
Monografías Matemáticas García de Galdeano 39, 121–131 (2014)

ON THE UNIFORM CONVERGENCE OF
SINGULARLY PERTURBED

REACTION–DIFFUSION PROBLEMS WITH
NON–SMOOTH DATA

José Luis Gracia
Abstract. In this paper singularly perturbed parabolic problems of reaction–diffusion
type with a discontinuity between the initial and boundary conditions are considered. We
approximate the solution of this class of problems with a fitted operator method defined
on special meshes of Shishkin and Bakhvalov type. Global approximations of the solution
are constructed with a non-linear interpolation operator and some numerical results are
given showing the parameter–uniform convergence of the numerical methods.
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§1. Introduction

In this paper we consider the following class of singularly perturbed problems

ut − εuxx + a(t)u = f (x, t), G := (x, t) ∈ (0, 1) × (0, 1], (1.1a)
u(x, 0) = φB(x), u(0, t) = φL(t), u(1, t) = φR(t), (1.1b)

a ≥ 0, φL(0) , φB(0), (1.1c)

where ε, the singular perturbation parameter, is a positive parameter which can take arbitrary
small values and φB, φL and φR are given functions (the initial and boundary values of the
function u). The solution of the class of problems (1.1) is characterized by the singular nature
of the operator and the classical singularity caused by the discontinuity at the corner (0, 0)
where the initial and boundary conditions intersect. So, large derivatives can appear in narrow
subregions of the domain, called layer regions, and then classical numerical methods are not
appropriate to numerically solve singularly perturbed equations [2, 6].

In [4] and [5] the asymptotic behavior associated with φL(0) , φB(0) is shown to be
related to the following function

(φB(0) − φL(0))w(x, t)e−
∫ t

0 a(s)ds,

where

w(x, t) :=
1
2

erf(
x

2
√
εt

), erf(ζ) :=
2
√
π

∫ ζ

0
exp(−α2) dα. (1.2)
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For t = 0, in x = 0, the error function is defined by continuous extension.

Based on this information, in [5] the authors prove the uniform nodal convergence of a
special finite difference method by using a fitted operator method defined on a uniform mesh
where the fitting coefficient is chosen in such a way that the discrete scheme is exact for the
parameter–dependent error function w(x, t).

Nevertheless, global approximations of the solution in the whole domain are required
due to the multiscale character of the solution. The global convergence of the numerical
method given by Hemker and Shishkin [5] was analyzed in [3]; where it was reported that a
uniformly global convergent approximation can be obtained from a nodal approximation on
a mesh of Shishkin type [2, 6] and using a suitable nonlinear interpolation, which is exact for
the error function. On the other hand, this nonlinear interpolation and the approximation of
the solution on a uniform mesh do not provide, in general, a global approximation. Therefore,
the use of a special mesh condensing in the layer region and a special nonlinear interpolation
are crucial to generate global approximations of the solution.

In this paper we focus our analysis in a different approach that in [3] where the numerical
scheme proposed by Hemker and Shishkin [5] is defined on a mesh of Bakhvalov type [1]
instead of a Shishkin mesh. With this purpose, in Section §2 we recall the method proposed
by Hemker and Shishkin in [5] on a uniform mesh and it is extended to a mesh of Bakhvalov
type. In Section §3 we display the numerical results for a test problem and they suggest
that this graded mesh provides nodal approximations of the solution. In addition, a global
approximation is constructed from the nodal values of the solution defined on the Bakhvalov
mesh and using an appropriate nonlinear interpolation. In summary, similar conclusions are
deduced for both kind of meshes which are widely used in the context of singularly perturbed
problems.

