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STABILITY OF THE SOLUTIONS
FOR A SINGULAR AND SUBLINEAR

ELLIPTIC PROBLEM
Paul Sauvy

Abstract. We give here some additional stability and qualitative properties for the so-
lutions of a singular and sublinear elliptic absorption problem which has already been
studied in Giacomoni-Mâagli-Sauvy [5].
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§1. Introduction and recalls

The objective of the present paper is to give some additional results concerning the stability
and other qualitative properties of the solutions of a quasilinear and singular problem (Pλ),
which has been studied in Giacomoni-Mâagli-Sauvy [5]. Before giving more details about
our main results, let us start by recalling the framework of [5].

In [5], the authors have considered the following quasilinear and singular problem:

−∆pu = 1{u>0}K(x)(λuq − ur) in Ω; u|∂Ω = 0, u ≥ 0 in Ω, (Pλ)

where Ω is a C2 bounded domain of RN , 1 < p < ∞, λ > 0 is a positive parameter. In
the right-hand side of the equation, the exponents q and r satisfy −1 < r < q < p − 1 and
K ∈ C(Ω) is a positive function having a singular behaviour near the boundary ∂Ω. Precisely,
K(x) = d(x)−kL(d(x)) in Ω, with d(x) the distance from x ∈ Ω to the boundary, 0 < k < p
and L a Karamata function, which is a lower positive perturbation satisfying L ∈ C2((0,D]) a
positive function, with D B diam(Ω), defined as follows:

L(t) = exp
(∫ D

t

z(s)
s

ds
)
, (1.1)

with z ∈ C([0,D]) ∩ C1((0,D]) and z(0) = 0. Let us just recall that (1.1) implies that

∀ε > 0, lim
t→0+

tεL(t) = 0 and lim
t→0+

t−εL(t) = +∞. (1.2)

The authors have discussed the existence of positive or compact-support solutions of (Pλ) with
respect to the blow-up rate k of the singularity K(x). Precisely, they have proved the existence
of a critical value for the blow-up rate k separating existence and non-existence of positive
solutions for problem (Pλ). In particular, the first case (existence of positive solutions) is
investigated in the following theorem:
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Theorem 1 (See [5, Theorem 2.1]). When k < 1+ r, there exists a constant Λ1 > 0 such that:

1. For λ > Λ1, (Pλ) admits a positive weak solution.

2. Any weak solution of (Pλ) is C1,β(Ω), for some 0 < β < 1.

3. For λ < Λ1, (Pλ) has no positive solution.

The critical parameter Λ1 > 0 is defined as follows: Λ1 B inf {λ > 0 | uλ > 0 a.e. in Ω},
where uλ ∈W1,p

0 (Ω)∩L∞(Ω) is a maximal solution to (Pλ) obtained by a sub and supersolution
method. In particular, we have uλ ≤ uλ a.e. in Ω, where uλ ∈ W1,p

0 (Ω) is a supersolution to
(Pλ). Precisely, uλ B Mv in Ω, where M is a positive constant sufficiently large and v is the
unique solution of problem

−∆pv = K(x)vq in Ω; v|∂Ω = 0, v ≥ 0 in Ω. (Q)

Moreover, from Moser iterations technique, we can prove that v ∈ L∞(Ω) and from Lieber-
man [9], v ∈ C1,α(Ω), for some 0 < α < 1. Then, v behaves like the distance to the boundary
function in Ω (see [5, Lemma 3.3]). It is also proved in this paper the existence of a parameter
λ∗ > 0 such that for any λ ∈ (0, λ∗), uλ ≡ 0 in Ω.

Accordingly, natural issues deriving from Theorem 1 for problem (Pλ) concern the precise
behaviour (with respect to the distance to the boundary) of the positive solution uλ with
λ > Λ1, the existence or non-existence of a non-trivial solution for the critical problem (PΛ1 )
and the stability of the solutions uλ with λ ≥ Λ1 to (Pλ). In the general case studied in [5],
those above questions have not been reached and remain open. In this paper, our goal is to
answer these questions in the particular case of the Laplacian operator (i.e. when p = 2) with
a concave right hand side K(x)(λuq − ur) with respect to u; that is to say with

−1 < r < 0 and 0 < q < 1. (1.3)

Precisely, in the next section (Section 2), we prove that the positive solutions constructed in
Theorem 1 (point 1.) behave like the distance to the boundary function. Next, in Section 3,
we investigate the critical case λ = Λ1. We prove the existence of a unique almost everywhere
positive solution of (PΛ1 ). Finally, in Section 4, we prove the stability of the positive solutions
of problem (Pλ) with λ > Λ1 and the semi-stability of the almost everywhere positive solution
of (PΛ1 ).

So, from now, in problem (Pλ)we suppose that p = 2 and that the exponents q and r
satisfy the assumption (1.3).

