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STABILITY OF THE SOLUTIONS
FOR A SINGULAR AND SUBLINEAR

ELLIPTIC PROBLEM
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Abstract. We give here some additional stability and qualitative properties for the so-
lutions of a singular and sublinear elliptic absorption problem which has already been
studied in Giacomoni-Maagli-Sauvy [5].
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§1. Introduction and recalls

The objective of the present paper is to give some additional results concerning the stability
and other qualitative properties of the solutions of a quasilinear and singular problem (P,),
which has been studied in Giacomoni-Maagli-Sauvy [5]. Before giving more details about
our main results, let us start by recalling the framework of [5].

In [5], the authors have considered the following quasilinear and singular problem:

—Apu = Lo K(xX)Au? —u’") inQ; ulpo=0, u>0 inQ, Py

where Q is a C?> bounded domain of RY, I < p < o0, 1 > 0 is a positive parameter. In
the right-hand side of the equation, the exponents ¢ and r satisfy -1 < r < g < p—1 and
K € C(Q) is a positive function having a singular behaviour near the boundary Q. Precisely,
K(x) = d(x)*L(d(x)) in Q, with d(x) the distance from x € Q to the boundary, 0 < k < p
and L a Karamata function, which is a lower positive perturbation satisfying L € C2((0, D]) a
positive function, with D := diam(2), defined as follows:

D
L(t) = exp(f Z(Ts)ds), (1.1)

with z € C([0, D]) N C'((0, D]) and z(0) = 0. Let us just recall that (1.1) implies that

Ye >0, lir(gl °Lt)=0 and liI(T)'l 17°L(t) = +o0. (1.2)
1—0* —0*

The authors have discussed the existence of positive or compact-support solutions of (P,) with
respect to the blow-up rate k of the singularity K(x). Precisely, they have proved the existence
of a critical value for the blow-up rate k separating existence and non-existence of positive
solutions for problem (P,). In particular, the first case (existence of positive solutions) is
investigated in the following theorem:
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Theorem 1 (See [5, Theorem 2.1]). When k < 1 +r, there exists a constant Ay > 0 such that:
1. For A > Ay, (P,) admits a positive weak solution.
2. Any weak solution of (P,) is C"ﬁ(ﬁ), for some 0 < B < 1.
3. For A < Ay, (Py) has no positive solution.

The critical parameter A; > 0 is defined as follows: A; := inf{A > 0| u,; > 0 a.e. in Q},
where u, € W(l)”’ ()NL* () is a maximal solution to (P,) obtained by a sub and supersolution

method. In particular, we have u; < u, a.e. in Q, where u, € W(l)’p(Q) is a supersolution to

(Py). Precisely, i, := Mv in Q, where M is a positive constant sufficiently large and v is the
unique solution of problem

-App =K inQ; vpo=0, v>0 inQ. Q)

Moreover, from Moser iterations technique, we can prove that v € L*(Q) and from Lieber-
man [9], v € C"¥(Q), for some 0 < @ < 1. Then, v behaves like the distance to the boundary
function in Q (see [5, Lemma 3.3]). It is also proved in this paper the existence of a parameter
A, > 0 such that for any A € (0, A,), uy = 0in Q.

Accordingly, natural issues deriving from Theorem 1 for problem (P,) concern the precise
behaviour (with respect to the distance to the boundary) of the positive solution u, with
A > Ay, the existence or non-existence of a non-trivial solution for the critical problem (Py,)
and the stability of the solutions u; with 4 > A, to (P,). In the general case studied in [5],
those above questions have not been reached and remain open. In this paper, our goal is to
answer these questions in the particular case of the Laplacian operator (i.e. when p = 2) with
a concave right hand side K(x)(du? — u") with respect to u; that is to say with

-1<r<0 and O<g<l. (1.3)

Precisely, in the next section (Section 2), we prove that the positive solutions constructed in
Theorem 1 (point 1.) behave like the distance to the boundary function. Next, in Section 3,
we investigate the critical case 1 = A;. We prove the existence of a unique almost everywhere
positive solution of (P4, ). Finally, in Section 4, we prove the stability of the positive solutions
of problem (P,) with 1 > A; and the semi-stability of the almost everywhere positive solution
of (PAI )

So, from now, in problem (P,)we suppose that p = 2 and that the exponents ¢ and r
satisfy the assumption (1.3).