§2. The fitted mesh method

In this section we firstly recall the fitted operator method given in [5] on the uniform mesh

G
N,M
u := {xi} × {t j} = {

i
N
}Ni=0 × {

j
M
}Mj=0, (2.1a)

where N and M are the space and time discretization parameters. The fitting difference
scheme is given by

D−t U − εκ(x, t)δ2
xU + a(t)U = f (x, t), (x, t) ∈ GN,M

u , (2.1b)

U = u, (x, t) ∈ ΓN,M
u , (2.1c)

where

GN,M
u := G

N,M
u ∩G, ΓN,M

u := G
N,M
u ∩ (G \G),
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and

D−t Υ(xi, t j) :=
Υ(xi, t j) − Υ(xi, t j−1)

t j − t j−1
, D−x Υ(xi, t j) :=

Υ(xi, t j) − Υ(xi−1, t j)
xi − xi−1

,

D+
x Υ(xi, t j) :=

Υ(xi+1, t j) − Υ(xi, t j)
xi+1 − xi

,

δ2
xΥ(xi, t j) :=

2
hi + hi+1

(D+
x Υ(xi, t j) − D−x Υ(xi, t j)).

The fitting coefficient κ is specified by (see [5] for more details)

κ(x, t) =
D−t w0 + D−t u0

εδ2
xw0 + εδ2

xu0
, (x, t) ∈ GN,M

u , (2.1d)

with u0 = −x3 − 6εxt. In [5] it was proved the following result of convergence

‖u(x, t) − U(x, t)‖
G

N,M
u
≤ C

(
(h + τ)ν +

τ3/2

h
)
,

for any ν ∈ (0, 1/3) with h = 1/N and τ = 1/M, and C is a constant independent of the
singular perturbation and discretizations parameters.

In general, the solution can exhibit a layer region at the edges x = 0, 1 and, for this reason,
in [3] the uniform mesh G

N,M
u defined in (2.1a) was replaced by the mesh

G
N,M
S := {xi} × {t j},

where the mesh in time is also uniform but the mesh in space is a piecewise uniform mesh of
Shishkin type. The interval [0, 1] is split in three subintervals

[0, σ] ∪ [σ, 1 − σ] ∪ [1 − σ, 1],

with
σ := min{

1
4
, 2
√
ε ln N}, (2.2)

and x0 = 0, xN/4 = σ, x3N/4 = 1 − σ, and xN = 1.
The fitting coefficient κ was defined in the subdomains (0, σ) (σ, 1 − σ) and (1 − σ, 1),

where the mesh is uniform, as in (2.1d). At the transition points σ and 1 − σ, the fitting
coefficient κ was specially defined since the Shishkin mesh is, in general, very anisotropic.
The coefficient κ := κ(xN/4, t j) at the transition point (xN/4, t j) is computed by using linear
interpolation based on the values κ(xN/4−1, t j) and κ(xN/4+1, t j), i.e,

κ(xN/4, t j) =
(xN/4+1 − xN/4)κ(xN/4−1, t j) + (xN/4 − xN/4−1)κ(xN/4+1, t j)

xN/4+1 − xN/4−1
.

At the other transition point x = 1 − σ is similarly defined.
The Bakhvalov mesh [1]

G
N,M
B := {xi} × {t j},
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is uniform in the time variable variable and it condenses in the layer regions x = 0, 1. In
particular, it is uniform outside of the layers regions and it is a graded mesh in the layer
regions. The grid points xi are defined by means of a mesh generating function xi = ϕ(ti),
where ti = i/N, i = 0, . . . ,N, and

ϕ(t) =

 χ(t) := −2
√
ε ln

(
q − t

q

)
, for t ∈ [0, τ],

π(t) := χ(τ) + χ′(τ)(t − τ), for t ∈ (τ, 1/2],

with q = 1/4 and the point τ satisfies

χ′(τ) =
1 − χ(τ)

1 − τ
.

In the subinterval [1/2, 1] it is symmetrically defined. The fitting coefficient at the transition
points of the Bakhvalov mesh is defined in a similar way to the Shishkin mesh.

§3. Numerical experiments

We consider the following variable coefficient problem

0.5(1 + e−2xt)ut − εuxx + (1 − x)2u = −(1 − x)(2 − x), (x, t) ∈ (0, 1) × (0, 1], (3.1)

with the following initial and boundary conditions

u(x, 0) = 1, x ∈ (0, 1), u(0, t) = 0, t ∈ [0, 1], u(1, t) = 1, t ∈ [0, 1].

