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MONOTONICITY OF BIFURCATING
BRANCHES FOR THE RADIAL

p-LAPLACIAN
François Genoud

Abstract. We prove the monotonicity of the curve of positive solutions for a p-Laplacian
problem in the unit ball. The solution curve bifurcates from the line of trivial solutions at
the first eigenvalue of a related p-linear problem.
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§1. Setting and main result

Consider the Dirichlet boundary value problem{
−∆p(u) = λ f (|x|, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where ∆p(u) := div(|∇u|p−2∇u) is the p-Laplacian, p > 1, λ > 0, and Ω is the unit ball in RN ,
with N > 1. The function f is continuous, such that f (r, 0) = 0 for all r ∈ [0, 1].

We are interested in C1 radial solutions of this problem, which satisfy{
−(rN−1φp(u′))′ = λrN−1 f (r, u), 0 < r < 1,

u′(0) = u(1) = 0, (1.2)

where φp(ξ) := |ξ|p−2ξ, ξ ∈ R, r = |x| and ′ denotes differentiation with respect to r. By
a solution of (1.2) will be meant a couple (λ, u), with λ ∈ R and u ∈ C1[0, 1], such that
φp(u′) ∈ C1[0, 1], which satisfies (1.2). Note that, since f (r, 0) = 0 for all r ∈ [0, 1], we have
a line of trivial solutions, {(λ, 0) : λ ∈ R}.

Problem (1.2) was studied in [4] by the author, who proved that, under appropriate as-
sumptions on f , there exist two smooth curves of respectively positive and negative solutions,
bifurcating from the line of trivial solutions at the first eigenvalue λ0 > 0 of a related p-linear
problem (problem (E0) below). The aim of this note is to prove that the bifurcating branches
are monotonous. We will focus here on the branch of positive solutions, the negative branch
being handled similarly. The exact hypotheses made in [4] are the following:

(H1) f (r, ·) ∈ C1(R) for all r ∈ [0, 1] and ∂2 f ∈ C0([0, 1] × R);

(H2) f (r, ξ) > 0 for (r, ξ) ∈ [0, 1] × R∗ and f (r, 0) ≡ 0;

(H3) (p − 1) f (r, ξ) > ∂2 f (r, ξ)ξ for (r, ξ) ∈ [0, 1] × [0,∞), and there exist δ, ε > 0 such that
(p − 1) f (r, ξ) > ∂2 f (r, ξ)ξ for all (r, ξ) ∈ (1 − δ, 1] × (0, ε).
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It follows from (H3) that, for any fixed r ∈ [0, 1], the mapping ξ 7→ f (r, ξ)/φp(ξ) is decreasing
on (0,∞). Therefore, for each r ∈ [0, 1] there exist f0(r) and f∞(r) such that

f (r, ξ)/φp(ξ)→ f0/∞(r) as ξ → 0+/ +∞,

with
0 6 f∞(r) 6 f (r, ξ)/φp(ξ) 6 f0(r), for all (r, ξ) ∈ [0, 1] × (0,∞). (1.3)

We will further suppose that f0, f∞ ∈ C0[0, 1], and that (for p > 2):

(H4) lim
ξ→0+
| f (·, ξ)/φp(ξ) − f0|0 = lim

ξ→0+
|∂2 f (·, ξ)/ξp−2 − (p − 1) f0|0 = 0;

(H5) lim
ξ→+∞

| f (·, ξ)/φp(ξ) − f∞|0 = 0,

where | · |0 is the usual norm of C0[0, 1]. In order to state the main result of [4], we need some
properties of the p-linear eigenvalue problems{

−(rN−1φp(v′))′ = λrN−1 f0/∞(r)φp(v), 0 < r < 1,
v′(0) = v(1) = 0, (E0/∞)

which govern the behaviour of small/large solutions of (1.2). The following result follows
readily from [6, Sec. 5].

Lemma 1. If f0/∞ > 0 on [0, 1] then problem (E0/∞) has a simple eigenvalue λ0/∞ > 0 with
a corresponding eigenfunction v0/∞ > 0 in [0, 1), and no other eigenvalue having a positive
eigenfunction. Furthermore, f∞ 6. f0 implies λ0 < λ∞.

It follows from the above hypotheses that f0 > 0 and 0 6 f∞ 6. f0. For λ∞ to be well-
defined, we make the following additional assumption.

(H6) Either
(a) N > 1 is arbitrary and f∞ > 0 on [0, 1], or
(b) N = 1 and f∞ ≡ 0 on [0, 1].
If (a) holds, λ∞ > 0 is defined in Lemma 1; if (b) holds, we set λ∞ = ∞.