§2. Behaviour of the solution uλ

In this context we first get a precise behaviour in Ω of our maximal solution uλ for λ > Λ1.

Proposition 2. Assume that λ > Λ1. Then, there exist two constants C1,C2 > 0 (depending
on λ) such that, for all x ∈ Ω, C1d(x) ≤ uλ(x) ≤ C2d(x).

Proof. Let us choose λ′ ∈ (Λ1, λ) and consider ϕ ∈ C2(Ω) ∩ C1,α(Ω), for some 0 < α < 1,
solution to

−∆ϕ = K(x)uq
λ′ in Ω; ϕ|∂Ω = 0.
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By the Hopf’s Lemma (see for instance Evans [4, Lemma p. 330]), ϕ behaves like the distance
function in Ω. Moreover, for ε > 0 sufficiently small, w B uλ′ + εϕ is a subsolution of (Pλ)
in Ω. Indeed, if (1.3) is satisfied and λ′ + ε ≤ λ, we have

−∆w = K(x)
{
(λ′ + ε)uq

λ′ − ur
λ′
}
≤ K(x)(λwq − wr) in Ω.

Then, choosing M sufficiently large in the definition of uλ and using the same lower- and
upper-solution method as in [5, Proposition 4.1], we get w ≤ uλ ≤ uλ in Ω. Since both w and
uλ behave like the distance function, the proof of Proposition 2 is now complete. �

§3. About the critical problem (PΛ1)

In Theorem 1, the existence of a critical value Λ1 > 0 separating existence and non-existence
of a positive solution to (Pλ) is proved. However, it is not clear if there exists a positive
solution uΛ1 to (PΛ1 ). The present section deals with the positiveness of uΛ1 .

First, let us prove the existence of a non-trivial solution of (PΛ1 ). For that, we use the
precise behaviour of the solutions of (Pλ), for λ > Λ1, given in Proposition 2. Let v ∈
C0(Ω) ∩ C1,α(Ω), for some 0 < α < 1, be the unique solution to (Q). Then for λ > Λ1, we
define

Uλ B λ
1

1−q v in Ω. (3.1)

This function Uλ is the unique solution of the problem

−∆w = λK(x)wq in Ω; w|∂Ω = 0, w > 0 in Ω, (Pλ)

and behaves like the distance function in Ω (see [5, Lemma 3.3]). Furthermore, Uλ is also a
supersolution to problem (Pλ) and, from the lower- and upper-solutions method, we have that
λ 7→ Uλ is increasing on (Λ1,+∞). Then, we first prove the following lemma:
Lemma 3. Let λ > Λ1 and let uλ ∈ C1,β(Ω), for some 0 < β < 1, be the positive maximal
solution of (Pλ) we proved in Theorem 1. Then, uλ ≤ Uλ in Ω.

Proof. In the proof, we use the uniqueness of the solution to problem (Q). Precisely, let us
notice that v B uλ is a subsolution to (Q). Then, let us define v B MV in Ω, where M > 0 is
taken large enough and V is the unique solution of problem

−∆V = K(x) in Ω; V |∂Ω = 0. (3.2)

Using a regularity result due to Gui-Lin [8], V ∈ C0(Ω) ∩ C1,α(Ω), for some 0 < α < 1 and
thanks to the Hopf’s Lemma, V behaves like the distance function in Ω. Then, for M > 0 large
enough, using the sub-homogeneity of problem (Q), v is a supersolution to (Q). Moreover
using the behaviour of uλ given by Proposition 2, for M large enough, v ≤ v in Ω. Then, we
consider the following monotone iterative scheme: for n ∈ N∗,

−∆vn = λK(x)vq
n−1 in Ω; vn|∂Ω = 0, (Qn)

with v0 B v in Ω. By induction on n, (Qn) admits a unique solution vn ∈ C0(Ω)∩C1,α(Ω), for
some 0 < α < 1. Moreover, using the weak maximum principle, for all n ∈ N∗,

uλ = v ≤ vn ≤ vn+1 ≤ v in Ω. (3.3)
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So, for all x ∈ Ω, let us define ṽ(x) B lim
n→+∞

vn(x). Moreover (vn)n∈N is bounded in H1
0(Ω),

then passing to the limit in (Qn), ṽ is a weak solution to (Pλ). Passing to the limit in (3.3), ṽ(x)
behaves as the distance function in Ω. Therefore, from the uniqueness of the solution to (Pλ),
ṽ = Uλ in Ω. The proof is now complete. �

The next result shows the existence and the positivity of an extremal solution uΛ1 for the
problem (Pλ) (uΛ1 may vanish on a Lebesgue’s measure-zero set).

