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Abstract. The weak comparison principle for weak solutions of scalar doubly nonlinear
reaction-diffusion equations

∂

∂t
b(u) − div(a(b(u),∇u)) = f

is proved under slightly more general conditions on a than those used by Otto [11], Díaz
[4] and Kurta [8].
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§1. Introduction

Consider a scalar doubly nonlinear reaction-diffusion equation

∂

∂t
b(u) − div(a(b(u),∇u)) = f (1.1)

on a bounded domain Ω ⊂ Rn, where a, b are allowed to have degenerate or singular deriva-
tives and f denotes an inhomogeneity or nonlinearity. This article is concerned with con-
ditions on the nonlinear mappings a, b which allow to prove the weak comparison principle
for two weak solutions u, ũ of (1.1) to initial values u0 ≤ ũ0 and inhomogeneities f ≤ f̃
(or nonlinearities f = f (b(u))). Otto [11] has proved the validity of the weak comparison
principle for a continuous non-decreasing monotone function b under certain conditions on
a, Díaz [4] has proved the same principle (for strong solutions) under other conditions on a,
and Kurta [8] again invokes different assumptions on a. The aim of this article is to show the
weak comparison principle under a slightly more general condition on a, which unifies the
conditions of [11, 4, 8] and seems to be at the heart of the method of proof.

The validity of the weak comparison principle for (1.1) has several consequences, e.g.
it directly implies uniqueness of solutions, continuous dependence and the weak maximum
principle, see [12]. Moreover, it allows to develop an L1-theory for doubly nonlinear reaction-
diffusion equations, and positivity of solutions can be proved in some situations by com-
parison with an explicit solution (for a general discussion of positivity let us refer to [5]).
Therefore, it is important to find general conditions which guarantee the validity of the weak
comparison principle for a large class of equations.
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Outline
In section 2 conditions on the functions a, b, f needed to prove existence of weak solutions
with finite energy are formulated. The weak comparison principle is established in section
3 via a signed L1-contraction principle under conditions, which unify and slightly generalize
the conditions of [11, 4, 8], as is shown in the final section.

§2. Weak solutions with finite energy

Before we discuss the weak comparison principle for scalar doubly nonlinear reaction-diffusion
equations

∂

∂t
b(u) − div(a(b(u),∇u)) = f , (1.1)

let us formulate conditions which play an important role in proving existence of weak solu-
tions of (1.1) with finite energy.

Let Ω ⊂ Rn be a bounded domain and let b : R → R be a continuous non-decreasing
monotone function. Denote by φb(u) :=

∫ u
0 b(u) du the convex potential of b with φb(0) = 0

and define the Legendre-Fenchel transform of φb by

φ∗b(v) := sup
u∈R

(vu − φb(u)) .

If φb is not superlinear, then there may exist v ∈ R with φ∗b(v) = +∞. However, φ∗b(b(u)) =

b(u)u − φb(u) < +∞ is generally valid, and for every δ > 0 there exists a constant Cδ < +∞

such that |b(u)| ≤ δφ∗b(b(u)) + Cδ.
In this context, a measurable function u on Ω is said to have finite energy, if φ∗b(b(u)) is

integrable over Ω. Consequently, b(u) ∈ L1(Ω) holds for functions u with finite energy by the
former inequality. Functions with finite energy play an important role in the theory of doubly
nonlinear reaction-diffusion equations (1.1), as the energy identity

d
dt

∫
Ω

φ∗b(b(u)) dx = 〈
∂

∂t
b(u), u〉

(which generalizes the energy identity d
dt

1
2‖u‖

2
H = 〈 ∂u

∂t , u〉 on a Hilbert space H) is valid for
distributions ∂

∂t b(u) acting on u. Thus, for initial values with finite energy a priori estimates
of weak solutions can be obtained by testing (1.1) with u, provided that a satisfies appropriate
conditions. With a parameter 1 < p < +∞ such conditions on a = a(v, ξ) read as
(A1) a : R × Rn → Rn, (v, ξ) 7→ a(v, ξ), is continuous,

(A2) a satisfies the growth condition

|a(v, ξ)| ≤ C1|ξ|
p−1 + C2φ

∗
b(v)1/p′ + C3 (2.1)

with constants C1,C2,C3 < +∞,

(A3) a satisfies the semicoercivity condition

a(v, ξ) · ξ ≥ c1|ξ|
p −C2|ξ| −C3φ

∗
b(v) (2.2)

with constants c1 > 0, C2,C3 < +∞,
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(A4) a is monotone in the main part, i.e.

