lambda, \varepsilon}\left(u_{\lambda, \varepsilon}\right)+\varepsilon^{\prime} f_{\lambda, \varepsilon}^{\prime}\left(u_{\lambda, \varepsilon}\right) \Phi_{\varepsilon}+\frac{1}{2}\left(\varepsilon^{\prime} \Phi_{\varepsilon}\right)^{2} f_{\lambda, \varepsilon}^{\prime \prime}\left(u_{\lambda, \varepsilon}+\theta \varepsilon^{\prime} \Phi_{\varepsilon}\right) \quad \text { in } \Omega,
$$

with $\theta \in(0,1)$ and

$$
\forall v \in H_{0}^{1}(\Omega), f_{\lambda, \varepsilon}^{\prime \prime \prime}(v)=\lambda q(q-1) \frac{K(x)}{(v+\varepsilon)^{2-q}}+r(1-r) \frac{K(x)}{(v+\varepsilon)^{2-r}}-\varepsilon(1-r)(2-r) \frac{K(x)}{(v+\varepsilon)^{3-r}} .
$$

By Theorem 2.1 in Gui-Lin [8], Φ_{ε} behaves like the distance function in Ω, therefore there exists a positive constant C independent of θ and ε^{\prime} such that $\left|\Phi_{\varepsilon}^{2} f_{\lambda, \varepsilon}^{\prime \prime}\left(u_{\lambda, \varepsilon}+\theta \varepsilon^{\prime} \Phi_{\varepsilon}\right)\right| \leq C$ in Ω. So, choosing ε^{\prime} small enough,

$$
\varepsilon^{\prime} \Lambda_{\varepsilon}(\lambda) \Phi_{\varepsilon}<\frac{1}{2}\left(\varepsilon^{\prime} \Phi_{\varepsilon}\right)^{2} f_{\lambda, \varepsilon}^{\prime \prime}\left(u_{\lambda, \varepsilon}+\theta \varepsilon^{\prime} \Phi_{\varepsilon}\right) \quad \text { in } \Omega
$$

and $\underline{u}_{\lambda, \varepsilon}$ is a subsolution of $\left(\mathrm{P}_{\lambda, \varepsilon}\right)$. Moreover, using the Brézis-Nirenberg [2] strong maximum principle, $u_{\lambda, \varepsilon}<\bar{u}_{\lambda, \varepsilon_{0}}$ in Ω and since $\Phi_{\varepsilon} \in C^{1, \alpha}(\bar{\Omega})$, for $\varepsilon^{\prime}>0$ sufficiently small, we have $\underline{u}_{\lambda, \varepsilon} \leq \bar{u}_{\lambda, \varepsilon_{0}}$ in Ω. Hence, using the same sub and supersolution technique, we get the existence of $\tilde{u}_{\lambda, \varepsilon}$ weak solution of $\left(\mathrm{P}_{\lambda, \varepsilon}\right)$ such that $\underline{u}_{\lambda, \varepsilon} \leq \tilde{u}_{\lambda, \varepsilon} \leq \bar{u}_{\lambda, \varepsilon_{0}}$ in Ω, which contradicts the maximality of $u_{\lambda, \varepsilon}$ in Proposition 7.

4.3. Semi-stability of the solution $\boldsymbol{u}_{\boldsymbol{\lambda}}$ for $\boldsymbol{\lambda} \geq \boldsymbol{\Lambda}_{\mathbf{1}}$

To prove the semi-stability of the maximal solution u_{λ} of $\left(\mathrm{P}_{\lambda}\right)$, we pass to the limit as $\varepsilon \rightarrow$ 0^{+}. Indeed, from Proposition 6 and Proposition 7 let us define for all $x \in \Omega, \tilde{U}_{\lambda}(x):=$ $\lim _{\varepsilon \rightarrow 0+} \bar{u}_{\lambda, \varepsilon}(x)$ and $\tilde{u}_{\lambda}(x):=\lim _{\varepsilon \rightarrow 0+} u_{\lambda, \varepsilon}(x)$. Then, passing to the limit in the inequality proved in Proposition 7, we get $u_{\lambda} \leq \tilde{u}_{\lambda} \leq \tilde{U}_{\lambda}$ in Ω. We also have, for all $\varepsilon \in\left(0, \varepsilon_{0}\right)$ and all $v \in \mathrm{H}_{0}^{1}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega} \nabla \bar{u}_{\lambda, \varepsilon} \cdot \nabla v d x=\lambda \int_{\Omega} K(x)\left(\bar{u}_{\lambda, \varepsilon}+\varepsilon\right)^{q} v d x . \tag{4.4}
\end{equation*}
$$

