
Monografías Matemáticas García de Galdeano 39, 187–194 (2014)

THE CONTINUOUS WAVELET
TRANSFORM:

FAST IMPLEMENTATION AND PIANOS
Tomas Sauer

Abstract. The (continuous) wavelet transform is a powerful tool for the analysis of sig-
nals that have to be judged according to their time–frequency content. To handle realistic
instances of such signals, efficient numerical methods have to be developed that make
use, for example, of the computing capabilities of modern GPUs. This paper describes
the basic ideas of such computations and shows the results of some test computations.

Keywords: Wavelet transform, GPU computation, FFT, piano.
AMS classification: 65T60,65Y05.

§1. Introduction

The continuous wavelet transform (CWT) has been established as an important tool for the
analysis of time–frequency data during the last decades, standard references still being [2]
and the permanently updated and extended [5]. Given a mother wavelet ψ ∈ L2(R) which
satisfies the admissibility condition∫

R

|ξ|−1 |ψ̂(ξ)| dξ < ∞, (1.1)

the wavelet transform takes a function f to

Wψ f (u, s) :=
∫
R

f (t)
1
√
|s|
ψ

(t − u
s

)
dt, u, s ∈ R, (1.2)

where u is the localization parameter and s the scale, a value closely related to the reciprocal
frequency. The normalization |s|−1/2 takes care that the 2–norm of the time–frequency atoms
ψs,u := ψ

(
s−1(· − u)

)
remains invariant of s and is omitted in some definitions of the wavelet

transform.
One advantage of the wavelet transform, especially in the context of the analysis of musi-

cal sound signals, lies in the fact that the so–called Heisenberg boxes of the time–frequency
atoms take the form

Hψ(u, s) :=
[
u − sσ(ψ), u + sσ(ψ)

]
× s−1 [̂

µ(ψ) − σ̂(ψ), µ̂(ψ) + σ̂(ψ)
]
, (1.3)

where
µ(f) :=

1
‖ f ‖22

∫
R

t | f (t)|2 dt, µ̂(f) :=
1

2π‖ f ‖22

∫
R

ξ
∣∣∣∣ f̂ (ξ)

∣∣∣∣2 dξ,

188 Tomas Sauer

and

σ2(f) :=
1
‖ f ‖22

∫
R

(t − µ(f))2 | f (t)|2 dt, σ̂2(f) :=
1

2π‖ f ‖22

∫
R

(
ξ − µ̂(f)

)2
∣∣∣∣ f̂ (ξ)

∣∣∣∣2 dξ,

are the first and second moments or mean value and variance of the function f and its Fourier
transform f̂ , respectively. The number µ(f) does not appear in (1.3) due to the simple fact
that the admissibility condition (1.2) requires that µ(f) = 0.

The “musical” interpretation of (1.3) is that both time and frequency are resolved with a
certain relative accuracy, in contrast to the absolute accuracy provided by, for example, the
Gabor transform. This is even in accordance with the musical terminology where the differ-
ence between tones is measured in cents which quantifies exactly the relative deviation in the
associated frequencies. In addition, the larger time intervals related to low frequencies repre-
sent the fact that in order to perceive a tone its duration has to be longer than the reciprocal
of the frequency, since otherwise this is not even one full period of oscillation.

This paper reports on some experiments which show that wavelet analysis helps to under-
stand and visualize the complex acoustic behaviour of grand pianos. The computation of the
wavelet transforms with a reasonable resolution of scale, i.e., resolution of frequency, within
reasonable time requires a good implementation of wavelet transform. In particular, one can
make use of the parallelization potential provided by modern graphics cards, the so–called
GPU computations. It turns out that the fast wavelet transform is indeed perfectly suitable
for such methods.

§2. The fast wavelet transform

A look at (1.2) shows that the wavelet transform can be written as a convolution

f ∗ g :=
∫
R

f (t) g(· − t) dt,

namely as

Wψ f (·, s) = f ∗ ψs, ψs :=
1
√
|s|
ψ

(
s−1·

)
. (2.1)

Ever since the invention of the fast Fourier transform (FFT) it is well–known that the Fourier
transform is the most efficient way to compute any convolution as

f ∗ g =
(

f̂ ĝ
)∨
.