§2. Behaviour of the solution u,

In this context we first get a precise behaviour in Q of our maximal solution u, for 1 > A;.

Proposition 2. Assume that A > Ay. Then, there exist two constants Cy,C, > 0 (depending
on A) such that, for all x € Q, C1d(x) < u (x) < Crd(x).

Proof. Let us choose A’ € (A1, A) and consider ¢ € C2(Q) N C'(Q), for some 0 < @ < 1,
solution to
—Ap = K(x)ul, inQ; ¢lagg =0.
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By the Hopf’s Lemma (see for instance Evans [4, Lemma p. 330]), ¢ behaves like the distance
function in Q. Moreover, for € > 0 sufficiently small, w := u, + &g is a subsolution of (P,)
in Q. Indeed, if (1.3) is satisfied and " + &£ < A, we have

—Aw = K(x){(A" + s)uj, —u)} < K@)’ —w") inQ.

Then, choosing M sufficiently large in the definition of %, and using the same lower- and
upper-solution method as in [5, Proposition 4.1], we get w < u, < u, in Q. Since both w and
u, behave like the distance function, the proof of Proposition 2 is now complete. O

§3. About the critical problem (P,,)

In Theorem 1, the existence of a critical value A; > 0 separating existence and non-existence
of a positive solution to (P,) is proved. However, it is not clear if there exists a positive
solution uy, to (Py,). The present section deals with the positiveness of u, .

First, let us prove the existence of a non-trivial solution of (P,,). For that, we use the
precise behaviour of the solutions of (P,), for 4 > A, given in Proposition 2. Let v €
Co(Q) N C(Q), for some 0 < a < 1, be the unique solution to (Q). Then for 4 > Aj, we
define 1

U,:=A=v inQ. 3.1)

This function U, is the unique solution of the problem
—Aw=AKxw! inQ; whe=0, w>0 inQ, (P

and behaves like the distance function in Q (see [5, Lemma 3.3]). Furthermore, U, is also a
supersolution to problem (P,) and, from the lower- and upper-solutions method, we have that
A+ U, is increasing on (A1, +0). Then, we first prove the following lemma:

Lemma 3. Let A > Ay and let u; € C'Y*(Q), for some O < B < 1, be the positive maximal
solution of (P,) we proved in Theorem 1. Then, uy < U, in Q.

Proof. In the proof, we use the uniqueness of the solution to problem (Q). Precisely, let us
notice that v := u, is a subsolution to (Q). Then, let us define v := MV in Q, where M > 0 is
taken large enough and V is the unique solution of problem

~AV=K(x) inQ; V] =0. (3.2)

Using a regularity result due to Gui-Lin [8], V € Co(ﬁ) N C‘»”(ﬁ), for some 0 < @ < 1 and
thanks to the Hopf’s Lemma, V behaves like the distance function in Q. Then, for M > 0 large
enough, using the sub-homogeneity of problem (Q), v is a supersolution to (Q). Moreover
using the behaviour of u, given by Proposition 2, for M large enough, v < v in Q. Then, we
consider the following monotone iterative scheme: for n € N*,

_Avn = /]-K(-x)vz,l in Q7 Un|0§2 = 07 (Qn)

with vy = v in Q. By induction on n, (Q,) admits a unique solution v, € Cp(2) N cle(Q), for
some 0 < @ < 1. Moreover, using the weak maximum principle, for all n € N*,

Uy =0=<0, <Uyy1 <V InQ. 3.3)
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So, for all x € Q, let us define #(x) := lim v,(x). Moreover (v,),ey is bounded in H(l)(Q),
n—+oo

then passing to the limit in (Q,,), U is a weak solution to (P)). Passing to the limit in (3.3), (x)
behaves as the distance function in Q. Therefore, from the uniqueness of the solution to (P,),
U = U, in Q. The proof is now complete. O

The next result shows the existence and the positivity of an extremal solution u,, for the
problem (P,) (15, may vanish on a Lebesgue’s measure-zero set).