We are now in a position to state the main result of [4]. We will use the following short-
hand notations throughout the paper:

Xp = {u ∈ C1[0, 1] : φp(u′) ∈ C1[0, 1], u′(0) = u(1) = 0} and Y = C0[0, 1].

We equip Y with its usual sup-norm, which we denote by | · |0.

Theorem 2 (Theorem 2.3 of [4]). Suppose that p > 2. If (H1) to (H6) hold then there exists
u ∈ C1((λ0, λ∞),Y) such that u(λ) ∈ Xp, u(λ) > 0 on [0, 1) and, for any λ ∈ (λ0, λ∞), (λ, u(λ))
is the unique non-trivial solution of (1.2). Furthermore,

lim
λ→λ0
|u(λ)|0 = 0 and lim

λ→λ∞
|u(λ)|0 = ∞. (1.4)

Assuming that f (r, ξ)ξ > 0 for (r, ξ) ∈ [0, 1] × R∗ instead of f (r, ξ) > 0 in (H2), and with
additional assumptions on the behaviour of f for ξ < 0, a more general result is proved in [4],
providing a second branch, of negative solutions — see [4, Theorem 2.4].
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The requirement that p > 2 is due to differentiability issues, as mentioned in the proof of
Lemma 5 below. (Note that the result is well known for p = 2.)

The bifurcation theory for quasilinear boundary value problems has a long-standing his-
tory, part of which was recently reviewed in [5], where the results of [4] were put in a broader
perspective. We refer the interested reader to [4, 5] and the references in these papers for
more details. Let us just emphasize here that most previous bifurcation results on problems
similar to (1.1) were obtained by topological methods, yielding only connected sets of solu-
tions. In contrast, our method is purely analytical and provides smooth curves of solutions
(of course, under stronger assumptions).

The aim of the present note is to exploit the differentiability of the mapping u given by
Theorem 2 in order to prove the following monotonicity result.

Theorem 3. Under the hypotheses of Theorem 3, the mapping

λ 7→ |u(λ)|0, λ ∈ (λ0, λ∞),

is strictly increasing.

Under the hypotheses of Theorem 2.4 in [4], an analogous result can be proved for the
branch of negative solutions given by this theorem. The proof being very similar, we shall
focus here on positive solutions only.

For the sake of completeness, before proving Theorem 3, we will briefly sketch the proof
of Theorem 2.

§2. Proof of Theorem 2

Let us denote by f : Y → Y the Nemitskii mapping induced by the function f , that is,
f (u)(r) := f (r, u(r)), r ∈ [0, 1]. Then f : Y → Y is bounded and continuous. We will use a
similar notation for other Nemitskii mappings below.

To prove Theorem 2, it is convenient to consider the integral form of (1.2),

u = S p(λ f (u)), (λ, u) ∈ R × Y, (2.1)

where S p : C0[0, 1] → C1[0, 1] is the inverse of (minus) the radial p-Laplacian, explicitly
given by

S p(h)(r) =

∫ 1

r
φp′

( ∫ s

0

( t
s

)N−1
h(t) dt

)
ds, h ∈ C0[0, 1], (2.2)

where 1
p + 1

p′ = 1. This operator is continuous, bounded and compact. Before we can explain
the proof of Theorem 2, we need a result about the differentiability of S p, which depends on
the value of p > 1. Theorem 4 relies on the related work [1], and we borrow the following
notation from there:

Bp =

C1[0, 1], 1 < p 6 2,
W1,1(0, 1), p > 2.

(2.3)
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Theorem 4 (Theorem 3.5 of [4]).
(i) Suppose 1 < p < 2. Then S p : C0[0, 1]→ Bp is C1, and for all h, h̄ ∈ C0[0, 1],

DS p(h)h̄(s) =
1

p − 1

∫ 1

r
|u(h)′(s)|2−p

∫ s

0

( t
s

)N−1
h̄(t) dt ds, (2.4)

where u(h) = S p(h). Furthermore,

v = DS p(h)h̄ ⇐⇒ v ∈ Bp and v satisfies

− (p − 1)(rN−1|u(h)′(r)|p−2v′(r))′ = rN−1h̄(r), 0 < r < 1, v′(0) = v(1) = 0. (2.5)

(ii) Suppose p > 2 and let h0 ∈ C0[0, 1] be such that u(h0)′(r) = 0 ⇒ h0(r) , 0. Then there
exists a neighbourhood V0 of h0 in C0[0, 1] such that the mapping

h 7→ |u(h)′|2−p : V0 → L1(0, 1)

is continuous, S p : V0 → Bp is C1, and DS p satisfies (2.4) and (2.5), for all h ∈ V0, h̄ ∈
C0[0, 1].