In most applications, the function f is only given in uniformly sampled form as a vector

fN := S N,h,t0 f =
[
f (tk) : k ∈ ZN

]
, ZN := Z/NZ = {0, . . . ,N − 1},

with given sampling distance h, initial time t0 and resulting sampling points TN := [tk = t0 + kh].
The discrete Fourier transform of fN : ZN → C,

f̂N :=

∑
k∈ZN

fN(k) e2πi jk/N : j ∈ ZN

Continuous wavelet transform 189

can be computed efficiently by means of the fast Fourier transform (FFT). However, it is
well known, cf. [8], that the DFT f̂ is not a sampled version of the Fourier transform of the
original function f . This relationship is built via a quasi interpolant

fϕ(t) :=
∑
k∈ZN

fN(k)ϕ
(
h−1t − k

)
,

for which straightforward computations yield the relationship

f̂ϕ(ξk) = h ϕ̂
(

2kπ
n

)
f̂N(k), ξk :=

2πk
nh

, k ∈ ZN . (2.2)

The function ϕ can be chosen for example as a centered B–spline, and the resulting smoothing
effect consists of a damping of high frequencies since then ϕ̂ is essentially a power of the sinc
function. On the other hand, in the spirit the Shannon–Whittaker Sampling Theorem, ϕ
could be chosen as a sinc function which yields ϕ̂ = 1 at the relevant values. However, it
is well known that due to its slow decay the sinc function is not a good choice for the quasi
interpolant, hence interpreting the DFT as samples of a Fourier transform at ξk is not a good
idea from a numerical point of view, although in theory it seems an almost perfect way to go.

By means of (2.2), the Fourier transform of the wavelet transform is now easily computed
for k ∈ ZN as (

Wψ fϕ(·, s)
)∧

(ξk) =
(

fφ ∗ ψs

)∧
(ξk) = f̂ϕ(ξk) ψ̂s(ξk) (2.3)

=
√
|s|h ϕ̂

(
2kπ
n

)
f̂N(k) ψ̂(s ξk) (2.4)

Assuming that the Fourier transform above has been generated from a data vector wN :=[
Wψ fϕ(tk, s) : k ∈ ZN

]
, corresponding to a sampled wavelet transform, by the same quasi-

interpolant, i.e., by ((
Wψ fϕ

)
(·, s)ϕ

)∧
(ξk) = h ϕ̂

(
2kπ
n

)
ŵN(k), k ∈ ZN ,

we get that
ŵN(k) =

√
|s| f̂N(k) ψ̂(s ξk), k ∈ ZN ,

and therefore[
Wψ fϕ(tk, s) : k ∈ ZN

]
= wN =

[√
|s| f̂N(k) ψ̂(s ξk) : k ∈ ZN

]∨
=

(
f̂N � ψ̂N,s

)∨
, (2.5)

where � denotes the componentwise product or Hadamard product between the vectors and

ψ̂N,s :=
[√
|s| ψ̂

(
k
N

2πs
h

)
: k ∈ ZN

]
.

The computation of (2.5) is done for a finite set S M :=
[
s j : j ∈ ZM

]
of scales which are

best selected in an equally tempered scale as sk = s0σ
k, k ∈ ZM , for some σ > 1, as this in

accordance with the shape of the Heisenberg boxes once more.

190 Tomas Sauer

Arranging the wavelet data into a matrix

Ψ̂M,N :=
[√
|s j| ψ̂

(
k
N

2πs j

h

)
:

j ∈ ZM

k ∈ ZN

]
∈ CM×N ,

the numerical computation of the wavelet transform can be written in the convenient form[
Wψ fφ

(
tk, s j

)
:

j ∈ ZM

k ∈ ZN

]
=

((
1M ⊗ f̂ T

N

)
� ΨM,N

)∨
. (2.6)

Even if this appears to be a trivial reformulation (and actually is one), it is the key to devel-
oping a fast and efficient way to compute the wavelet transform in an efficient way.

The first step of such an algorithm consists, if needed, of the (pre)computation of the
matrix ΨM,N , which is either done by simply sampling an explicitly given Fourier transform
of Ψ, like in the case of the Morlet wavelet, or by computing M arrays of FFTs. The latter
requires a resampling of the function ψ for each scale which leads to a O(MN) complexity
on CPUs but since the samplings are essentially independent, this job could at least be par-
allelized nicely on GPUs. Either way, as long as the wavelet and the scales remain fixed,
the matrix ΨM,N needs to be computed only once for any number of wavelet transforms of
different functions f .

The next and crucial step computes the FFT of the samples, f̂N , and then spreads them
over Ψ by generating a matrix

Ŵ :=
[(

f̂N

)
k

(
ΨM,N

)
jk :

j ∈ ZM

k ∈ ZN

]
=

(

f̂N

)
1

(
ΨM,N

)
11 . . .