Note that in this test problem there is a discontinuity between the initial and the boundary
conditions at the corner (0, 0). In Figure 1 the numerical solution of problem (3.1) for ε =

10−8 in the whole domain (left figure) and a zoom of the solution in the layer region (right
figure) are given. Observe the boundary layers near both the edges x = 0 and x = 1 as well as
the layer region caused by the discontinuity at the corner (0, 0) where the solution has steep
gradients.

On the Shishkin G
N,M
S and Bakhvalov G

N,M
B meshes, we define the fitted operator method

0.5(1 + e−2xt)D−t U − εκδ2
xU + (1 − x)2U = −(1 − x)(2 − x), (3.2)

where the fitting coefficient has been computed by using (2.1d) and, henceforth, it is inde-
pendent of the coefficients of the differential equation (3.1).

The solution of problem (3.1) is unknown and the nodal errors are estimated by using the
double mesh principle [2]: We compute the two-mesh nodal differences dN,M

ε :

DN,M
ε :=

∥∥∥UN,M − Ū2N,2M
∥∥∥

ḠN,M ,

where UN,M , U2N,2M denote the discrete functions defined on the meshes ḠN,M and Ḡ2N,2M ,
respectively; Ū2N,2M is the bilinear interpolant of the numerical solution U2N,2M . The com-
puted orders of convergence QN,M

ε are defined by

QN,M
ε := log2

(
DN,M
ε

D2N,2M
ε

)
.
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Figure 1: Numerical solution of problem (3.1) for ε = 10−8 in the whole domain (left) and a
detail of the solution in the layer region (right)
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Figure 2: Two–mesh nodal difference surface for problem (3.1) using finite difference scheme
(3.2) defined on the Shishkin mesh with ε = 2−20, and N = M = 32 in the whole domain (left
figure) and in the layer region (right figure).

The uniform nodal two-mesh differences and their corresponding orders of convergence are
defined by

DN,M := max
ε∈S ε

DN,M
ε QN,M := log2

(
DN,M

D2N,2M

)
,

where S ε = {20, 2−2, 2−4, . . . , 2−20}.
In Figures 2 and 3 we display the two–mesh nodal differences of the finite difference

scheme (3.2) defined on the Shishkin and Bakhvalov meshes, respectively, for the parameters
settings ε = 2−20 and N = M = 32. A zoom of the layer region is showed in the right
figure; and we note the small scale in the vertical axis. From these figures, we observe that
the maximum two–mesh differences for the test problem (3.1) occur along the vicinity of the
edge x = 0.

In Tables 1 and 2 we show the two–mesh and uniform nodal differences for the test
problem (3.1) associated to the finite difference scheme (3.2) defined on the Shishkin and
Bakhvalov meshes, respectively. We observe that both the methods are uniformly nodal con-
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Figure 3: Two–mesh nodal difference surface for problem (3.1) using finite difference scheme
(3.2) defined on the Bakhvalov mesh with ε = 2−20, and N = M = 32 in the whole domain
(left figure) and in the layer region (right figure).

N=8 N=16 N=32 N=64 N=128 N=256 N=512
M=8 M=16 M=32 M=64 M=128 M=256 M=512

ε = 20 6.241E-002 3.318E-002 1.704E-002 8.625E-003 4.317E-003 2.186E-003 1.303E-003
0.911 0.961 0.983 0.999 0.982 0.747

ε = 2−2 5.482E-002 2.770E-002 1.405E-002 7.094E-003 3.565E-003 1.786E-003 8.930E-004
0.985 0.979 0.986 0.993 0.997 1.000

ε = 2−4 9.829E-002 2.862E-002 1.357E-002 6.662E-003 3.304E-003 1.646E-003 8.216E-004
1.780 1.076 1.027 1.012 1.005 1.002

ε = 2−6 2.714E-001 9.473E-002 4.009E-002 2.563E-002 1.270E-002 6.549E-003 3.366E-003
1.519 1.241 0.646 1.012 0.956 0.960

ε = 2−8 5.472E-001 2.827E-001 1.852E-001 9.267E-002 4.592E-002 2.858E-002 1.380E-002
0.953 0.610 0.999 1.013 0.684 1.050

ε = 2−10 4.295E-001 3.372E-001 3.432E-001 3.293E-001 2.004E-001 9.753E-002 4.733E-002
0.349 -0.025 0.060 0.716 1.039 1.043