Proposition 4. Problem (Py,) admits a non-trivial weak solution up, € Cl’ﬂ(ﬁ), for some
0 < B < 1. Moreover,

fK(x)uf\ltpldx < +00. (3.4
Q
As a consequence, ux, > 0 a.e. in Q.

Proof. Let (1,),en be a decreasing sequence converging to A;. For all n € N, let us consider
u,, the maximal solution to (P,,) given in Theorem 1. So for all n € N, u,,,, is a subsolution
of (En) and using Lemma 3, u,,,, < U,,,, < U,, in Q. Then, by the lower- and upper-solution
method as it is used in the proof of Theorem 1, we construct ii,, solution to (P,,) between
u,,,, and U,,. Hence, by maximality of u, , it follows that

0< U, < Uy, < U,{O in Q. (35)
So let us define for all x € Q, up, (x) = limy, 100 uy, (x) € [0, Uy, (x)]. To prove (3.4), let us
choose y € (0, 1), £ > 0 (small enough) and consider the function ¢ := (¢; +&)¥ —&” € H(l)(Q)
as a test function. Then, a direct computation gives

—AY = —y(y = DIVerl’ (g1 + &) + Ligiy(pr +8) ' 20 inQ.

Foralln e N,
(—Au,,, z//)H,l(Q)XH(I)(Q) = L K(x)(/lnufl” —u) Wdx > 0.
Thus, we get
f(; K(xuh ydx < A, L K(x)ujﬂz,bdx

and passing to the limit as € — 0 and as y — 1, the Lebegue’s dominated convergence
theorem yields

fK(x)uf1 prdx < 4, f K(x)uj 1 dx.
Q " Q g
Finally, since for alln € N, u,, < U,, in , we have

f K(xu), 1dx < Ay f K(X)UZO% dx < +co. (3.6)
Q Q

Passing to the limit in (3.6), the monotone convergence theorem provides estimate (3.4).



Stability of the solutions for a singular and sublinear elliptic problem 199

To complete the proof, we still have to show that u,, is a non-trivial weak solution of the
extremal problem (P,,). First, notice that (u,, ),y is bounded in H(l)(Q). Indeed, we have for
alln e N,

f \Viuy, | dx < f L Kou?! dx < f K@U dx < +oo.
Q Q " Q

So, identifying the limits in 9’(£2), up to a subsequence denoted in the same way, u,;, ——

n—-+o0o

up, in Hy(Q) and a.e. in Q. Let ¢ € D(Q), then we get

Vn e N, fVuln.Vgo dx = fK(x)(/lnuz —u) Jpdx. 3.7
Q Q " "

In (3.7), it is easy to get the convergence of both the left hand side and the positive part of

the right hand side. Concerning the negative part, since us, > 0 a.e. in €, we have that

K(xu', ¢ —— K(x)uj\]go a.e in Q. Moreover, from estimate (3.6), for almost every x € Q,
" n—+oo

|K(x)u3n(,0| < K(x)uj\l lgl € L'(Q). So, the Holder inequality ensures that (3.4) holds. Hence,
by the Lebesgue’s dominated convergence theorem we pass to the limit as n — +oco in (3.7)
and it follows that uy, is a non-trivial weak solution to (P,,). Finally, the C Lp (5) regularity
of uu, follows from Theorem 1. ]

Now, we show the uniqueness of the extremal positive solution us, to (Py,).

Proposition 5. Lerv € H(l)(Q) N L*(Q) be a positive solution to (Py,). Then, v = up, a.e.
in Q.

Proof. Letv e H(l)(Q) N L™ () be a positive solution to (P,,) such that v # u,, in Q. Since
the mapping ¢ — A t? — ¢ is (strictly) concave on (0, +co), the convex combination w :=
tup, + (1 —t)v, with 0 < ¢ < 1, is a (strict) subsolution of (P,,) in Q. We now prove that it
implies the existence of a positive solution to a problem (P;/) with " < A; close enough to
Ay, from which we get a contradiction. Let ¢ € C1*(Q), for a fixed 0 < a < 1, the unique
solution to

—Ap = Kx)(AMw? —w") inQ; ¢lgg =0.