(a(v, ξ) − a(v, ξ̃)) · (ξ − ξ̃) ≥ 0 . (2.3)

Under these conditions on a, b, for an inhomogeneity f ∈ Lp′ (0,T ; W−1,p′ (Ω)) the follow-
ing notion of a weak solution u of (1.1) under Dirichlet boundary conditions to initial values
u0 with finite energy is appropriate, see [1, 1.4]. Note that if ∂Ω is C1, then u(t) ∈ W1,p

0
implies u(t) = 0 on ∂Ω in the sense of traces.

Definition 1. A function u ∈ Lp(0,T ; W1,p
0 (Ω)) is called a weak solution of (1.1) to the ini-

tial value u0 with finite energy φ∗b(b(u0)) ∈ L1(Ω), if φ∗b(b(u)) ∈ L∞(0,T ; L1(Ω)), if b(u) ∈
L∞(0,T ; L1(Ω)) has a weak derivative ∂

∂t b(u) ∈ Lp′ (0,T ; W−1,p′ (Ω)) and the initial value
b(u0) ∈ L1(Ω), and if (1.1) holds as an equation in Lp′ (0,T ; W−1,p′ (Ω)).

Moreover, if f = f (b(u)) is a nonlinearity, let us assume that

(F1) f : R→ R, v 7→ f (v), is continuous,

(F2) f satisfies the growth condition

| f (v)| ≤ C1φ
∗
b(v)1/p′ + C2 (2.4)

with constants C1,C2 < +∞.

Example 1. If b(u) = |u|m−2u for 1 < m < ∞, then φb(u) = 1
m |u|

m, φ∗b(v) = 1
m′ |v|

m′

and φ∗b(b(u)) = 1
m′ |u|

m. Thus, a function u has finite energy iff u ∈ Lm(Ω). As the su-
perposition operator associated with b maps Lm(Ω) continuously into Lm′ (Ω), here even
b(u) ∈ L∞(0,T ; Lm′ (Ω)) holds for a weak solution u. Particularly, for inhomogeneities f
in the space Lp′ (0,T ; W−1,p′ (Ω)) + L1(0,T ; Lm′ (Ω)) under the condition m < p∗ existence
of weak solutions can be shown, where in Definition 1 more generally existence of ∂

∂t b(u)
and validity of (1.1) in Lp′ (0,T ; W−1,p′ (Ω)) + L1(0,T ; Lm′ (Ω)) is allowed, see [9]. More-
over, with the parameter p~ := p(1 + m

n ) 1 the growth condition (F2) for a nonlinearity f
can be replaced by the more general condition | f (v)| ≤ C1φ

∗
b(v)1/q′ + C2 with a parameter

1 < q < p~. Then, at least short-time existence of weak solutions satisfying (1.1) as an equa-
tion in Lp′ (0,T ; W−1,p′ (Ω)) + Lq′ (0,T ; Lq′ (Ω)) can be shown, and long-time existence holds
for q < max(m, p).

Remark 1. Note that there exist various extensions of the mentioned conditions, under which
existence of weak solutions of (1.1) with finite energy can be studied. For example, convec-
tion terms not restricted by a growth condition could be allowed, or b could be a maximal
monotone graph such that b−1 is continuous, see [3]. However, as the focus of this article lies
on the weak comparison principle, such extensions are not discussed here.

§3. The weak comparison principle

Like [11] we can prove the validity of the weak comparison principle only under a more
restrictive monotonicity assumptions than (A4), but we are able to avoid the assumption

1The parameter p~ is the optimal parameter such that Lp(0,T ; W1,p
0 (Ω)) ∩ L∞(0,T ; Lm(Ω)) is continuously em-

bedded into Lp~ (0,T, Lp~ (Ω)), and p~ coincides for m = 2 with the parameter defined in [13, (8.116)].
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of uniform monotonicity (4.1). For the proof of theorem 2, let us introduce the following
notation, see [2, Definition 2.1]

Definition 2. For η ∈ C1(R) the primitive bη of η′ w.r.t. b is defined up to a constant by

bη(u) :=
∫ u

η′(ũ) db(ũ)
(
=

∫ b(u)

η′(b−1(ṽ)) dṽ if b−1 is continuous
)
.