So choosing $\bar{u}_{\lambda, \varepsilon}$ as test function, we get

$$
\int_{\Omega}\left|\nabla \bar{u}_{\lambda, \varepsilon}\right|^{2} d x=\lambda \int_{\Omega} K(x)\left(\bar{u}_{\lambda, \varepsilon}+\varepsilon\right)^{q} \bar{u}_{\lambda, \varepsilon} d x \leq \lambda M \int_{\Omega} K(x)\left(M V+\varepsilon_{0}\right)^{q} V d x<+\infty .
$$

Then, $\left(\bar{u}_{\lambda, \varepsilon}\right)_{\varepsilon>0}$ is bounded in $\mathrm{H}_{0}^{1}(\Omega)$. So, up to a subsequence, passing to the limit as $\varepsilon \rightarrow 0^{+}$ in the first inequality of Proposition 6 and in (4.4), \tilde{U}_{λ} is a weak solution of $\left(\overline{\mathrm{P}}_{\lambda}\right)$ satisfying $U_{\lambda} \leq \tilde{U}_{\lambda} \leq M V$ in Ω. Hence, by uniqueness of a such solution of $\left(\overline{\mathrm{P}}_{\lambda}\right), U_{\lambda}=\tilde{U}_{\lambda}$ in Ω. Similarly, $\left(u_{\lambda, \varepsilon}\right)_{\varepsilon>0}$ is bounded in $\mathrm{H}_{0}^{1}(\Omega)$ and then \tilde{u}_{λ} is a weak solution to $\left(\mathrm{P}_{\lambda}\right)$ such that $u_{\lambda} \leq \tilde{u}_{\lambda} \leq U_{\lambda}$ in Ω. Hence, since u_{λ} is a maximal solution, it follows that $\tilde{u}_{\lambda} \equiv u_{\lambda}$ in Ω. So finally, since $\Lambda_{\varepsilon}(\lambda) \geq 0, \mathcal{E}_{\lambda, \varepsilon}(v) \geq 0$ for all $v \in \mathcal{H}$. With the notations used in the previous proof,

$$
I_{1}^{\varepsilon}(v) \underset{\varepsilon \rightarrow 0^{+}}{\longrightarrow} \int_{\Omega} K(x) u_{\lambda}^{r-1} v^{2} d x \quad \text { and } \quad I_{2}^{\varepsilon}(v)+(r-1) I_{3}^{\varepsilon}(v) \underset{\varepsilon \rightarrow 0^{+}}{\longrightarrow} r \int_{\Omega} K(x) u_{\lambda}^{q-1} v^{2} d x .
$$

Hence, $\Lambda(\lambda)=\lim _{\varepsilon \rightarrow 0^{+}} \Lambda_{\varepsilon}(\lambda) \geq 0$, which proves the semi-stability of u_{λ}. Moreover, by inequality (3.5) and Dini's Theorem, $u_{\lambda} \xrightarrow[\lambda \rightarrow \Lambda_{1}^{+}]{ } u_{\Lambda_{1}}$ in $L^{\infty}(\Omega)$. So, we also have $\Lambda\left(\Lambda_{1}\right) \geq 0$.

4.4. Stability of $\boldsymbol{u}_{\boldsymbol{\lambda}}$ for $\boldsymbol{\lambda}>\boldsymbol{\Lambda}_{\mathbf{1}}$

Finally, let us prove that $\Lambda(\lambda)>0$ for $\lambda>\Lambda_{1}$. For that we introduce the following new perturbed problem:

$$
-\Delta u=K(x)\left(\lambda u^{q}-u^{r}+\theta\right) \quad \text { in } \Omega ;\left.\quad u\right|_{\partial \Omega}=0, \quad u \geq 0 \quad \text { in } \Omega,
$$