Proposition 4. Problem (PΛ1 ) admits a non-trivial weak solution uΛ1 ∈ C
1,β(Ω), for some

0 < β < 1. Moreover, ∫
Ω

K(x)ur
Λ1
ϕ1dx < +∞. (3.4)

As a consequence, uΛ1 > 0 a.e. in Ω.

Proof. Let (λn)n∈N be a decreasing sequence converging to Λ1. For all n ∈ N, let us consider
uλn the maximal solution to (Pλn ) given in Theorem 1. So for all n ∈ N, uλn+1 is a subsolution
of (Pλn ) and using Lemma 3, uλn+1 ≤ Uλn+1 ≤ Uλn in Ω. Then, by the lower- and upper-solution
method as it is used in the proof of Theorem 1, we construct ũλn solution to (Pλn ) between
uλn+1 and Uλn . Hence, by maximality of uλn , it follows that

0 < uλn+1 ≤ uλn ≤ Uλ0 in Ω. (3.5)

So let us define for all x ∈ Ω, uΛ1 (x) B limn→+∞ uλn (x) ∈ [0,Uλ0 (x)]. To prove (3.4), let us
choose γ ∈ (0, 1), ε > 0 (small enough) and consider the function ψ B (ϕ1 +ε)γ −εγ ∈ H1

0(Ω)
as a test function. Then, a direct computation gives

−∆ψ = −γ(γ − 1) |∇ϕ1|
2 (ϕ1 + ε)γ−2 + λ1ϕ1γ(ϕ1 + ε)γ−1 ≥ 0 in Ω.

For all n ∈ N, 〈
−∆uλn , ψ

〉
H−1(Ω)×H1

0(Ω) =

∫
Ω

K(x)(λnuq
λn
− ur

λn
)ψ dx ≥ 0.

Thus, we get ∫
Ω

K(x)ur
λn
ψ dx ≤ λn

∫
Ω

K(x)uq
λn
ψ dx

and passing to the limit as ε → 0 and as γ → 1, the Lebegue’s dominated convergence
theorem yields ∫

Ω

K(x)ur
λn
ϕ1 dx ≤ λn

∫
Ω

K(x)uq
λn
ϕ1 dx.

Finally, since for all n ∈ N, uλn ≤ Uλ0 in Ω, we have∫
Ω

K(x)ur
λn
ϕ1 dx ≤ Λ1

∫
Ω

K(x)Uq
λ0
ϕ1 dx < +∞. (3.6)

Passing to the limit in (3.6), the monotone convergence theorem provides estimate (3.4).
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To complete the proof, we still have to show that uΛ1 is a non-trivial weak solution of the
extremal problem (PΛ1 ). First, notice that (uλn )n∈N is bounded in H1

0(Ω). Indeed, we have for
all n ∈ N, ∫

Ω

|∇uλn |
2 dx ≤

∫
Ω

λnK(x)uq+1
λn

dx ≤
∫

Ω

λ0K(x)Uq+1
λ0

dx < +∞.

So, identifying the limits inD′(Ω), up to a subsequence denoted in the same way, uλn −−−−−⇀n→+∞

uΛ1 in H1
0(Ω) and a.e. in Ω. Let ϕ ∈ D(Ω), then we get

∀n ∈ N,
∫

Ω

∇uλn .∇ϕ dx =

∫
Ω

K(x)(λnuq
λn
− ur

λn
)ϕ dx. (3.7)

In (3.7), it is easy to get the convergence of both the left hand side and the positive part of
the right hand side. Concerning the negative part, since uΛ1 > 0 a.e. in Ω, we have that
K(x)ur

λn
ϕ −−−−−→

n→+∞
K(x)ur

Λ1
ϕ a.e in Ω. Moreover, from estimate (3.6), for almost every x ∈ Ω,∣∣∣K(x)ur

λn
ϕ
∣∣∣ ≤ K(x)ur

Λ1
|ϕ| ∈ L1(Ω). So, the Hölder inequality ensures that (3.4) holds. Hence,

by the Lebesgue’s dominated convergence theorem we pass to the limit as n → +∞ in (3.7)
and it follows that uΛ1 is a non-trivial weak solution to (PΛ1 ). Finally, the C1,β(Ω) regularity
of uΛ1 follows from Theorem 1. �

Now, we show the uniqueness of the extremal positive solution uΛ1 to (PΛ1 ).

Proposition 5. Let v ∈ H1
0(Ω) ∩ L∞(Ω) be a positive solution to (PΛ1 ). Then, v = uΛ1 a.e.

in Ω.

Proof. Let v ∈ H1
0(Ω) ∩ L∞(Ω) be a positive solution to (PΛ1 ) such that v . uΛ1 in Ω. Since

the mapping t 7→ Λ1tq − tr is (strictly) concave on (0,+∞), the convex combination w B
tuΛ1 + (1 − t)v, with 0 < t < 1, is a (strict) subsolution of (PΛ1 ) in Ω. We now prove that it
implies the existence of a positive solution to a problem (Pλ′ ) with λ′ < Λ1 close enough to
Λ1, from which we get a contradiction. Let ϕ ∈ C1,α(Ω), for a fixed 0 < α < 1, the unique
solution to

−∆ϕ = K(x)(Λ1w
q − wr) in Ω; ϕ|∂Ω = 0.