In [11] the function η is called an entropy and bη is called the corresponding entropy
flux. Note that bId = b, but instead of the identity usually functions η with a fast decreasing
derivative are used to cut off b appropriately. A basic tool is the following integration by parts
formula for weakly differentiable functions, which originates from the work of Alt-Luckhaus
[1] and Mignot-Bamberger (see [6, p.31]). For differentiable functions t 7→ bη(u(t)−ũ) and t 7→
b(u(t)) this integration by parts formula simply follows from ∂

∂t bη(·−ũ)(u) = η′(u(t) − ũ) ∂b(u)
∂t .

Lemma 1. Let b : R → R be continuous non-decreasing monotone. Assume that u ∈
Lp(0,T ; W1,p

0 (Ω)) and the measurable function u0 are such that b(u) ∈ L∞(0,T ; L1(Ω)) has
a weak derivative ∂b(u)

∂t ∈ Lp′ (0,T ; W−1,p′ (Ω)) + L1(0,T ; L1(Ω)) and an initial value b(u0) ∈
L1(Ω). Then,∫ T

0
〈
∂b(u)
∂t

(t), η′(u(t) − ũ)φ(t)〉 dt = −

∫ T

0

∫
Ω

(bη(·−ũ)(u(t)) − bη(·−ũ)(u0))
∂φ

∂t
dx dt (3.1)

is valid for every η ∈ C1,1(R), every fixed ũ ∈ W1,p(Ω) and every φ ∈ W1,∞((0,T ) × Ω) with
φ(T ) = 0 such that η′(u − ũ)φ ∈ Lp(0,T ; W1,p

0 (Ω)) ∩ L∞(0,T ; L∞(Ω)).

Remark 2. In [11, Lemma 1] a variant of Lemma 1 for sub- and super-solutions is formulated,
and in [3, Lemma 2.1] a variant for monotone graphs b is shown.

In the following main theorem of this article a signed L1-contraction principle is shown for
weak solutions of (1.1) under conditions, which unify and slightly generalize the conditions
of [11, 4, 8]. The proof of this contraction principle is very close to the proof in [11], and the
weak comparison principle more or less directly follows.

Theorem 2. Assume that b is continuous non-decreasing monotone, and suppose that a sat-
isfies beneath (A1)-(A3) instead of (A4) the stronger condition

(a(v, ξ) − a(ṽ, ξ̃)) · (ξ − ξ̃) ≥ −C(1 + |ξ|p + |ξ̃|p + φ∗b(v) + φ∗b(ṽ))|u − ũ| (3.2)

with v = b(u), ṽ = b(ũ). Then, if u, ũ are weak solutions of (1.1) to initial values u0, ũ0 with
finite energy and inhomogeneities f , f̃ with f , f̃ ∈ L1(0,T ; L1(Ω)), the inequality∫

Ω

(b(u(t)) − b(ũ(t)))+ dx ≤
∫

Ω

(b(u0) − b(ũ0))+ dx +

∫ t

0

∫
Ω

( f − f̃ )+ dx ds (3.3)

is valid for a.e. t ∈ (0,T ). If instead of an inhomogeneity the right hand side of (1.1) is a
nonlinearity f = f (b(u)), which does not only satisfy (F1)-(F2) but also a one-sided Lipschitz
condition ( f (v) − f (ṽ))(v − ṽ) ≤ L|v − ṽ|2, then for a.e. t ∈ (0,T )∫

Ω

(b(u(t)) − b(ũ(t)))+ dx ≤ etL
∫

Ω

(b(u0) − b(ũ0))+ dx . (3.4)
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Proof. We follow the proof of [11] and just mention the necessary modifications. Let η′ = η′k
be a smooth non-decreasing monotone approximation of u 7→ sign+(u) := max(sign(u), 0).
Double the time variable (see [7]) and apply Lemma 1, then as in [11, (39)] we end up with

−

∫ T

0

∫ T

0

∫
Ω

((bη(·−ũ(s))(u(t)) − bη(·−ũ(s))(u0))
∂ψ

∂t
dx ds dt

−

∫ T

0

∫ T

0

∫
Ω

(bη(u(t)−·)(ũ(s)) − bη(u(t)−·)(ũ0))
∂ψ

∂s
) dx ds dt

+

∫ T

0

∫ T

0

∫
Ω

(a(∇u) − a(∇ũ)) · ∇(η′(u(t) − ũ(s))ψ(t, s)) dx ds dt

=

∫ T

0

∫ T

0

∫
Ω

( f − f̃ )η′(u(t) − ũ(s))ψ(t, s) dx ds dt

(3.5)