(
f̂N

)
N

(
ΨM,N

)
1N

...
. . .

...(
f̂N

)
1

(
ΨM,N

)
M1 . . .

(
f̂N

)
N

(
ΨM,N

)
MN

 (2.7)

whose inverse Fourier transform yields the sampled wavelet transform in the final step. Here,
it is absolutely necessary to organize the data in the sequential order f̂N �

(
ΨM,N

)
j,:, j ∈ ZM ,

of the scales since all professional implementations of the FFT, like FFTW and CUFFT provide
a special mode for the fast computations of M identical transformations of size N as long as
they are aligned in the aforementioned way.

§3. GPU implementation

The GPU implementation is using the streaming parallelization capabilities of modern graph-
ics processing units, aka GPUs. As described in [1], this a simple way of parallelization
which consists of blocks and threads. Essentially, a block is processor core on the GPU and
a thread is one job running on this core. Threads on the same block can share memory, while
jobs on different blocks are performed completely independently of each other; for example
it is not possible to prescribe any order of different blocks or to have any communication
between different blocks.

A GPU implementation starts with transferring copies of the data f̂N and ΨM,N to the
GPU memory and then the computation of Ŵ from (2.7) can either use j as block index and
k as a thread index or vice versa. This means that either the columns or the rows of (2.7) are
computed as different threads on the same core. As an example, he kernel versions of the
latter approach take the (much simplified) C–form

Continuous wavelet transform 191

fwt<<<<M,N>>>>(f,Psi,M,N);

__global__ void
fwt1(double complex *f, double complex *Psi, unsigned M, unsigned N)
{
Psi[N*blockIdx.x + threadIdx.x] *= f (blockIdx.x);

}

Both approaches make sense:

1. If the thread index varies over the scale k, the number to be multiplied,
(

f̂N

)
j
, can be

kept in the shared memory of the block which allows for faster access to this number.

2. If the block index varies over the scale, then all scales are computed independently and
the time behaviour can be expected to be almost independent of the number of scales
to be computed.

It is not yet fully clear which of the two approaches is to be preferred and what can be gained
from more elaborate memory access techniques, but a first test implementation verified the
claim for the second approach. In fact, the increase in the number of scales even resulted in
a memory overflow before showing any increase in runtime. Finally, after the multiplication
which overwrites ΨM,N , the modified data is transferred back to GPU memory from where
the inverse Fourier transform based on CUFFT, a fast parallelized version of the FFT with a
syntax very similar to FFTW, is computed.

Of course, this is only a much simplified description of the GPU computation of the fast
wavelet transform (FWT), in a real implementation there are a lot of subtle programming
issues to be dealt with, which cannot be discussed here.

§4. Wavelet design

One of the big advantages of the continuous wavelet transform is that there are very few
restrictions to the wavelet function, or mother wavelet, ψ which has to satisfy only the admis-
sibility condition (1.1). This allows for the adaption of the wavelet to a specific problem or
to a specific shape to be recognized in a given signal by means of correlation. And even if
there is a big zoo of wavelets like the ubiquitous Morlet wavelet, the Mexican hat and many
more, there is a simple way to create even more general and problem adapted wavelets. The
approach is based on the following observation.

Lemma 1. If ψ is admissible function, then so is

θ =
∑
k∈ZP

ak ψ (· − tk) , tk ∈ R, ak ∈ C, k ∈ ZP,

for any P > 0.

Proof. Since
θ̂(ξ) = ψ̂(ξ)

∑
k∈ZP

ak eitkξ =: ψ̂(ξ) a(ξ)

192 Tomas Sauer

with a(ξ) uniformly continuous and uniformly bounded on R, it follows that∫
R

|ξ|−1 |̂θ(ξ)| dξ ≤ ‖a‖∞

∫
R

|ξ|−1 |ψ̂(ξ)| dξ < ∞,

hence θ is admissible. �

Usually, the coefficients ak can be found by matching θ discretely against a template g in
the least squares sense,

min
ak

∑
j∈ZQ

∣∣∣g(x j) − θ(x j)
∣∣∣2 , x j ∈ R,

whereas the shifts t j can be be obtained by a greedy dictionary search over a large number
of fine samples like in the Karhunen–Loeve method in [5]. Such an approach was used
in [3] to construct a “spindle like” wavelet that relates to typical activity patterns in EEG
measurements, cf. [6].