By the weak maximum principle, ϕ ≥ w in Ω and by the strong maximum principle of
Brézis-Nirenberg [2], there exists ε > 0 small enough such that ϕ(x) ≥ (w + εV)(x) and
(ϕ−εV)(x) ≥ εd(x), for x ∈ Ω. Furthermore, −∆ (ϕ − εV) ≤ K(x)[Λ1(ϕ−εV)q−(ϕ−εV)r−ε]
in Ω, where V is defined in (3.2). Thus, using lower- and upper-solutions method as in [5,
Proposition 4.1] of this chapter, we prove the existence of w1 ∈ C

1,α(Ω), for some 0 < α < 1,
solution of

−∆w1 = K(x)(Λ1w
q
1 − w

r
1 − ε) in Ω; w1|∂Ω = 0.

It follows from the weak maximum principle that w1(x) ≥ (ϕ − εV)(x) ≥ εd(x) in Ω. Then,
let λ′ ∈ (0,Λ1) and ε′ ∈ (0, (λ′/Λ1)ε) be such that

(λ′/Λ1)
1
r w1 ≤ ε

′V + (λ′/Λ1)w1 in Ω.

Setting w2 B ε′V + (λ′/Λ1)w1 in Ω, we get

−∆w2 ≤ K(x)
(
λ′w

q
1 − (λ′/Λ1)wr

1 − (λ′/Λ1)ε + ε′
)
≤ K(x)

(
λ′w

q
2 − w

r
2

)
in Ω.
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By choosing λ′ close enough to Λ1, w2 ≥ w1 in Ω. Finally, by a sub and supersolution method,
we conclude on the existence of a positive solution of the problem (Pλ′ ), which proves the
uniqueness of uΛ1 among the almost everywhere positive solution to (PΛ1 ). �

Remark 1. This kind of argument has been introduced by Brezis et al. [1] for convex non-
linearities.

§4. About the stability of the solution uλ

Now for λ > Λ1, let us focus on the stability of the maximal solutions uλ of Theorem 1. For
that, we use some variational methods extracted from [6] and [7]. Let us define the energy
functional Eλ by

Eλ(v) B
∫

Ω

|∇v|2 dx + r
∫

Ω

K(x)ur−1
λ v2 dx − λq

∫
Ω

K(x)uq−1
λ v2 dx,

for all λ > Λ1 and all v ∈ H1
0(Ω); and set Λ(λ) B inf

{
Eλ(v) | v ∈ H1

0(Ω), ‖v‖L2(Ω) = 1
}
, the

first eigenvalue of the linearised operator associated to (Pλ).

Definition 1. The maximal solution uλ of problem (Pλ) is said to be stable (resp. semi-stable)
if and only if Λ(λ) > 0 (resp. Λ(λ) ≥ 0).

For more details concerning stability of solutions, we refer to the book of L. Dupaigne [3].
First, we observe that Λ(λ) is well defined thanks to Proposition 2 and Hardy’s inequality.
Indeed, for all v ∈ H1

0(Ω) and ε > 0 small enough,

Eλ(v) ≥ ‖v‖H1
0(Ω) − λq

∫
Ω\Ωε

K(x)uq−1
λ v2 dx − λq

∫
Ωε

K(x)uq−1
λ v2 dx

≥ ‖v‖H1
0(Ω) − λqCε ‖v‖L2(Ω) − λqεq+1−kC ‖v‖H1

0(Ω) (4.1)

≥ 1
2 ‖v‖

2
H1

0(Ω) − λqCε ‖v‖L2(Ω) ≥ C0 > −∞,

with Ωε B {x ∈ Ω | d(x) < ε}. Using the maximality of the solution uλ, we now prove that
Λ(λ) > 0, for every λ > Λ1.

4.1. Study of a regularised problem
Let ε0 > 0. So, for ε ∈ (0, ε0), we consider the following perturbed problem:

−∆uε = λK(x)(uε + ε)q −
K(x)uε

(uε + ε)1−r in Ω, uε|∂Ω = 0, uε ≥ 0 in Ω. (Pλ,ε)

Let us prove that (Pλ,ε) admits a maximal solution. Observe that uλ the maximal solution to
(Pλ) constructed in Theorem 1 is a subsolution of (Pλ,ε). To get a suitable supersolution of
problem (Pλ,ε), we consider the following problem:

−∆v = λK(x)(v + ε)q in Ω, v|∂Ω = 0, v ≥ 0 in Ω. (Pλ,ε)



Stability of the solutions for a singular and sublinear elliptic problem 201

Proposition 6. Problem (Pλ,ε) has a maximal solution uλ,ε ∈ C1,α(Ω), for some 0 < α < 1
satisfying Uλ ≤ uλ,ε ≤ MV in Ω, where Uλ and V are respectively defined in (3.1) and (3.2)
and M > 0 is chosen large enough. Moreover, for 0 < ε′ ≤ ε < ε0, uλ,ε′ ≤ uλ,ε in Ω.