for every sufficiently smooth ψ = ψ(t, s, x) with ψ(T ) = 0. Hereby,∫ T

0

∫ T

0

∫
Ω

(a(∇u) − a(∇ũ)) · ∇(η′(u(t) − ũ(s)ψ(t, s))) dx ds dt

=

∫ T

0

∫ T

0

∫
Ω

η′(u(t) − ũ(s)))(a(∇u) − a(∇ũ)) · ∇ψ(t, s) dx ds dt

+

∫ T

0

∫ T

0

∫
Ω

ψ(t, s)η′′(u(t) − ũ(s)))(a(∇u) − a(∇ũ)) · ∇(u(t) − ũ(s)) dx ds dt ,

where η′′ = η′′k is non-negative but blows up as k → ∞. However, by (3.2)

(a(b(u),∇u) − a(b(ũ),∇ũ)) · ∇(u − ũ)
≥ −C(1 + |∇u|p + |∇ũ|p + φ∗b(b(u)) + φ∗b(b(ũ)))|u − ũ| ,

thus in the limit k → ∞ for non-negative ψ we obtain due to η′′(u(t) − ũ(s)))|u(t) − ũ(s)| → 0
and dominated convergence (see also Remark 3)

−

∫ T

0

∫ T

0

∫
Ω

(((b(u(t)) − b(ũ(s)))+ − (b(u0) − b(ũ(s)))+)
∂ψ

∂t
dx ds dt

−

∫ T

0

∫ T

0

∫
Ω

((b(u(t)) − b(ũ(s)))+ − (b(u(t)) − b(ũ0))+)
∂ψ

∂s
) dx ds dt

+

∫ T

0

∫ T

0

∫
Ω

sign+(u(t) − ũ(s))(a(∇u(t)) − a(∇ũ(s))) · ∇ψ dx ds dt

≤

∫ T

0

∫ T

0

∫
Ω

sign+(u(t) − ũ(s))( f − f̃ )ψ dx ds dt .

(3.6)

Now substitute ψ(t, s, x) := 1
ε
φ̃( t−s

ε
)φ( t+s

2 , x) with a non-negative function φ̃ ∈ C∞c (R) of unit
mass and a sufficiently smooth non-negative function φ with φ(T, ·) = 0. Then ∂ψ

∂t +
∂ψ
∂s =

1
ε
φ̃( t−s

ε
) ∂φ
∂t ( t+s

2 , x), i.e. those parts of the time derivative cancel which become singular as
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ε → 0. Therefore, in the limit ε → 0 we obtain

−

∫
Ω

(b(u0) − b(ũ0))+φ(0, x) dx

−

∫ T

0

∫
Ω

(b(u(t)) − b(ũ(t)))+ ∂φ

∂t
dx dt

+

∫ T

0

∫
Ω

sign+(u(t) − ũ(t))(a(∇u(t)) − a(∇ũ(t))) · ∇φ dx dt

≤

∫ T

0

∫
Ω

sign+(u(t) − ũ(t))( f − f̃ )φ dx dt ,

(3.7)

provided that the integral in (3.6) involving a and the space derivative ∇ψ really converges
to the corresponding integral in (3.7). In [11, below (43)] this convergence is established
by showing that certain integrals containing the terms Ti, i = 1, . . . , 5, vanish in the limit
ε → 0, but for these convergences already the conditions (A1)-(A3) and (3.2) are sufficient 2.
Finally, in the case of inhomogeneities f , f̃ inequality (3.7) implies for non-negative φ = φ(t)
independent of x ∈ Ω with φ(T ) = 0

−

∫ T

0

∫
Ω

(
(b(u(t)) − b(ũ(t)))+ − (b(u0) − b(ũ0))+) ∂φ

∂t
dx dt

≤

∫ T

0

∫
Ω

( f − f̃ )+φ dx dt .

This expression is equivalent to d
dt ‖b(u)−b(ũ)‖1 ≤ ‖ f− f̃ ‖1 (in the sense of scalar distributions)

and establishes the signed L1-contraction principle. In the case of a nonlinearity f = f (b(u)),
f̃ = f (b(ũ)), and due to sign(u − ũ)( f (b(u)) − f (b(ũ))) = sign(b(u) − b(ũ))( f (b(u)) − f (b(ũ)))
inequality (3.7) and the one-sided Lipschitz condition imply

−

∫ T

0

∫
Ω

(
(b(u(t)) − b(ũ(t)))+ − (b(u0) − b(ũ0))

) ∂φ
∂t

dx dt

≤L
∫ T

0

∫
Ω

(b(u(t)) − b(ũ(t)))+φ dx dt ,

i.e. d
dt ‖b(u)−b(ũ)‖1 ≤ L‖b(u)−b(ũ)‖1. Thus, Gronwall’s lemma allows to obtain the contrac-

tion principle. �

Corollary 3. If u, ũ are weak solutions of (1.1) to initial values u0 ≤ ũ0 and inhomogeneities
f ≤ f̃ resp. a nonlinearity f = f (b(u)), then u ≤ ũ.