By the weak maximum principle, ¢ > w in Q and by the strong maximum principle of
Brézis-Nirenberg [2], there exists € > 0 small enough such that ¢(x) > (w + €V)(x) and
(p—&V)(x) = ed(x), for x € Q. Furthermore, —A (¢ — €V) < K(x)[A1(p—eV)I—(p—eV) —¢€]
in Q, where V is defined in (3.2). Thus, using lower- and upper-solutions method as in [5,
Proposition 4.1] of this chapter, we prove the existence of w; € C 1"’(ﬁ), forsome 0 < a < 1,
solution of

—Aw; = KA w! —w] —g) inQ;  wilsn = 0.

It follows from the weak maximum principle that w;(x) > (¢ — eV)(x) > &d(x) in Q. Then,
let 27 € (0,A) and & € (0, (2’/A)e) be such that

W/AD)Tw <€V + W /ADw  in Q.
Setting wy = &'V + (1'/A)w; in Q, we get

—Awy < K() (Vwf = (' /Aw; = (A /ADe +&) < K@) (Xwf - w)  inQ.
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By choosing A’ close enough to A, w, > w, in Q. Finally, by a sub and supersolution method,
we conclude on the existence of a positive solution of the problem (P, ), which proves the
uniqueness of u,, among the almost everywhere positive solution to (Py, ). O

Remark 1. This kind of argument has been introduced by Brezis ef al. [1] for convex non-
linearities.

§4. About the stability of the solution u,

Now for 4 > Ay, let us focus on the stability of the maximal solutions u«, of Theorem 1. For
that, we use some variational methods extracted from [6] and [7]. Let us define the energy
functional &, by

E(v) = f IVol? dx + rf K(xuy'v? dx - /qu K()c)u:]flv2 dx,
Q Q Q

forallA > Ajand all v € H(l)(Q); and set A(1) = inf{&E,(v) | v € H(l)(Q), lloll 2y = 1}, the
first eigenvalue of the linearised operator associated to (P,).

Definition 1. The maximal solution u, of problem (P,) is said to be stable (resp. semi-stable)
if and only if A(1) > O (resp. A(1) > 0).

For more details concerning stability of solutions, we refer to the book of L. Dupaigne [3].
First, we observe that A(1) is well defined thanks to Proposition 2 and Hardy’s inequality.
Indeed, for all v € H)(Q) and & > 0 small enough,

E1©) = ol — Aq f Koul™"v? dx - Aq f Kou!™"v? dx
Q\Q,

—k '
> ol = A4Ce tliz) = Age™ 7C llollyyq) “.1)
2 3 ol ) = 24Cs ol 2 Co > —eo,

with Q. = {x € Q| d(x) < &}. Using the maximality of the solution u,, we now prove that
A(Q) > 0, for every 1 > A;.

4.1. Study of a regularised problem
Let &y > 0. So, for € € (0, &9), we consider the following perturbed problem:

K(xX)u, . .
—Aug = AK(x)(ugs + &)1 — % nQ, ulso=0 u>0 1inQ. Pae)
U, +&)'"r

Let us prove that (P, ) admits a maximal solution. Observe that «; the maximal solution to
(P,) constructed in Theorem 1 is a subsolution of (P,.). To get a suitable supersolution of
problem (P, ), we consider the following problem:

A= AKX)@W+e)? inQ, vsp=0 v>0 inQ (Pe)
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Proposition 6. Problem (E,g) has a maximal solution u,. € C Lo(Q), for some 0 < a < 1
satisfying Uy < Uy < MV in Q, where U,y and V are respectively defined in (3.1) and (3.2)
and M > 0 is chosen large enough. Moreover, for 0 < &' <& < &, Upe < Upe in Q.

Proof. Proposition 6 follows from the lower- and upper-solution method. Indeed, U, is a
subsolution of (P, ) independent of £. Moreover, since V is bounded in €, there exists C > 0
independent of M and ¢ such that A(V + ¢/M)? < C in Q. Then,

—AMV) = K(x)(MV + &)? > MIK(x) [MHI - C] >0 inQ,

for M > 0 large enough. Thus, MV is a supersolution to (7’4,5) and the existence of the

maximal solution u, . follows. For & € (0, €), u, - is a subsolution of (1_34,5) such that u, o <
MYV in Q. Therefore, from the maximality of the solution u, ., the second inequality follows.
O

Proposition 7. Problem (P, ) has a maximal solution u,, € C"*(Q), for some 0 < a < 1,
such that uy < uy . < Uy, in Q. Moreover for 0 < &' < & < gy, we have uy o < Uy in Q.