Proof. Proposition 6 follows from the lower- and upper-solution method. Indeed, Uλ is a
subsolution of (Pλ,ε) independent of ε. Moreover, since V is bounded in Ω, there exists C > 0
independent of M and ε such that λ(V + ε/M)q ≤ C in Ω. Then,

−∆(MV) − K(x)(MV + ε)q ≥ MqK(x)
[
M1−q −C

]
≥ 0 in Ω,

for M > 0 large enough. Thus, MV is a supersolution to
(
Pλ,ε

)
and the existence of the

maximal solution uλ,ε follows. For ε′ ∈ (0, ε), uλ,ε′ is a subsolution of (Pλ,ε) such that uλ,ε′ ≤
MV in Ω. Therefore, from the maximality of the solution uλ,ε, the second inequality follows.

�

Proposition 7. Problem (Pλ,ε) has a maximal solution uλ,ε ∈ C1,α(Ω), for some 0 < α < 1,
such that uλ ≤ uλ,ε ≤ uλ,ε in Ω. Moreover for 0 < ε′ ≤ ε < ε0, we have uλ,ε′ ≤ uλ,ε in Ω.

Proof. We consider the following iterative scheme:

−∆un
ε +

K(x)un
ε

(un−1
ε + ε)1−r

= λK(x)(un−1
ε + ε)q in Ω; un

ε |∂Ω = 0, un
ε ≥ 0 in Ω, (Pn

λ,ε)

with u0
ε = uλ,ε. By induction on n, (Pn

λ,ε) admits a unique solution un
ε ∈ C

2(Ω)∩C(Ω). Indeed,
for n = 1 we get a solution u1

ε of (P1
λ,ε) as a minimizer of the functional E1 defined for all

v ∈ H1
0(Ω) by

E1(v) B
∫

Ω

|∇v|2 dx +
1
2

∫
Ω

K(x)v2

(uλ,ε + ε)1−r dx − λ
∫

Ω

K(x)(uλ,ε + ε)qv dx.

Moreover,

−∆
(
u1
ε − uλ,ε

)
+ K(x)

[
u1
ε − uλ,ε

(uλ,ε + ε)1−r

]
≤ 0

in H−1(Ω). Then by the weak maximum principle, u1
ε ≤ uλ,ε in Ω. And similarly, uλ ≤ u1

ε

in Ω. Now, let n ∈ N∗. By the same method we prove the existence of un
ε solution of (Pn

λ,ε)
such that uλ ≤ un

ε ≤ uλ,ε in Ω. Moreover, we have

−∆
(
un+1
ε − un

ε

)
+ K(x)

[
un+1
ε

(un
ε + ε)1−r −

un
ε

(un−1
ε + ε)1−r

]
= K(x)

[
(un
ε)

q − (un−1
ε )q

]
in H−1(Ω).

So choosing (un+1
ε − un

ε)
+ ∈ H1

0(Ω), we get∫
Ω

K(x)
[
(un
ε)

q − (un−1
ε )q

]
(un+1
ε − un

ε)
+ dx ≤ 0
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and ∫
Ω

K(x)
[

un+1
ε

(un
ε + ε)1−r −

un
ε

(un−1
ε + ε)1−r

]
(un+1
ε − un

ε)
+ dx

≥

∫
Ω

K(x)
[

un+1
ε − un

ε

(un
ε + ε)1−r

]
(un+1
ε − un

ε)
+ dx ≥ 0.

Hence finally, for any n ∈ N∗, we get uλ ≤ un+1
ε ≤ un

ε ≤ uλ,ε in Ω. For all x ∈ Ω, we define
uλ,ε(x) = limn→∞ un

ε(x). We also have for all n ∈ N∗,∫
Ω

∣∣∣∇un
λ,ε

∣∣∣2 dx ≤
∫

Ω

K(x)(un−1
ε + ε)qun

ε dx ≤
∫

Ω

K(x)(uλ,ε + ε)quλ,ε dx < +∞.