Proof. The proof follows closely that of Theorem 3.4 in Binding and Rynne [1]. In view of
the definition of S p in (2.2), the main difficulty is that, for 1 < p′ < 2, the Nemistkii mapping
u 7→ φp′ (u) does not map C1[0, 1] into itself — this is due to the lack of differentiability
of φp′ (s) at s = 0. Nevertheless, if g ∈ C1[0, 1] has only simple zeros, then φp′ maps a
neighbourhood of g in C1[0, 1] continuously into L1(0, 1). This result [1, Lemma 2.1] is the
key ingredient in the proof of Theorem 4. �

Note that a similar result was stated by García-Melián and Sabina de Lis [3, Theorem 5]
but their proof seems to be incomplete (see [5, Remark 5.4] for more details).

The proof of Theorem 2 can now be carried out in two steps:

(1) local bifurcation from (λ0, 0) in R × Y;
(2) global continuation and asymptotic analysis.

Step 1. The first step is a continuous local bifurcation result à la Crandall-Rabinowitz,
which is essentially due to García-Melián and Sabina de Lis [3]. However, we consider a
slightly more general setting, where bifurcation from the line of trivial solutions occurs at the
first eigenvalue of the weighted problem (E0) (they have f0 ≡ 1 in [3]). Nevertheless, our
proof follows closely the arguments in [3].

We normalize the eigenvector v0 of (E0) so that
∫ 1

0 rN−1 f0|v0|
p dr = 1 and we define the

subspace

Z =
{
z ∈ Y :

∫ 1

0
rN−1 f0|v0|

p−2v0z dr = 0
}
.

Note that
Y = span{v0} ⊕ Z. (2.6)
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The local bifurcation from (λ0, 0) now follows by applying the implicit function theorem as
stated in [2, Appendix A] to the function G : R2 × Z → Y defined by

G(s, λ, z) =

v0 + z − S p(λ f (sv0 + sz)/φp(s)), s , 0,
v0 + z − S p(λ f0φp(v0 + z)), s = 0.

Lemma 5 (Lemma 5.1 of [4]). There exist ε > 0, a neighbourhood U of (λ0, 0) in R × Z and
a continuous mapping s 7→ (λ(s), z(s)) : (−ε, ε)→ U such that (λ(0), z(0)) = (λ0, 0) and

{(s, λ, z) ∈ (−ε, ε) × U : G(s, λ, z) = 0} = {(s, λ(s), z(s)) : s ∈ (−ε, ε)}. (2.7)

Proof. Let us first remark that we need p > 2 here for the Nemitskii mapping z 7→ φp(v0 + z)
to be differentiable. We are thus in case (ii) of Theorem 4, from which follows that S p is C1

in a neighbourhood of λ0 f0φp(v0) in Y . Indeed, (E0) is equivalent to

v0 = S p(λ0 f0φp(v0)),

and we have λ0 f0(0)φp(v0(0)) > 0, where r = 0 is the only zero of v′0 by Lemma 1. This
enables one to verify the regularity properties required by the implicit function theorem [2,
Theorem A]. To apply this theorem, one needs to check the usual non-degeneracy condition,
namely that the linear mapping D(λ,z)G(0, λ0, 0) : R × Z → Y be an isomorphism. In view
of (2.6), an inspection of the Fréchet derivative D(λ,z)G(0, λ0, 0) shows that this condition is
equivalent to the invariance of the subspace Z under the mapping

z̄ 7→ Lz̄ := λ0(p∗)−1DS p(λ f0φp(v0)) f0|v0|
p−2z̄,

where p∗ = p′ − 1, with 1
p + 1

p′ = 1. Using the properties of the derivative DS p, the relation
Lz̄ = z can be expressed as{

−(rN−1|v′0|
p−2z′)′ = λ0rN−1 f0|v0|

p−2z̄, 0 < r < 1,
z′(0) = z(1) = 0. (2.8)

Then, multiplying both sides of the equation by v0 and integrating by parts easily shows that
z ∈ Z, and the proof of Lemma 5 can be completed. �

Step 2. Let us denote by S ⊂ R × Y the set of positive solutions of (2.1). We define a
function F : [0,∞) × Y → Y by

F(λ, u) := u − S p(λ f (u)) = 0, (λ, u) ∈ [0,∞) × Y,

so that (1.2) is now equivalent to F(λ, u) = 0. It follows from hypothesis (H2) that any non-
trivial solution (λ, u) of (1.2) satisfies u > 0 in [0, 1) and u′ < 0 in (0, 1] — see Proposition 7
below. Therefore, Theorem 4 implies that F is C1 in a neighbourhood of any (λ, u) ∈ S, with

DuF(λ, u)v = v − λDS p(λ f (u))∂2 f (u)v, v ∈ Y.