Proof. We consider the following iterative scheme:

K(x)u;

Al e
Wt + g)t-r

" = AKX +e)? inQ; ulsa=0, u'>0 inQ, P
with ug = U, By induction on n, (P’ ) admits a unique solution u; € CX(Q)NC(Q). Indeed,
for n = 1 we get a solution u} of (P} ) as a minimizer of the functional E, defined for all
v € Hy(Q) by

2
Ei() = f Vol dx + & f K& f K@i, + &)Tvdx.
Q Q

2 Jo (Uae + &)
Moreover,

1 - I/t:: - ﬁ/l,a
—-A (ug - MLS) + K(x) [m] <0
1
in Q. Now, let n € N*. By the same method we prove t_he existence of u} solution of (E’Z’j

such that u; < ull < u,, in Q. Moreover, we have

in H™'(Q). Then by the weak maximum principle, u! < u,. in Q. And similarly, u, < u

n+1 n
(A -:8)17" - (u”lb:fs)l—r] =K@ [(ug)q - (ug_l)q] inH™/(Q).

-A (MZH - ug) + K(x)

So choosing (™! — u")* € H(l)(Q), we get

f K@) @) = ] et = uly* dx < 0
Q
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and
ug” ug +1 +
n n
ng(x) o +s>“](“8 T

n+1
&

W + &)l

—
MS

> fK(x)
Q

Hence finally, for any n € N*, we get u, < ug“ < ul! <uyein Q. For all x € Q, we define
Uy (x) = lim,_, uz(x). We also have for all n € N*,

](uﬁ“ —u")*dx > 0.

f |Vuﬁ£|2 dx < f K(x)(ug’1 +e)luldx < f KxX)(ye + )7y dx < +o00.
Q Q Q

Hence, (#7)nen+ is bounded in H(l)(Q). Therefore, u,, € H(l)(Q) and up to a subsequence
denoted in the same way, u, —— u, . in H(l)(Q) and a.e. in Q. So passing to the limit in

n—+oo

(PZ’S), u, ¢ is a weak solution of (P, ) satisfying the first inequality of the statement. Finally,

the Cl’”(ﬁ) regularity of u, . follows from Gui-Lin [8, Theorem 1.1]. Now, let & € (0, ).
Then, for n = 1 we have

ul, —ul
—A (1l = ub) + K(x) | =—=—= | < AK@) [ + &)7 - (e + )] < 0.
(e + e)l=r ’ |
Then by the weak maximum principle, u!, < u! in Q. For n € N*, by induction we have

n

ul, —u;
- Ay —up) + K(x) | ————

W'+ g)t-r
u”, u’
< -A@WL —ul) + K(x) - £ - ] £
(ug/— + 8/)14 (ug— + 8)17”

= K@) | + &) - @ + )] < 0.
Hence, u, < uj in Q and passing to the limit as n — +oco, we finally get the second

inequality. O

4.2. Semi-stability of the maximal solution u .

Let u, . be the maximal solution of (P, ) obtained above and let us define the first eigenvalue
of the linearised operator associated to (P;.): A.(4) := inf{&,,(v) | v € HY(Q), lvll2) = 1},
where &, .(v) is defined for all v € Hj(Q) by

K(x)v?
) = Vol? dx - A ——d
E1.6(v) fQI v|” dx qjg;(m,g+8)1‘q x

4.2)
+f K(x)0? dx + ( _l)f K(X)M,LSUZ d
o reyr Y IS
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Proposition 8. There exists @, € H = {v € H(l)(Q) [ llvlli2 = 1}, non-negative a.e. in Q such
that E, (D) = minyeys E,.(v). Hence, O, € cte(Q), for some 0 < a < 1, and satisfies

—AD, = A(D)D; + [ (U1 )P inQ, Dglygo=0, O, 20 inQ, 4.3)
where for any v € H(IJ(Q), Jae() = AK(x)(v + &) — K(x)v/(v + ).