Hence, (un
ε)n∈N∗ is bounded in H1

0(Ω). Therefore, uλ,ε ∈ H1
0(Ω) and up to a subsequence

denoted in the same way, un
ε −−−−−⇀n→+∞

uλ,ε in H1
0(Ω) and a.e. in Ω. So passing to the limit in

(Pn
λ,ε), uλ,ε is a weak solution of (Pλ,ε) satisfying the first inequality of the statement. Finally,

the C1,α(Ω) regularity of uλ,ε follows from Gui-Lin [8, Theorem 1.1]. Now, let ε′ ∈ (0, ε).
Then, for n = 1 we have

−∆
(
u1
ε′ − u1

ε

)
+ K(x)

[
u1
ε′ − u1

ε

(uλ,ε + ε)1−r

]
≤ λK(x)

[
(uλ,ε + ε′)q − (uλ,ε + ε)q] ≤ 0.

Then by the weak maximum principle, u1
ε′ ≤ u1

ε in Ω. For n ∈ N∗, by induction we have

− ∆(un
ε′ − un

ε) + K(x)
[

un
ε′ − un

ε

(un−1
ε + ε)1−r

]
≤ −∆(un

ε′ − un
ε) + K(x)

[
un
ε′

(un−1
ε′ + ε′)1−r

−
un
ε

(un−1
ε + ε)1−r

]
= λK(x)

[
(un−1
ε′ + ε′)q − (un−1

ε + ε)q
]
≤ 0.

Hence, un
ε′ ≤ un

ε in Ω and passing to the limit as n → +∞, we finally get the second
inequality. �

4.2. Semi-stability of the maximal solution uλ,ε
Let uλ,ε be the maximal solution of (Pλ,ε) obtained above and let us define the first eigenvalue
of the linearised operator associated to (Pλ,ε): Λε(λ) B inf

{
Eλ,ε(v) | v ∈ H1

0(Ω), ‖v‖L2(Ω) = 1
}
,

where Eλ,ε(v) is defined for all v ∈ H1
0(Ω) by

Eλ,ε(v) B
∫

Ω

|∇v|2 dx − λq
∫

Ω

K(x)v2

(uλ,ε + ε)1−q dx

+

∫
Ω

K(x)v2

(uλ,ε + ε)1−r dx + (r − 1)
∫

Ω

K(x)uλ,εv2

(uλ,ε + ε)2−r dx.
(4.2)
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Proposition 8. There exists Φε ∈ H B
{
v ∈ H1

0(Ω) | ‖v‖L2 = 1
}
, non-negative a.e. in Ω such

that Eλ,ε(Φε) = minv∈H Eλ,ε(v). Hence, Φε ∈ C
1,α(Ω), for some 0 < α < 1, and satisfies

−∆Φε = Λε(λ)Φε + f ′λ,ε(uλ,ε)Φε in Ω, Φε|∂Ω = 0, Φε ≥ 0 in Ω, (4.3)

where for any v ∈ H1
0(Ω), fλ,ε(v) B λK(x)(v + ε)q − K(x)v/(v + ε)1−r.

Proof. For sake of clarity, we denote in (4.2), Eλ,ε(v) B ‖v‖2H1
0(Ω)−λqIε1(v)+ Iε2(v)+(r−1)Iε3(v).

Using Hardy’s inequality, we get a similar estimate to (4.1) for Eλ,ε and Λε(λ) ∈ R. So, let
(vn)n∈N ⊂ H be an associated minimizing sequence. We have, (vn)n∈N is bounded in H
(see (4.1)). Therefore, there exist Φε ∈ H and a subsequence still denoted (vn)n∈N such
that vn −−−−−⇀

n→+∞
Φε weakly in H1

0(Ω) and strongly in L2(Ω) and a.e. in Ω. Then we get
‖Φε‖H1

0(Ω) ≤ lim infn→+∞ ‖vn‖H1
0(Ω). Moreover, by Hardy’s inequality (vn/d(x))n∈N is bounded

in L2(Ω); therefore up to a subsequence vn/d(x) −−−−−⇀
n→+∞

Φε/d(x) in L2(Ω). Then, writing

Iε1(vn) =

∫
Ω

K(x)d(x)(uλ,ε + ε)q−1 (vn/d(x)) vn dx

we get that Iε1(vn) −−−−−→
n→+∞

Iε1(Φε). And similarly, Iε2(vn) −−−−−→
n→+∞

Iε2(Φε) and Iε3(v) −−−−−→
n→+∞

Iε3(Φε).
Hence, Eλ,ε(Φε) ≤ lim infn→+∞ Eλ,ε(vn) and Eλ,ε(Φε) = minv∈H Eλ,ε(v) = Λε(λ). Since for all
v ∈ H , Eλ,ε(v) = Eλ,ε(|v|), we can assume Φε ≥ 0 a.e in Ω. From variational arguments, Φε is
a weak solution to (4.3). Finally the C1,α(Ω) Hölder regularity of Φε follows from Gui-Lin [8,
Theorem 1.1]. �

Proposition 9. Let λ > 0 and ε ∈ (0, ε0). Then, the solution uλ,ε of (Pλ,ε) is semi-stable.