ε = 2−12 4.288E-001 3.370E-001 3.295E-001 3.171E-001 2.654E-001 1.931E-001 1.233E-001
0.348 0.033 0.055 0.257 0.459 0.647

ε = 2−14 4.286E-001 3.369E-001 3.295E-001 3.171E-001 2.654E-001 1.931E-001 1.233E-001
0.347 0.032 0.055 0.257 0.459 0.647

ε = 2−16 4.284E-001 3.369E-001 3.295E-001 3.171E-001 2.654E-001 1.931E-001 1.233E-001
0.347 0.032 0.055 0.257 0.459 0.647

ε = 2−18 4.284E-001 3.369E-001 3.295E-001 3.171E-001 2.654E-001 1.931E-001 1.233E-001
0.347 0.032 0.055 0.257 0.459 0.647

ε = 2−20 4.284E-001 3.369E-001 3.295E-001 3.171E-001 2.654E-001 1.931E-001 1.233E-001
0.347 0.032 0.055 0.257 0.459 0.647

DN,M 5.472E-001 3.372E-001 3.432E-001 3.293E-001 2.654E-001 1.931E-001 1.233E-001
QN,M 0.699 -0.025 0.060 0.311 0.459 0.647

Table 1: Test problem (3.1): Two–mesh nodal differences DN,M
ε and DN,M and their com-

puted orders of convergence QN,M
ε and QN,M for finite difference scheme (3.2) defined on the

Shishkin mesh.
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N=8 N=16 N=32 N=64 N=128 N=256 N=512
M=8 M=16 M=32 M=64 M=128 M=256 M=512

ε = 20 6.241E-002 3.318E-002 1.704E-002 8.625E-003 4.317E-003 2.186E-003 1.303E-003
0.911 0.961 0.983 0.999 0.982 0.747

ε = 2−2 5.482E-002 2.770E-002 1.405E-002 7.094E-003 3.565E-003 1.786E-003 8.930E-004
0.985 0.979 0.986 0.993 0.997 1.000

ε = 2−4 5.096E-002 2.602E-002 1.306E-002 6.542E-003 3.275E-003 1.639E-003 8.198E-004
0.970 0.994 0.998 0.998 0.999 0.999

ε = 2−6 6.593E-002 3.151E-002 1.464E-002 6.921E-003 3.346E-003 1.644E-003 8.150E-004
1.065 1.106 1.081 1.049 1.025 1.012

ε = 2−8 7.355E-002 3.011E-002 1.352E-002 6.548E-003 3.248E-003 1.622E-003 8.118E-004
1.289 1.155 1.046 1.011 1.002 0.999

ε = 2−10 7.049E-002 2.884E-002 1.346E-002 6.537E-003 3.244E-003 1.621E-003 8.114E-004
1.289 1.099 1.042 1.011 1.001 0.998

ε = 2−12 6.820E-002 2.880E-002 1.343E-002 6.528E-003 3.240E-003 1.619E-003 8.106E-004
1.244 1.100 1.041 1.011 1.001 0.998

ε = 2−14 6.706E-002 2.878E-002 1.341E-002 6.523E-003 3.237E-003 1.618E-003 8.100E-004
1.220 1.101 1.040 1.011 1.001 0.998

ε = 2−16 6.640E-002 2.877E-002 1.340E-002 6.520E-003 3.236E-003 1.617E-003 8.097E-004
1.206 1.102 1.040 1.011 1.001 0.998

ε = 2−18 6.597E-002 2.877E-002 1.340E-002 6.518E-003 3.235E-003 1.617E-003 8.096E-004
1.197 1.102 1.040 1.011 1.001 0.998

ε = 2−20 6.756E-002 2.876E-002 1.340E-002 6.518E-003 3.235E-003 1.616E-003 8.095E-004
1.232 1.102 1.039 1.011 1.001 0.998

DN,M 7.355E-002 3.318E-002 1.704E-002 8.625E-003 4.317E-003 2.186E-003 1.303E-003
QN,M 1.148 0.961 0.983 0.999 0.982 0.747

Table 2: Test problem (3.1): Two–mesh nodal differences DN,M
ε and DN,M and their com-

puted orders of convergence QN,M
ε and QN,M for finite difference scheme (3.2) defined on the

Bakhvalov mesh.

vergent and we point out that the two–mesh differences obtained with the Bakhvalov mesh
are smaller that those ones on the Shishkin mesh.