Proof. For sake of clarity, we denote in (4.2), &, .(v) = ||v||H,(Q) Aql; () + L5 (v) + (r— DI (v).

Using Hardy’s inequality, we get a similar estimate to (4. 1) for &, and A.(1) € R. So, let
()new C H be an associated minimizing sequence. We have, (v,).en is bounded in H
(see (4.1)). Therefore, there exist ®, € H and a subsequence still denoted (v,),en such
that v, —— @, weakly in HI(Q) and strongly in L?*(Q) and a.e. in Q. Then we get

[| D ||H1(Q) < hm inf, o0 ||v,,||H1(Q) Moreover, by Hardy’s inequality (v, /d(x)),y is bounded
in LZ(Q) therefore up to a subsequence v,/d(x) —— ®,/d(x) in L*>(Q). Then, writing
n—+oo

I5(0,) = f KA uge + £ (00 /d(x)) 0y dx
Q

we get that I7(v,) —> I;(®,). And similarly, I5(v,) —> L(D,) and I5(v) —— (D).
Hence, &,.(®,) < hm lnfn—>+oo Epe(vy) and &, (D) = mmueﬂ Ep:(v) = g(/l) Slnce for all
veH, E:(v) = Ere(Jv]), we can assume O, > 0 a.e in Q. From variational arguments, ® is
a weak solution to (4.3). Finally the C'*(Q) Holder regularity of @, follows from Gui-Lin [8,
Theorem 1.1]. O

Proposition 9. Let A > 0 and € € (0, &y). Then, the solution u, . of (P,.) is semi-stable.

Proof. Let us argue by contradiction. Suppose that A,(1) < 0. Let & > 0 and consider
Uy, = lae+ & ®,. Then, we have

_Aﬂﬁ’g = f/l,s(u/l,g) + g’f;;,g(u/l,s)q)s + S’As(/l)q)s in Q’

with f) . defined in (4.3). And by a Taylor-Lagrange expansion

! ! 1 ’ 4 / :
fﬁ,e(ﬂ/lyg) = f/l,s(u/l,s) +& f,l,s(uﬁ,s)q)s + 5(8 (DS)szg(u/l,s +6g'D,;) inQ,
with 6 € (0, 1) and

KO 1-nE9_ o1 ne-nEW

(v+e)> (v +e)>" (v+ep "
By Theorem 2.1 in Gui-Lin [8], @, behaves like the distance function in €, therefore there
exists a posmve constant C independent of 6 and &’ such that |<I>2 Fluae + 6€ d)g)l <CinQ.
So, choosing & small enough,

Yo € Hy(Q), f1.(0) = A4q(g - 1) ——5—

1
& A )D, < 5(8'(1)6)2 [ e +06D,)  inQ
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and u, _ is a subsolution of (P, ). Moreover, using the Brézis-Nirenberg [2] strong maximum
principle, u . < U, in Q and since O, € C'*"(ﬁ), for & > 0O sufficiently small, we have
u, . < U,g, in Q. Hence, using the same sub and supersolution technique, we get the existence
of ity weak solution of (P,.) such that u,, < ifiye < Uy, in Q, which contradicts the

maximality of u, . in Proposition 7. O

4.3. Semi-stability of the solution u, for 1 > A,

To prove the semi-stability of the maximal solution u, of (P,), we pass to the limit as & —
0*. Indeed, from Proposition 6 and Proposition 7 let us define for all x € Q, Uux) =
limg_,0+ Uy -(x) and 7@ (x) = limg04 uy.(x). Then, passing to the limit in the inequality
proved in Proposition 7, we get u; < iy < U, in Q. We also have, for all € € (0, &) and all
ve H(l)(Q),

f Vu, .. Vodx = /lf K(x)(@pe + €)vdx. “4.4)
Q Q

So choosing u, . as test function, we get
f |Vﬁ/l,8|2 dx = /lf K(x)(uae + &)luyedx < /le K(X)(MV + &)V dx < +oo.
Q Q Q