with $\theta \in \mathbb{R}$. As above, we first show the existence of a branch of maximal solutions denoted $u_{\lambda}^{\theta} \in C^{1, \alpha}(\bar{\Omega})$ to problem $\left(\mathrm{P}_{\lambda}^{\theta}\right)$ for $\lambda>\Lambda_{1, \theta}$, where $\Lambda_{1, \theta}:=\inf \left\{\lambda>0 \mid\left(\mathrm{P}_{\lambda}^{\theta}\right)\right.$ has a positive solution a.e. in $\Omega\}$. As above, we have $\Lambda^{\theta}(\lambda):=\inf _{v \in \mathcal{H}} \mathcal{E}^{\theta}(v) \geq 0$, with $v \in \mathrm{H}_{0}^{1}(\Omega)$ and

$$
\mathcal{E}^{\theta}(v):=\int_{\Omega}|\nabla u|^{2} d x+r \int_{\Omega} K(x)\left(u_{\lambda}^{\theta}\right)^{r-1} u^{2} d x-\lambda q \int_{\Omega} K(x)\left(u_{\lambda}^{\theta}\right)^{q-1} u^{2} d x .
$$

Lemma 10. Assume $\lambda>\Lambda_{1}$. Then,

1. there exists $\theta_{0}<0$ such that $u_{\lambda}^{\theta_{0}}>0$ a.e. in Ω;
2. the mapping $\theta \longmapsto \Lambda^{\theta}(\lambda)$ is increasing on $\left(\theta_{0},+\infty\right)$.

Proof. By Proposition 2, for $\lambda>\Lambda_{1}$ there exist two constants $C_{1}, C_{2}>0$ depending on λ such that, for all $x \in \Omega, C_{1} d(x) \leq u_{\lambda}(x) \leq C_{2} d(x)$. Then, let us choose $\lambda^{\prime} \in\left(\Lambda_{1}, \lambda\right)$ and ε small enough to satisfy $\left(\lambda / \lambda^{\prime}\right) u_{\lambda^{\prime}} \geq u_{\lambda^{\prime}}+\varepsilon V$ and $\left[\lambda / \lambda^{\prime}-\left(\lambda / \lambda^{\prime}\right)^{1 / r}\right] u_{\lambda^{\prime}} \geq \varepsilon V$ a.e. in Ω, with V solution to (3.2). Defining $\underline{w}:=\left(\lambda / \lambda^{\prime}\right) u_{\lambda^{\prime}}-\varepsilon V$, we get $-\Delta \underline{w} \leq K(x)\left(\lambda \underline{w}^{q}-\underline{w}^{r}-\varepsilon\right)$ in Ω and as in the proof of Proposition 5, we prove the existence of $w \in C^{1, \alpha}(\bar{\Omega})$, for some $0<\alpha<1$, solution to

$$
-\Delta w=K(x)\left(\lambda w^{q}-w^{r}-\varepsilon\right) \quad \text { in } \Omega ;\left.\quad w\right|_{\partial \Omega}=0 .
$$

To complete the proof of point 1 of this lemma, it suffices to choose $\theta_{0} \in(-\varepsilon, 0)$. The second assertion follows from the strong maximum principle from which we get that, for $\theta<\theta^{\prime}$ the positive maximal solutions to $\left(\mathrm{P}_{\lambda}^{\theta}\right)$ and $\left(\mathrm{P}_{\lambda}^{\theta^{\prime}}\right)$ satisfy $u_{\lambda}^{\theta}<u_{\lambda}^{\theta^{\prime}}$ in Ω. Then, noting that as previously, or every $\theta \in\left(\theta_{0},+\infty\right)$, the infimum

$$
\Lambda^{\theta}(\lambda):=\inf _{u \in \mathcal{H}}\left\{\int_{\Omega}|\nabla u|^{2} d x+r \int_{\Omega} K(x)\left(u_{\lambda}^{\theta}\right)^{r-1} u^{2} d x-\lambda q \int_{\Omega} K(x)\left(u_{\lambda}^{\theta}\right)^{q-1} u^{2} d x\right\}
$$

is achieved for an element $\Phi^{\theta} \in \mathrm{H}_{0}^{1}(\Omega)$, we finally get $\Lambda^{\theta^{\prime}}(\lambda)>\Lambda^{\theta}(\lambda)$.
Thanks to this lemma, $\Lambda(\lambda)=\Lambda^{0}(\lambda)>\Lambda^{-\varepsilon}(\lambda) \geq 0$, which completes the proof.
Remark 2. When $\lambda>\Lambda_{1}, u_{\lambda}$ is the unique positive and semi-stable solution of $\left(\mathrm{P}_{\lambda}\right)$. Indeed, let us suppose there exists another positive and semi stable solution $v_{\lambda} \in H_{0}^{1}(\Omega)$, therefore by the strong maximum principle $v_{\lambda}<u_{\lambda}$ in Ω. By hypothesis, for every $u \in \mathrm{H}_{0}^{1}(\Omega)$,

$$
\int_{\Omega} K(x)\left(\lambda q v_{\lambda}^{q-1}-r v_{\lambda}^{r-1}\right) u^{2} d x \leq \int_{\Omega}|\nabla u|^{2} d x .
$$