Such adapted wavelets fit very well into the concept of the fast wavelet transform since

ΘM,N = ΨM,N �

[̂
a
(

k
N

2πs j

h

)
:

j ∈ ZM

k ∈ ZN

]
,

so that all our preceding remarks about efficient computations immediately carry over to
adapted wavelets.

§5. Pianos

A particularly nice application of time–frequency methods is the analysis of the sound of
musical instruments. In contrast to the basic theory, almost no real instrument produces
a tone which does not vary over time and thus can be understood by means of a Fourier
transform. Pianos are a particular example of such a situation as the tone is generated by an
overlay of the strings’ original sound, and resonance of the body of the instrument as well as
of other strings. Moreover, the partials of the tone decay with different speed, hence the tone
even changes its “quality” or “character” over time. Moreover, due to the high stress of the
strings especially in grand pianos, even the partials of a single string show a highly nonlinear
behaviour and are not just multiples of the the base tone, cf. [4]. For such an analysis the
Morlet wavelet as a modulated Gaussian is particularly useful as its shape is already close to
the relevant signal components. The data used in the following experiments were recorded as
wav files in 44kHz CD quality with a ZOOM H2 field recorder located in a central position
below the piano. All computations were performed in practically real time, i.e., in about 5s
of user time, on a Dell 7500 workstation with an NVIDIA Quadro GPU.

Fig. 1 shows the Morlet scalogram distribution of the main partial tones of a low A played
for five seconds on a Bösendorfer 200 grand piano. The numbers just indicate the indices of
the respective time and scale where larger scale indices correspond to lower frequencies.
It can be seen that the second partial tone is more dominant than the base tone, the first
partial, but that all higher partials decay more rapidly than the first one. This time–frequency
behaviour gives the impression of a mellow, low tone with a clear accent in the beginning.

Continuous wavelet transform 193

Figure 1: Low A on a grand piano.

A careful look a the y–range between 150 and 200 also shows a periodic change of the
amplitude of that partial, a phenomenon known as beats, cf. [4, 7]. Such phenomena are
particularly well reproduced by the continuous wavelet transform while Fourier and Gabor
transform usually detect them as different differences, see [7].

The wavelet scalogram of different pianos, depicting the respective partials and their tem-
poral behaviour, can also be used to distinguish between the pianos. Fig. 2 shows the low a on
four different grand pianos, namely (from left to right) a Steingräber 168 S and Steingräber
192 N on the top row and our “good old” Bösendorfer 200 sharing the bottom row with a
Kawai RX–5. It is not accidental that the “cheapest” among those pianos has the weakest
contribution of the first partial, as this partial tone requires the highest effort in constructions.

Obviously, the sound characteristics of the respective instruments, even for single tones,
are well reflected in the wavelet scalogram which makes wavelets a useful tool also for the
making and testing of instruments; however, in this case also more complicated structures
like chords and short pieces of melody have to be considered.

Acknowledgements

I want to thank Johannes Jurgovsky for his assistance in realizing the CUDA implementation
of the FCWT and Carlos Mora from the “Pianohaus Mora” in Passau for providing the sound
samples of the pianos and giving me an introduction to the stunning physics of this fascinating
instrument.

194 Tomas Sauer

Figure 2: Four different pianos and their wavelet “fingerprint”. The two pianos in the upper
row are from the same maker.

References

[1] Corporation, N. NVIDIA CUDA C Programming Guide 4.2, 2012.

[2] Daubechies, I. Ten Lectures on Wavelets. SIAM, 1992.

[3] Flüggen, S. A wavelet approach to monitor brain activities during mental computations.
Master’s thesis, University of Gießen, 2013.

[4] Helmholtz, H. On the Sensations of Tone. Longmans & Co, 1885.

[5] Mallat, S. A wavelet tour of signalprocessing. Academic Press, 2008.

[6] Samar, V. J., Bopardikar, A., Raghuveer, M. K., and Swartz, K. Wavelet analysis of
neuroelectric waveforms: A conceptual tutorial. Brain and Language 66 (1999), 7–60.

[7] Sauer, T. Time–frequency analysis, wavelets and why things (can) go wrong. Human
Congnitive Neurophysiology 4 (2011), 38–64.

[8] Schüssler, H. W. Digitale Signalverarbeitung. Springer, 1992.

Tomas Sauer
Lehrstuhl für Mathematik mit Schwerpunkt Digitale Bildverarbeitung
Universität Passau
Innstr. 43, D–94032 Passau, Germany
Tomas.Sauer@uni-passau.de