Next, we deal with the global approximation associated to the finite difference scheme
(3.2). We define

dN,M
1,ε :=

∥∥∥ŪN,M − Ū2N,2M
∥∥∥

ḠN,M∪Ḡ2N,2M , dN,M
1 := max

ε∈S ε

dN,M
1,ε ,

where UN,M ,U2N,2M denote mesh functions defined, respectively, on the meshes ḠN,M and
Ḡ2N,2M; and ŪN,M , Ū2N,2M the bilinear global functions. From these interpolated values we
calculate computed orders of global convergence qN,M

1,ε and uniform computed orders of global
convergence qN,M

1 using

qN,M
1,ε := log2

 dN,M
1,ε

d2N,2M
1,ε

 , qN,M
1 := log2

 dN,M
1

d2N,2M
1

 .
In Table 3 we show the two–mesh global differences using bilinear interpolation for the test
problem (3.1) associated to the finite difference scheme (3.2) defined on the Bakhvalov mesh.
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N=8 N=16 N=32 N=64 N=128 N=256 N=512
M=8 M=16 M=32 M=64 M=128 M=256 M=512

ε = 20 3.386E-001 3.788E-001 4.116E-001 4.365E-001 4.547E-001 4.679E-001 4.772E-001
-0.162 -0.120 -0.085 -0.059 -0.041 -0.029

ε = 2−2 2.004E-001 2.655E-001 3.259E-001 3.740E-001 4.099E-001 4.359E-001 4.545E-001
-0.406 -0.296 -0.198 -0.132 -0.089 -0.060

ε = 2−4 9.829E-002 9.344E-002 1.772E-001 2.576E-001 3.232E-001 3.730E-001 4.095E-001
0.073 -0.923 -0.540 -0.328 -0.207 -0.135

ε = 2−6 2.893E-001 1.997E-001 9.225E-002 8.134E-002 1.725E-001 2.558E-001 3.226E-001
0.535 1.114 0.182 -1.084 -0.569 -0.335

ε = 2−8 4.162E-001 2.493E-001 1.124E-001 7.297E-002 1.683E-001 2.541E-001 3.219E-001
0.739 1.149 0.623 -1.206 -0.594 -0.341

ε = 2−10 3.972E-001 2.493E-001 1.124E-001 7.297E-002 1.683E-001 2.541E-001 3.219E-001
0.672 1.149 0.623 -1.206 -0.594 -0.341

ε = 2−12 3.972E-001 2.493E-001 1.124E-001 7.297E-002 1.683E-001 2.541E-001 3.219E-001
0.672 1.149 0.623 -1.206 -0.594 -0.341

ε = 2−14 3.972E-001 2.493E-001 1.124E-001 7.297E-002 1.683E-001 2.541E-001 3.219E-001
0.672 1.149 0.623 -1.206 -0.594 -0.341

ε = 2−16 3.972E-001 2.493E-001 1.124E-001 7.297E-002 1.683E-001 2.541E-001 3.219E-001
0.672 1.149 0.623 -1.206 -0.594 -0.341

ε = 2−18 3.972E-001 2.493E-001 1.124E-001 7.297E-002 1.683E-001 2.541E-001 3.219E-001
0.672 1.149 0.623 -1.206 -0.594 -0.341

ε = 2−20 3.972E-001 2.493E-001 1.124E-001 7.297E-002 1.683E-001 2.541E-001 3.219E-001
0.672 1.149 0.623 -1.206 -0.594 -0.341

dN,M
1 4.162E-001 3.788E-001 4.116E-001 4.365E-001 4.547E-001 4.679E-001 4.772E-001

qN,M
1 0.136 -0.120 -0.085 -0.059 -0.041 -0.029

Table 3: Test problem (3.1): Two–mesh global differences dN,M
1,ε and dN,M

1 and their com-
puted orders of convergence qN,M

1,ε and qN,M
1 for finite difference scheme (3.2) defined on the

Bakhvalov mesh and using bilinear interpolation.

