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PROJECTION METHODS BASED ON
DISPERSION ERRORS FOR RK METHODS

María Pilar Laburta and Juan Ignacio Montijano

Abstract. In this article a projection technique based on the dispersion error for Runge–
Kutta (RK) methods is presented. In particular, we study how to apply it to the Bogacki–
Shampine method of order 3, giving an algorithm that computes appropriate directions
to project that RK method preserving some first integral of the differential system. Some
numerical experiments are also carried out to show the efficiency of the new projection
method.
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§1. Introduction

Let us consider autonomous differential systems of the form

y′(t) = f (y(t)), (1.1)

where f : D ⊆ RN → RN , is a sufficiently smooth function.
First integrals of (1.1) play an important role in the qualitative and quantitative study of

the flow of these systems. A scalar function G : D̂ ⊆ RN → R of class C(1(D̂), D̂ ⊆ D, is
a first integral of (1.1) if ∇G(y) f (y) = 0 ∀y ∈ D̂ [7, pp. 93]. As a consequence, if y(t) is a
solution of (1.1), then G(y(t)) is a constant quantity for all t.

It is natural to look for numerical approximations reproducing some desirable properties
of the true solution of the differential system (see e.g. [3], [4], [5]). In this work we will
deal with one-step numerical methods that preserve first integrals of (1.1). There are several
techniques to do that as it can be seen in the introduction of [3]. Following the ideas of
this article by Calvo et al., in this paper we will consider directional projection methods.
If y(t) denotes the solution of (1.1) satisfying y(t0) = y0, those projection methods provide
approximations yn to y(tn), with tn = t0 + nh, and h the step size, given by

yn+1 = ỹn+1 + λnwn, n = 0, 1, 2, . . . , (1.2)

where ỹn+1 is the numerical approximation to y(tn+1) provided by a given explicit Runge–
Kutta (RK) method, wn ∈ R

N defines the direction of the projection, and λn is an scalar
chosen so that yn+1 ∈ {y ∈ R

N |G(y) = G(y0)}, which means that yn+1 is the projection of ỹn+1
onto that variety. Thus, if we denote g(y) := G(y) −G(y0), λn will be calculated at each step
by solving the equation:

g(̃yn+1 + λnwn) = 0.
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§2. Projected Bogacki–Shampine method

Throughout this paper, we will take as the basic RK formula ỹn+1 in (1.2), the 3-stage, 3rd-
order method obtained by Bogacki and Shampine in [1]. As in [3], we will take

wn = ŷn+1 − ỹn+1, (2.1)

where ŷn+1 will be a consistent explicit RK method, embedded to ỹn+1, that will be chosen at
each step. Thus, we have the embedded RK pair:

c A

b̃T

b̂T

=

0

1/2 1/2

3/4 0 3/4

2/9 1/3 4/9

b̂1 b̂2 1 − b̂1 − b̂2

(2.2)

In order to choose appropriately the coefficients b̂1, b̂2, we firstly consider the dispersion
error function [8, 2]. For an s-stage RK method with coefficients (A, b), A ∈ Rs×s, b ∈ Rs, it
is defined after comparing the exact solution of the scalar test equation y′ = iωy, with ω ∈ R,
which satisfies y(tn+1) = eiνy(tn), with the numerical solution provided by the RK method
with fixed step size h, which satisfies yn+1 = R(iν)yn, being ν = hω, and R(z) the stability
function. More specifically, the dispersion error is given by

φ(ν) := ν − arg(R(iν)) = ν − arctan
Im(R(iν))
Re(R(iν))

,

with R(iν) = 1 + iνbT (I − iνA)−1e, i =
√
−1, I the identity matrix of order s and e =

(1, . . . , 1)T ∈ Rs. Furthermore, if φ(ν) = O(νq+1), ν → 0, then the RK method is said to
be dispersive of order q.

A desired property for ŷn+1 is that if it advances the phase with respect to y(tn+1), then
ỹn+1 must delay it, and conversely, i.e.

φ̂(ν)φ̃(ν) < 0, (ν→ 0). (2.3)

Moreover, since yn+1 = (1 − λn )̃yn+1 + λnŷn+1, it seems also desirable that g(̃yn+1) and
g(̂yn+1) have opposite signs in order to get a real value λn at each step satisfying g(yn+1) = 0.
To estimate g(̂yn+1), if ŷn+1 has order 1, we can write

g(̂yn+1) = g(̃yn+1) + ∇g(̃yn+1)(̂yn+1 − ỹn+1) + O(h4),

where the two first terms in the right hand side are, respectively, O(h4) and O(h2). So, we can
approximate

g(̂yn+1) ≈ g(̃yn+1) + ∇g(̃yn+1)(̂yn+1 − ỹn+1).