Proof. Let us argue by contradiction. Suppose that Λε(λ) < 0. Let ε′ > 0 and consider
uλ,ε B uλ,ε + ε′Φε. Then, we have

−∆uλ,ε = fλ,ε(uλ,ε) + ε′ f ′λ,ε(uλ,ε)Φε + ε′Λε(λ)Φε in Ω,

with fλ,ε defined in (4.3). And by a Taylor-Lagrange expansion

fλ,ε(uλ,ε) = fλ,ε(uλ,ε) + ε′ f ′λ,ε(uλ,ε)Φε +
1
2

(ε′Φε)2 f ′′λ,ε(uλ,ε + θε′Φε) in Ω,

with θ ∈ (0, 1) and

∀v ∈ H1
0(Ω), f ′′λ,ε(v) = λq(q − 1)

K(x)
(v + ε)2−q + r(1 − r)

K(x)
(v + ε)2−r − ε(1 − r)(2 − r)

K(x)
(v + ε)3−r .

By Theorem 2.1 in Gui-Lin [8], Φε behaves like the distance function in Ω, therefore there
exists a positive constant C independent of θ and ε′ such that

∣∣∣Φ2
ε f ′′λ,ε(uλ,ε + θε′Φε)

∣∣∣ ≤ C in Ω.
So, choosing ε′ small enough,

ε′Λε(λ)Φε <
1
2

(ε′Φε)2 f ′′λ,ε(uλ,ε + θε′Φε) in Ω
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and uλ,ε is a subsolution of (Pλ,ε). Moreover, using the Brézis-Nirenberg [2] strong maximum
principle, uλ,ε < uλ,ε0 in Ω and since Φε ∈ C

1,α(Ω), for ε′ > 0 sufficiently small, we have
uλ,ε ≤ uλ,ε0 in Ω. Hence, using the same sub and supersolution technique, we get the existence
of ũλ,ε weak solution of (Pλ,ε) such that uλ,ε ≤ ũλ,ε ≤ uλ,ε0 in Ω, which contradicts the
maximality of uλ,ε in Proposition 7. �

4.3. Semi-stability of the solution uλ for λ ≥ Λ1

To prove the semi-stability of the maximal solution uλ of (Pλ), we pass to the limit as ε →
0+. Indeed, from Proposition 6 and Proposition 7 let us define for all x ∈ Ω, Ũλ(x) B
limε→0+ uλ,ε(x) and ũλ(x) B limε→0+ uλ,ε(x). Then, passing to the limit in the inequality
proved in Proposition 7, we get uλ ≤ ũλ ≤ Ũλ in Ω. We also have, for all ε ∈ (0, ε0) and all
v ∈ H1

0(Ω), ∫
Ω

∇uλ,ε.∇v dx = λ

∫
Ω

K(x)(uλ,ε + ε)qv dx. (4.4)

So choosing uλ,ε as test function, we get∫
Ω

∣∣∣∇uλ,ε
∣∣∣2 dx = λ

∫
Ω

K(x)(uλ,ε + ε)quλ,ε dx ≤ λM
∫

Ω

K(x)(MV + ε0)qV dx < +∞.

Then, (uλ,ε)ε>0 is bounded in H1
0(Ω). So, up to a subsequence, passing to the limit as ε→ 0+

in the first inequality of Proposition 6 and in (4.4), Ũλ is a weak solution of (Pλ) satisfying
Uλ ≤ Ũλ ≤ MV in Ω. Hence, by uniqueness of a such solution of (Pλ), Uλ = Ũλ in Ω.
Similarly, (uλ,ε)ε>0 is bounded in H1

0(Ω) and then ũλ is a weak solution to (Pλ) such that
uλ ≤ ũλ ≤ Uλ in Ω. Hence, since uλ is a maximal solution, it follows that ũλ ≡ uλ in Ω. So
finally, since Λε(λ) ≥ 0, Eλ,ε(v) ≥ 0 for all v ∈ H . With the notations used in the previous
proof,

Iε1(v) −−−−→
ε→0+

∫
Ω

K(x)ur−1
λ v2 dx and Iε2(v) + (r − 1)Iε3(v) −−−−→

ε→0+
r
∫

Ω

K(x)uq−1
λ v2 dx.

Hence, Λ(λ) = limε→0+ Λε(λ) ≥ 0, which proves the semi-stability of uλ. Moreover, by
inequality (3.5) and Dini’s Theorem, uλ −−−−→

λ→Λ+
1

uΛ1 in L∞(Ω). So, we also have Λ(Λ1) ≥ 0.