Choosing $u=u_{\lambda}-v_{\lambda} \in \mathrm{H}_{0}^{1}(\Omega)$ this estimate becomes

$$
\begin{equation*}
\int_{\Omega} K(x)\left(\lambda q v_{\lambda}^{q-1}-r v_{\lambda}^{r-1}\right)\left(u_{\lambda}-v_{\lambda}\right)^{2} d x \leq \int_{\Omega}\left|\nabla\left(u_{\lambda}-v_{\lambda}\right)\right|^{2} d x . \tag{4.5}
\end{equation*}
$$

Since, u_{λ} and v_{λ} both are solution to (P_{λ}), then we also have

$$
\begin{equation*}
\int_{\Omega} K(x)\left[\lambda\left(u_{\lambda}^{q}-v_{\lambda}^{q}\right)-\left(u_{\lambda}^{r}-v_{\lambda}^{r}\right)\right]\left(u_{\lambda}-v_{\lambda}\right) d x=\int_{\Omega}\left|\nabla\left(u_{\lambda}-v_{\lambda}\right)\right|^{2} d x . \tag{4.6}
\end{equation*}
$$

Combining (4.5) and (4.6), we get

$$
\int_{\Omega} K(x)\left(u_{\lambda}-v_{\lambda}\right)\left\{\left[\left(\lambda u_{\lambda}^{q}-u_{\lambda}^{r}\right)-\left(\lambda u_{\lambda}^{q}-u_{\lambda}^{r}\right)\right]-\left(\lambda q v_{\lambda}^{q-1}-r v_{\lambda}^{r-1}\right)\left(u_{\lambda}-v_{\lambda}\right)\right\} d x \geq 0
$$

which contradicts $\left(u_{\lambda}-v_{\lambda}\right)>0$ in Ω because, by concavity of $t \mapsto \lambda t^{q}-t^{r}$,

$$
\left[\left(\lambda u_{\lambda}^{q}-u_{\lambda}^{r}\right)-\left(\lambda u_{\lambda}^{q}-u_{\lambda}^{r}\right)\right]-\left(\lambda q v_{\lambda}^{q-1}-r v_{\lambda}^{r-1}\right)\left(u_{\lambda}-v_{\lambda}\right) \leq 0 \quad \text { in } \Omega .
$$

Therefore u_{λ} is the unique solution among the positive and semi-stable solutions of $\left(\mathrm{P}_{\lambda}\right)$.

References

[1] Brézis, H., Cazenave, T., Martel, Y., and Ramiandrisoa, A. Blow up for $u_{t}-\Delta u=g(u)$ revisited. Adv. Differential Equations 1 (1996), 73-90.
[2] Brézis, H., and Nirenberg, L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36 (1983), 437-477.
[3] Dupaigne, L. Stable solutions of elliptic partial differential equations, vol. 143. Chapman \& Hall/CRC, Boca Raton, FL, 2011.
[4] Evans, L. C. Partial differential equations. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1998.
[5] Giacomoni, J., Mâagli, H., and Sauvy, P. Existence of compact support solutions for a quasilinear and singular problem. Differential and Integral Equations. 25 (2012), 629656.
[6] Giacomoni, J., Schindler, I., and Takáč, P. Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. 6 (2007), 117-158.
[7] Giacomoni, J., Schindler, I., and Takáč, P. Singular quasilinear elliptic equations and Hölder regularity. C. R. Math. Acad. Sci. Paris 350 (2012), 383-388.
[8] Gui, C., and Lin, F. Regularity of an elliptic problem with a singular nonlinearity. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 1021-1029.
[9] Lieberman, G. Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12 (1988), 1203-1219.

Paul Sauvy
LMAP - UMR CNRS 5142
Bâtiment IPRA - Avenue de l'université - BP 1155,
F- 64013 Pau CEDEX - FRANCE
paul.sauvy@univ-pau.fr