Therefore, if possible, we will look for values ŷn+1 satisfying

g(̃yn+1)
[
g(̃yn+1) + h

3∑
i=1

(̂bi − b̃i)ki

]
< 0, (2.4)
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where ki = ∇g(̃yn+1)gi, and gi are the stages of the RK pair (2.2):

gi = f (yn + h
i−1∑
j=1

ai jg j), i = 1, 2, 3.

In relation with our first criterion (2.3), we have:

Theorem 1. Let us consider the projection method (1.2) where ỹn+1 and ŷn+1 represent the
RK methods of the embedded pair given in (2.2). Then,

i) ŷn+1 satisfies (2.3) with dispersion order 2⇔ b̂2 < −
1
3 + 3̂b1.

ii) ŷn+1 satisfies (2.3) with dispersion order 4⇔ b̂2 = − 1
3 + 3̂b1, b̂1 >

13
45 .

iii) ŷn+1 satisfies (2.3) with dispersion order 6⇔ b̂1 = 13
45 , b̂2 = 8

15 .

Proof. The dispersion errors for ỹn+1 and ŷn+1 turn out to be, respectively,

φ̃(ν) = −
1

30
ν5 + O(ν7), φ̂(ν) =

1
24

(−1 + 9̂b1 − 3̂b2)ν3 + O(ν5),

from which item i) is deduced. Clearly, b̂2 = − 1
3 + 3̂b1 makes zero the coefficient of ν3 in

φ̂(ν), and then we obtain

φ̂(ν) =
1
90

(−13 + 45 b̂1)ν5 + O(ν7),

which gives rise to item ii). Finally, cancelling the principal error term of φ̂(ν), we obtain

φ̂(ν) =
1

1575
ν7 + O(ν9),

and item iii) is proved. �

According this result, we still have some degrees of freedom after choosing the coeffi-
cients b̂1, b̂2 satisfying (2.3) in the cases i) and ii). In both situations, we wonder if the free
parameters can be chosen so that the condition (2.4) is also satisfied. Thus, the following re-
sult studies when the combination of Theorem 1, item ii), with the criterion (2.4) is possible.

Theorem 2. The approximation ŷn+1 satisfies (2.3) with dispersion order 4 and also (2.4) if
and only if 

sign g(̃yn+1) = −sign (k1 + 3k2 − 4k3),

b̂1 > max{
13
45
, γ}, b̂2 = −

1
3

+ 3̂b1.

where

γ =
2
9
−

g(̃yn+1)
h(k1 + 3k2 − 4k3)

, (k1 + 3k2 − 4k3 , 0).
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Proof. After substituting b̂2 = − 1
3 + 3̂b1 and the coefficients b̃i, i = 1, 2, 3, into the approxi-

mation to g(̂yn+1), it results

g(̂yn+1) ≈ g(̃yn+1) + h(k1 + 3k2 − 4k3)
(̂
b1 −

2
9

)
.

If k1 + 3k2−4k3 = 0, clearly (2.4) can not be satisfied, and the same happens if sign g(̃yn+1) =

sign (k1 + 3k2 −4k3) since b̂1 >
13
45 >

2
9 . If sign g(̃yn+1) = −sign (k1 + 3k2 −4k3), the condition

(2.4) leads to b̂1 > γ, and the proof is completed. �

The combination of (2.3) in the form i) established in Theorem 1 together with (2.4)
has been studied in [6], recently submitted to publication by the authors. Here is the result
obtained:

Theorem 3. The RK method ŷn+1 with coefficients (A, b̂T ) given in (2.2) satisfies (2.3) with
dispersion order 2 and also (2.4) if and only if one of these four situations happens:

a) 
sign g(̃yn+1) = sign (k2 − k3),

b̂1 arbitrary, b̂2 < min
{
−

1
3

+ 3̂b1, α(̂b1)
}
.

b) 

sign g(̃yn+1) = −sign (k2 − k3),

b̂1

{
< γ, if sign (k2 − k3)=−sign (k1 + 3k2 − 4k3),
> γ, if sign (k2 − k3)=sign (k1 + 3k2 − 4k3),

b̂2 3 α(̂b1) < b̂2 < −
1
3

+ 3̂b1.

c) 
k2 = k3, sign g(̃yn+1) = sign (k1 − k3),

b̂2 < −
1
3

+ 3β, b̂1 3
1
9

+
b̂2

3
< b̂1 < β.

d) 
k2 = k3, sign g(̃yn+1) = −sign (k1 − k3),

b̂2 arbitrary, b̂1 > max{β,
1
9

+
b̂2

3
}.