4.4. Stability of uλ for λ > Λ1

Finally, let us prove that Λ(λ) > 0 for λ > Λ1. For that we introduce the following new
perturbed problem:

−∆u = K(x)(λuq − ur + θ) in Ω; u|∂Ω = 0, u ≥ 0 in Ω, (Pθλ)

with θ ∈ R. As above, we first show the existence of a branch of maximal solutions denoted
uθλ ∈ C

1,α(Ω) to problem (Pθλ) for λ > Λ1,θ, where Λ1,θ B inf
{
λ > 0 | (Pθλ) has a positive

solution a.e. in Ω
}
. As above, we have Λθ(λ) B infv∈H Eθ(v) ≥ 0, with v ∈ H1

0(Ω) and

Eθ(v) B
∫

Ω

|∇u|2 dx + r
∫

Ω

K(x)(uθλ)r−1u2 dx − λq
∫

Ω

K(x)(uθλ)q−1u2 dx.
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Lemma 10. Assume λ > Λ1. Then,

1. there exists θ0 < 0 such that uθ0
λ > 0 a.e. in Ω;

2. the mapping θ 7−→ Λθ(λ) is increasing on (θ0,+∞).

Proof. By Proposition 2, for λ > Λ1 there exist two constants C1,C2 > 0 depending on λ
such that, for all x ∈ Ω, C1d(x) ≤ uλ(x) ≤ C2d(x). Then, let us choose λ′ ∈ (Λ1, λ) and ε
small enough to satisfy (λ/λ′)uλ′ ≥ uλ′ + εV and [λ/λ′ − (λ/λ′)1/r]uλ′ ≥ εV a.e. in Ω, with V
solution to (3.2). Defining w B (λ/λ′)uλ′ − εV , we get −∆w ≤ K(x)(λwq − wr − ε) in Ω and
as in the proof of Proposition 5, we prove the existence of w ∈ C1,α(Ω), for some 0 < α < 1,
solution to

−∆w = K(x)(λwq − wr − ε) in Ω; w|∂Ω = 0.

To complete the proof of point 1 of this lemma, it suffices to choose θ0 ∈ (−ε, 0). The second
assertion follows from the strong maximum principle from which we get that, for θ < θ′

the positive maximal solutions to (Pθλ) and (Pθ
′

λ ) satisfy uθλ < uθ
′

λ in Ω. Then, noting that as
previously, or every θ ∈ (θ0,+∞), the infimum

Λθ(λ) B inf
u∈H

{∫
Ω

|∇u|2 dx + r
∫

Ω

K(x)
(
uθλ

)r−1
u2 dx − λq

∫
Ω

K(x)
(
uθλ

)q−1
u2 dx

}
is achieved for an element Φθ ∈ H1

0(Ω), we finally get Λθ′ (λ) > Λθ(λ). �

Thanks to this lemma, Λ(λ) = Λ0(λ) > Λ−ε(λ) ≥ 0, which completes the proof.
Remark 2. When λ > Λ1, uλ is the unique positive and semi-stable solution of (Pλ). Indeed,
let us suppose there exists another positive and semi stable solution vλ ∈ H1

0(Ω), therefore by
the strong maximum principle vλ < uλ in Ω. By hypothesis, for every u ∈ H1

0(Ω),∫
Ω

K(x)
(
λqvq−1

λ − rvr−1
λ

)
u2 dx ≤

∫
Ω

|∇u|2 dx.

Choosing u = uλ − vλ ∈ H1
0(Ω) this estimate becomes∫

Ω

K(x)
(
λqvq−1

λ − rvr−1
λ

)
(uλ − vλ)2 dx ≤

∫
Ω

|∇(uλ − vλ)|2 dx. (4.5)

Since, uλ and vλ both are solution to (Pλ), then we also have∫
Ω

K(x)
[
λ
(
uq
λ − v

q
λ

)
−

(
ur
λ − v

r
λ

)]
(uλ − vλ) dx =

∫
Ω

|∇(uλ − vλ)|2 dx. (4.6)

Combining (4.5) and (4.6), we get∫
Ω

K(x)(uλ − vλ)
{[(
λuq

λ − ur
λ

)
−

(
λuq

λ − ur
λ

)]
−

(
λqvq−1

λ − rvr−1
λ

)
(uλ − vλ)

}
dx ≥ 0,

which contradicts (uλ − vλ) > 0 in Ω because, by concavity of t 7→ λtq − tr,[(
λuq

λ − ur
λ

)
−

(
λuq

λ − ur
λ

)]
−

(
λqvq−1

λ − rvr−1
λ

)
(uλ − vλ) ≤ 0 in Ω.

Therefore uλ is the unique solution among the positive and semi-stable solutions of (Pλ).
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[6] Giacomoni, J., Schindler, I., and Takáč, P. Sobolev versus Hölder local minimizers and
existence of multiple solutions for a singular quasilinear equation. Ann. Sc. Norm. Super.
Pisa Cl. Sci. 6 (2007), 117–158.
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