Proof. The right hand sides of (3.3) resp. (3.4) vanish, thus b(u) ≤ b(ũ) and u ≤ ũ a.e. . �

2Note that due to continuity of a, b and the growth condition (2.1) the induced superposition operator maps the
space {u ∈ W1,p

0 (Ω) | φ∗b(b(u0)) ∈ L1(Ω)} continuously into Lp′ (Ω), and particularly for s→ t in Lp′ (Ω) it holds that

sign+(u(t) − ũ(s))(a(b(u(t)),∇u(t)) − a(b(ũ(s)),∇ũ(s)))→ sign+(u(t) − ũ(t))(a(b(u(t)),∇u(t)) − a(b(ũ(t)),∇ũ(t))) .
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Remark 3. In the proof it is important that η′′k (z)|z| is uniformly bounded for the smooth
approximation ηk of sign+ and η′′k (z)|z| → 0 holds pointwisely as k → ∞, as else dominated
convergence can not be applied to conclude that

−C
∫ T

0

∫ T

0

∫
Ω

ψ(t, s)η′′k (u(t)−ũ(s)))|u(t)−ũ(s)|(1+|∇u|p+|∇ũ|p+φ∗b(b(u))+φ∗b(b(ũ))) dx ds dt

converges to zero. In this sense the Hölder condition (3.2) is optimal for the method of proof,
because there does not exist a smooth approximation ηk of sign+ with η′′k (z)|z|α → 0 for α < 1
as k → ∞.
Remark 4. Note that (3.2) implies (A4), i.e. monotonicity in the main part (2.3), because in
the case u = ũ the right hand side of (3.2) vanishes. Thus, monotonicity (2.3) of a in the
main part is a weaker requirement than (3.2). Further, note that the terms inside the bracket
on the right hand side of (3.2) can be replaced by other terms, as long as a priori estimates
can be obtained for these terms. Particularly, let us explicitly point out that the inhomo-
geneities f , f̃ resp. the nonlinearity f = f (b(u)) do not only have to lie in L1(0,T ; L1(Ω))
resp. have to satisfy a one-sided Lipschitz condition, but additionally the a priori estimates
of ∇u in Lp(0,T ; Lp(Ω)) and of φ∗b(b(u)) in L∞(0,T ; L1(Ω)) have to be available, which gen-
erally is true for inhomogeneities in L∞(0,T ; L∞(Ω)) or in the setting of Example 1 for inho-
mogeneities in L1(0,T ; Lm′ (Ω)) resp. for nonlinearities satisfying (F1)-(F2). Finally, observe
that (3.2) is very similar to [13, (8.101)] in the case b(u) = u resp. to [10, (7)] in the doubly
nonlinear case, only that here the right hand side depends on u, ũ not via an L2-term |u − ũ|2

resp. an Lm-term (b(u) − b(ũ))(u − ũ), but via the L1-term |u − ũ|.

§4. The comparison principles of Otto, Díaz and Kurta

Let us show that (3.2) is implied by the conditions of [11], [4] and [8].

1. Otto [11] requires that a is uniformly p-monotone in the main part, i.e.

(a(v, ξ) − a(v, ξ̃)) · (ξ − ξ̃) ≥ c|ξ − ξ̃|p (4.1)

holds for every x ∈ Ω, u, v ∈ R and ξ, ξ̃ ∈ Rn with a constant c > 0, and Hölder
continuous w.r.t. the exponent 1/p′ in u, i.e.

|a(b(u), ξ) − a(b(ũ), ξ)|p
′

≤ C(1 + |ξ|p + φ̂b(u) + φ̂b(ũ))|u − ũ| (4.2)

for every x ∈ Ω, u, ũ ∈ R and ξ ∈ Rn. These two conditions imply the validity of (3.2)
due to

(a(b(u), ξ) − a(b(ũ), ξ̃)) · (ξ − ξ̃)
= (a(b(ũ), ξ) − a(b(ũ), ξ̃)) · (ξ − ξ̃) + (a(b(u), ξ) − a(b(ũ), ξ)) · (ξ − ξ̃)