where

α(̂b1) =
k3 − k1

k2 − k3
b̂1 +

2k1 + 3k2 − 5k3

9(k2 − k3)
−

g(̃yn+1)
h(k2 − k3)

, (k2 , k3),

β =
2
9
−

g(̃yn+1)
h(k1 − k3)

, (k1 , k3).
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�
Let us notice that this theorem assures the existence of coefficients b̂i, i = 1, 2, satisfying

both criteria, (2.3) and (2.4), almost in any situation.
According to the previous results, we have designed an algorithm to compute, at each

step, the coefficients b̂1 and b̂2. When it is possible, it chooses them so that both criteria (2.3)
and (2.4) are satisfied with the highest dispersion order for ŷn+1. In other case, it takes the
coefficients satisfying (2.3) according to Theorem 1, item iii). More specifically, it proceeds
as follows:

1. Calculate ŷn+1 from b̂1 = 13
45 , b̂2 = 8

15 . If g(̂yn+1)g(̃yn+1) < 0, then we take those values
for the coefficients.

2. If sign g(̃yn+1) = −sign (k1 + 3k2 − 4k3), then we take:

b̂1 = max{
13
45
, γ} + 0.1, b̂2 = −

1
3

+ 3̂b1.

3. If sign g(̃yn+1) = sign (k2 − k3), then we take:

b̂1 = 0, b̂2 = min
{
−

1
3

+ 3̂b1, α(̂b1)
}
− 0.1.

4. If sign g(̃yn+1) = −sign (k2 − k3) = sign (k1 + 3k2 − 4k3), then we take:

b̂1 = γ − 0.1, b̂2 = −
1
6

+
3
2

b̂1 +
α(̂b1)

2
.

5. If k2 = k3 and sign g(̃yn+1) = sign (k1 − k3), then we take:

b̂2 = −
1
3

+ 3β − 0.1, b̂1 = β −
0.1
6
.

6. In any other case we take:

b̂1 =
13
45
, b̂2 =

8
15
.

§3. Numerical experiments

We are going to check the projection technique developed in the previous section by applying
the algorithm shown there to obtain appropriate coefficients b̂1 and b̂2 (̂b3 = 1− b̂1− b̂2). From
those values we obtain the RK approximation ŷn+1, and then, we compute the direction of the
projection wn according to (2.1). Newton iteration has been carried out to obtain in each step
the parameter λn. Finally, we obtain yn+1, projection of the Bogacki–Shampine method ỹn+1
according to (1.2). This projected method yn+1 will be denoted by pBS 3. We will compare it
with the own Bogacki–Shampine method, which will be denoted by BS 3, and also with the
standard projection of BS 3, denoted by pstBS 3, which takes wn = ∇g(̃yn+1) [7, pp. 106]. All
the integrations have been carried out with fixed step size.
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Our first test problem is the known as Euler problem [7, pp. 95]:

y′1(t) = (c3 − c2)y2y3,

y′2(t) = (c1 − c3)y1y3,

y′3(t) = (c2 − c1)y1y2.

We have taken c1 = 1/0.345, c2 = 1/0.653 and c3 = 1, and the initial conditions y1(0) = 0.5,
y2(0) = 0.2, y3(0) =

√
1 − 0.52 − 0.22. Its solution is periodic and its period T depends on

the two first integrals:

E(y1, y2, y3) = (c1y
2
1 + c2y

2
2 + c3y

2
3)/2, L2(y1, y2, y3) = y2

1 + y2
2 + y2

3.

For this problem the projections have been done so that the numerical solution preserves just
the period T .

In Figure 1 we have represented the euclidean norm of the global error at the end of each
integration interval against the number of periods in a log-log scale. As it can be seen, the
best results correspond to pBS 3, the method projected according the technique studied in this
paper. It behaves even better than the projection method pstBS 3, which uses the standard
projection technique. The two dash-dotted straight lines with slopes 1 and 2 indicate that
the global error grows linearly with the number of periods for the two projection methods,
whereas the growth is quadratic for the basic formula BS 3.
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Figure 1: Euler equations, global error against periods, log-log scale.

We also present here analogous numerical experiments for the Lotka–Volterra problem,
given by [7, pp. 229]:

u′(t) = u(v − 2), v′(t) = v(1 − u),
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with initial conditions u(0) = v(0) = 1. Now, the projections preserve the function

H(u, v) = u − ln u + v − 2 ln v,

which is a first integral of that differential system. Figure 2 shows that the new projection
method gives rise to lower global errors than the other two methods, and similar comments
to those of Figure 1 can be done.
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Figure 2: Lotka–Volterra, global error against periods, log-log scale.
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