These results show that bilinear interpolation cannot be used to generate robust global approx-
imations of the solution. The same behavior was observed when the Shishkin mesh is used
instead of the Bakhvalov mesh. Therefore, although the Bakhvalov mesh is graded, it does
not suffice to obtain an accurate global approximation.

Similarly to [3], we replace the bilinear interpolation by a non–linear interpolation which
is exact for the parameter error function w(x, t). Namely, if the point (x, t) ∈ (xi, xi+1)×(t j, t j+1)
with xi > 0 and t j > 0, we consider the following interpolation operator to approximate the
value of u(x, t)

UN,M
I (x, t) :=

1∑
l,m=0

Ui+l, j+mT (t; xi+l, t j+m)S (x, t; xi+l), (3.3)

where

T (t; xi+l, t j+m) :=
w(xi+l, t) − w(xi+l, t j+1−m)

w(xi+l, t j+m) − w(xi+l, t j+1−m)
,

S (x, t; xi+l) :=
w(x, t) − w(xi+1−l, t)
w(xi+l, t) − w(xi+1−l, t)

.
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N=8 N=16 N=32 N=64 N=128 N=256 N=512
M=8 M=16 M=32 M=64 M=128 M=256 M=512

ε = 20 1.021E-001 7.899E-002 4.957E-002 2.691E-002 1.400E-002 7.140E-003 3.573E-003
0.371 0.672 0.881 0.943 0.971 0.999

ε = 2−2 1.742E-001 9.761E-002 5.004E-002 2.517E-002 1.257E-002 6.314E-003 3.159E-003
0.835 0.964 0.991 1.001 0.994 0.999

ε = 2−4 2.574E-001 1.021E-001 6.199E-002 3.390E-002 1.424E-002 8.947E-003 4.527E-003
1.333 0.721 0.871 1.251 0.670 0.983

ε = 2−6 7.721E-001 3.964E-001 2.288E-001 1.242E-001 6.394E-002 3.297E-002 1.676E-002
0.962 0.793 0.881 0.958 0.956 0.976

ε = 2−8 1.856E-001 1.249E-001 4.851E-002 2.381E-002 1.190E-002 5.967E-003 3.017E-003
0.572 1.364 1.027 1.001 0.996 0.984

ε = 2−10 1.813E-001 1.359E-001 9.781E-002 4.698E-002 1.415E-002 5.885E-003 2.963E-003
0.416 0.475 1.058 1.731 1.266 0.990

ε = 2−12 1.791E-001 1.363E-001 9.531E-002 4.782E-002 1.943E-002 6.970E-003 2.933E-003
0.394 0.516 0.995 1.299 1.479 1.249

ε = 2−14 1.779E-001 1.365E-001 9.537E-002 4.783E-002 1.943E-002 6.971E-003 2.930E-003
0.382 0.517 0.996 1.299 1.479 1.251

ε = 2−16 1.773E-001 1.366E-001 9.541E-002 4.784E-002 1.944E-002 6.971E-003 2.928E-003
0.376 0.518 0.996 1.300 1.479 1.251

ε = 2−18 1.770E-001 1.367E-001 9.542E-002 4.784E-002 1.944E-002 6.972E-003 2.928E-003
0.373 0.518 0.996 1.300 1.479 1.252

ε = 2−20 1.768E-001 1.367E-001 9.543E-002 4.785E-002 1.944E-002 6.972E-003 2.927E-003
0.371 0.519 0.996 1.300 1.479 1.252

dN,M
2 7.721E-001 3.964E-001 2.288E-001 1.242E-001 6.394E-002 3.297E-002 1.676E-002

qN,M
2 0.962 0.793 0.881 0.958 0.956 0.976

Table 4: Test problem (3.1): Two–mesh global differences dN,M
2,ε and dN,M

2 and their computed
orders of convergence qN,M

2,ε and qN,M
2 for finite difference scheme (3.2) defined on the Shishkin

mesh and using nonlinear interpolation (3.3).