≥ c|ξ − ξ̃|p −C(1 + |ξ|p + φ̂b(u) + φ̂b(ũ))1/p′ |u − ũ|1/p′ |ξ − ξ̃|

≥ −C(1 + |ξ|p + φ̂b(u) + φ̂b(ũ))|u − ũ| ,

where in the last step Young’s inequality has been applied so that c|ξ − ξ̃|p cancels.
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2. Díaz [4] considers a of the form a(v, ξ) := φ(ξ + K(v)e) with a fixed vector e ∈ Rn,
φ(ξ) := |ξ|p−2ξ and a function K such that K◦b is Hölder continuous w.r.t. the exponent
1
p (resp. 1

p′ ) in the case 1 < p < 2 (resp. p ≥ 2). Under these assumptions (3.2) is
valid, because in the case 1 < p < 2

(a(b(u), ξ) − a(b(ũ), ξ̃)) · (ξ − ξ̃)
= (φ(ξ + K(b(u))e) − φ(ξ̃ + K(b(ũ))e)) · ((ξ + K(b(u))e) − (ξ̃ + K(b(ũ))e))
− (φ(ξ + K(b(u))e) − φ(ξ̃ + K(b(ũ))e)) · (K(b(u))e − K(b(ũ))e)

≥ c|φ(ξ + K(b(u))e) − φ(ξ̃ + K(b(ũ))e)|p
′

− |φ(ξ + K(b(u))e) − φ(ξ̃ + K(b(ũ))e)| · |K(b(u)) − K(b(ũ))| · |e|
≥ −C|u − ũ| ,

where (φ(ζ) − φ(ζ̃)) · (ζ − ζ̃) ≥ c|φ(ζ) − φ(ζ̃)|p
′

has been applied, and in the last step
Young’s inequality and Hölder continuity |K(b(u)) − K(b(ũ))|p ≤ C|u − ũ| have been
used so that c|φ(ξ + K(b(u))e) − φ(ξ̃ + K(b(ũ))e)|p

′

cancels. In the case p ≥ 2, use
instead (φ(ζ) − φ(ζ̃)) · (ζ − ζ̃) ≥ c|ζ − ζ̃ |p, |φ(ζ) − φ(ζ̃)| ≤ C|ζ − ζ̃ |(|ζ |p + |ζ̃ |p)

p−2
p and

|K(b(u)) − K(b(ũ))|p
′

≤ C|u − ũ| to obtain

(a(b(u), ξ) − a(b(ũ), ξ̃)) · (ξ − ξ̃)

≥ −C(|ξ + K(b(u))e|p + |ξ̃ + K(b(ũ))e|p)
p−2
p−1 |u − ũ|

≥ −C(1 + |ξ|p + |ξ̃|p + |u|p−1 + |ũ|p−1)|u − ũ| ,

which is equally well as condition (3.2), because the a priori bound of ∇u in Lp(Ω)
implies for bounded Ω under Dirichlet boundary conditions an a priori bound of u in
Lp−1(Ω).

3. Kurta [8] studies the case where a satisfies

(a(v, ξ) − a(ṽ, ξ̃)) · (ξ − ξ̃) ≥ c|a(v, ξ) − a(ṽ, ξ̃)|α
′

(4.3)

with α = p in the case 1 < p < 2. We already used this condition during our former
discussion of [4], thus also in this case (3.2) is valid. Kurta notes that (4.3) is not
only satisfied by the p-Laplacian in the case 1 < p < 2, but also by the modified p-
Laplacian div(| ∂u

∂xi
|p−2 ∂u

∂xi
). Further, he emphasizes that under the condition (4.3) with

α = p, 1 < p < 2, the weak comparison principle is valid for solutions on Ω = Rn

which merely satisfy local a priori estimates ∇u ∈ Lp(0,T ; W1,p
loc (Rn)), in contrast to the

case p = 2 where there exists a counter example, see [8, Remark 2].
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[13] Roubíček, T. Nonlinear Partial Differential Equations with Applications, vol. 153 of
International Series of Numerical Mathematics. Birkhäuser, Basel, 2005.

Jochen Merker
University of Rostock - Institute of Mathematics
Ulmenstr. 69 (Haus 3)
D - 18057 Rostock
jochen.merker@uni-rostock.de

Aleš Matas
University of West-Bohemia - Department of Mathematics
Univerzitni 22
CZ - 306 14 Pilsen
matas@kma.zcu.cz