Then, (4,¢):>0 1s bounded in H(')(Q). So, up to a subsequence, passing to the limit as ¢ — 0*
in the first inequality of Proposition 6 and in (4.4), U, is a weak solution of Py satisfying
U, < U, < MV in Q. Hence, by uniqueness of a such solution of (1_3’,1), U, =U,in Q.
Similarly, (#,¢)e>0 is bounded in H(l)(Q) and then @i, is a weak solution to (P,) such that
uy < ity < U, in Q. Hence, since u, is a maximal solution, it follows that &z, = u, in Q. So
finally, since Az(1) > 0, E,.(v) = O for all v € H. With the notations used in the previous
proof,

I (v) — f K(x)ufflv2 dx and L@+ (- DEQ@ — rf K(x)uz_lv2 dx.
e—0* Q e—0* Q

Hence, A(1) = limg_+ Ag(2) > 0, which proves the semi-stability of u;. Moreover, by
inequality (3.5) and Dini’s Theorem, u, —T up, in L*(Q). So, we also have A(A;) > 0.
A T

4.4. Stability of u, for 1 > A,

Finally, let us prove that A(1) > 0 for 4 > A;. For that we introduce the following new
perturbed problem:

“Au=Kx)Au!-u" +60) inQ; upa=0 u=>0 inQ, (Pfl)

with 0 € R._As above, we first show the existence of a branch of maximal solutions denoted
) € C'(Q) to problem (P9) for A > Ay, where Ay = inf{d > 0 | (P) has a positive
solution a.e. in Q}. As above, we have A’(1) := inf,er E°(v) > 0, with v € H)(Q) and

&) = f IVul? dx +r f Kx)@d)™'u* dx - Aq f K @h)? " u* dx.
Q Q Q
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Lemma 10. Assume A > Ay. Then,
1. there exists 8y < 0 such that ui‘) >0a.e inQ;

2. the mapping 8 —> A%(Q) is increasing on (6y, +o).

Proof. By Proposition 2, for 4 > A; there exist two constants C;,C, > 0 depending on A
such that, for all x € Q, C;d(x) < u (x) < C,d(x). Then, let us choose ' € (A, 1) and &
small enough to satisfy (1/A)uy > uy + &V and [/ — (/) uy > eV ae. in Q, with V
solution to (3.2). Defining w := (A/A")uy — eV, we get —Aw < K(x)(Aw? —w" — &) in Q and
as in the proof of Proposition 5, we prove the existence of w € C 1*‘1(5), forsome 0 < a < 1,
solution to

-Aw=Kx)Aw?! —w" —&g) inQ; wlgo=0.

To complete the proof of point 1 of this lemma, it suffices to choose 6y € (—¢,0). The second
assertion follows from the strong maximum principle from which we get that, for § < ¢
the positive maximal solutions to (P%) and (P) satisfy u < uf in Q. Then, noting that as
previously, or every 6 € (6, +00), the infimum

A%() = inf { f IV dx + r f Ko ()™ dx - g f Koo (i) 2 dx}
is achieved for an element ®¢ € H}(Q), we finally get A” (1) > A’(1). o

Thanks to this lemma, A(1) = A%1) > A=9(1) > 0, which completes the proof.
Remark 2. When A > Ay, u, is the unique positive and semi-stable solution of (P,). Indeed,
let us suppose there exists another positive and semi stable solution v, € H(l)(Q), therefore by

the strong maximum principle v; < u, in Q. By hypothesis, for every u € H(l)(Q),
LK(x) (/lqu_' - rv/’{") wdx < L |Vul? dx.
Choosing u = uy —v, € H(l](Q) this estimate becomes
L K(x) (/lqu_l - rv;_l) (g —vy)? dx < L V(i — v)? dx. 4.5)

Since, u, and v, both are solution to (P,), then we also have

fg K[ (uf = %) = () = 0)] w2 = v2) dx = fﬂ V(s — o) dx. (4.6)
Combining (4.5) and (4.6), we get

fg K@)y — o) {[ (A = ) = (= u)] = (Aqui™" = ") (ua = v} dx 2 0,

which contradicts (4, —v,) > 0 in Q because, by concavity of ¢ — A7 — 1",

[(/lug - ufl) - (/luj - uﬁ)] - </1qvg_1 - rv;_l) (uy—v)) <0 inQ.

Therefore u, is the unique solution among the positive and semi-stable solutions of (P,).
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