We denote the two–mesh global differences associated with this interpolation as follows

dN,M
2,ε :=

∥∥∥UN,M
I − U2N,2M

I

∥∥∥
ḠN,M∪Ḡ2N,2M , dN,M

2 := max
ε∈S ε

dN,M
2,ε ,

and their orders of convergence by

qN,M
2,ε := log2

 dN,M
2,ε

d2N,2M
2,ε

 , qN,M
2 := log2

 dN,M
2

d2N,2M
2

 .
The numerical results obtained by using the global approximation generated by this nonlin-
ear interpolation are given in Tables 4 and 5, where the Shishkin and Bakhvalov meshes have
been considered, respectively. Note that similar two–mesh global differences are obtained
using the Shishkin and Bakhvalov meshes, although the orders of convergence are more reg-
ular when the Bakhvalov mesh is considered. These numerical results suggest that these
finite difference schemes can provide parameter uniform approximations of the solution in
the domain Ḡ.
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N=8 N=16 N=32 N=64 N=128 N=256 N=512
M=8 M=16 M=32 M=64 M=128 M=256 M=512

ε = 20 1.021E-001 7.899E-002 4.957E-002 2.691E-002 1.400E-002 7.140E-003 3.573E-003
0.371 0.672 0.881 0.943 0.971 0.999

ε = 2−2 1.742E-001 9.761E-002 5.004E-002 2.517E-002 1.257E-002 6.314E-003 3.159E-003
0.835 0.964 0.991 1.001 0.994 0.999

ε = 2−4 2.574E-001 1.021E-001 6.199E-002 3.390E-002 1.424E-002 8.947E-003 4.527E-003
1.333 0.721 0.871 1.251 0.670 0.983

ε = 2−6 7.721E-001 3.964E-001 2.288E-001 1.242E-001 6.394E-002 3.297E-002 1.676E-002
0.962 0.793 0.881 0.958 0.956 0.976

ε = 2−8 1.943E-001 9.414E-002 4.758E-002 2.376E-002 1.190E-002 6.001E-003 3.020E-003
1.045 0.984 1.002 0.997 0.988 0.991

ε = 2−10 1.920E-001 9.268E-002 4.691E-002 2.350E-002 1.177E-002 5.888E-003 2.961E-003
1.051 0.982 0.997 0.998 0.999 0.992

ε = 2−12 1.912E-001 9.184E-002 4.654E-002 2.338E-002 1.172E-002 5.863E-003 2.933E-003
1.058 0.980 0.993 0.997 0.999 0.999

ε = 2−14 1.908E-001 9.139E-002 4.635E-002 2.332E-002 1.169E-002 5.856E-003 2.930E-003
1.062 0.979 0.991 0.996 0.998 0.999

ε = 2−16 1.906E-001 9.117E-002 4.626E-002 2.329E-002 1.168E-002 5.852E-003 2.928E-003
1.064 0.979 0.990 0.995 0.998 0.999

ε = 2−18 1.905E-001 9.105E-002 4.621E-002 2.327E-002 1.168E-002 5.850E-003 2.928E-003
1.065 0.979 0.990 0.995 0.997 0.999

ε = 2−20 1.903E-001 9.099E-002 4.618E-002 2.326E-002 1.168E-002 5.849E-003 2.927E-003
1.065 0.978 0.989 0.995 0.997 0.999

dN,M
2 7.721E-001 3.964E-001 2.288E-001 1.242E-001 6.394E-002 3.297E-002 1.676E-002

qN,M
2 0.962 0.793 0.881 0.958 0.956 0.976

Table 5: Test problem (3.1): Two–mesh global differences dN,M
2,ε and dN,M

2 and their com-
puted orders of convergence qN,M

2,ε and qN,M
2 for finite difference scheme (3.2) defined on the

Bakhvalov mesh and using nonlinear interpolation (3.3).
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