Furthermore, we have the following result.
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Lemma 6 (Lemma 6.1 of [4]). For any (λ, u) ∈ S, the linear mapping DuF(λ, u) : Y → Y is
an isomorphism.

Proof. By the compactness of S p, the linear operator DuF(λ, u) : Y → Y is a compact
perturbation of the identity, for any (λ, u) ∈ S. Therefore, we need only show that the kernel
N(DuF(λ, u)) = {0}. Using (H3), this follows by inspecting the Lagrange identity derived
from (1.2) and the kernel equation, DuF(λ, u)v = 0. �

Hence, through each solution (λ, u) ∈ S passes a unique local C1 curve, that can be
parametrized by λ. It then follows by standard compactness arguments that any of these
curves can be extended smoothly to the whole interval (λ0, λ∞), and that the solutions along
these curves satisfy

λ→ λ0 if and only if |u|0 → 0 and λ→ λ∞ if and only if |u|0 → ∞.

Consequently, the uniqueness statement in Theorem 2 follows from the local uniqueness in
(2.7), which concludes the proof of Theorem 2. �

§3. Proof of Theorem 3

We start with the following result, giving basic properties of non-trivial solutions of (1.2).
We will use the notation p∗ = p′ − 1, with 1

p + 1
p′ = 1. Note that p > 2 =⇒ 0 < p∗ < 1.

Proposition 7. Let (λ, u) ∈ S. Then u > 0 on [0, 1), u is decreasing and satisfies u′(1) < 0.

Proof. Equation (2.1) yields

u(r) = λp∗
∫ 1

r
φp′

( ∫ s

0

( t
s

)N−1
f (t, u(t)) dt

)
ds.

Since u . 0 is continuous, it follows from (H2) that u(0) > 0. Furthermore,

φp(u′(r)) = −λ

∫ r

0

( t
r

)N−1
f (t, u(t)) dt 6 0, r ∈ [0, 1],

showing that u′(r) 6 0 for all r ∈ [0, 1], so u is decreasing on [0, 1]. Finally,

φp(u′(1)) = −λ

∫ 1

0
tN−1 f (t, u(t)) dt < 0.

This implies u′(1) < 0, from which u > 0 on [0, 1) now follows. �

Now, let u ∈ C1((λ0, λ∞),Y) be the solution curve given by Theorem 2. We define

ζ(λ) =
du
dλ

(λ), λ ∈ (λ0, λ∞).

Hence, ζ(λ) ∈ Y = C0[0, 1], for all λ ∈ (λ0, λ∞). Furthermore, it follows from Proposition 7
that

|u(λ)|0 = u(λ)(0), λ ∈ (λ0, λ∞).
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Therefore, we need only show that ζ(λ)(0) > 0, for all λ ∈ (λ0, λ∞). In fact, the bifurcation at
λ = λ0 readily implies that ζ(λ)(0) > 0 for some λ > λ0, with λ − λ0 small enough. Thus, it
suffices to prove that ζ(λ)(0) , 0, for all λ ∈ (λ0, λ∞).

We will suppose by contradiction that there exists λ1 ∈ (λ0, λ∞) such that ζ(λ1)(0) = 0.
Differentiating

u(λ)(r) = λp∗
∫ 1

r
φp′

( ∫ s

0

( t
s

)N−1
f (t, u(λ)(t)) dt

)
ds (3.1)

with respect to r and using p∗ = 1
p−1 yields

|u(λ)′(r)|2−p = λp∗−1
∣∣∣∣ ∫ r

0

( t
r

)N−1
f (t, u(λ)(t)) dt

∣∣∣∣p∗−1
. (3.2)

Then, differentiating (3.1) with respect to λ and using (3.2) yields

ζ(λ)(r) = p∗λ−1u(λ)(r) + p∗λρ(λ)(r),

where

ρ(λ)(r) =

∫ 1

r
|u(λ)′(s)|2−p

∫ s

0

( t
s

)N−1
∂2 f (t, u(λ)(t)) ζ(λ)(t) dt ds.

Furthermore,

ρ(λ)′(r) = −|u(λ)′(r)|2−p
∫ r

0

( t
r

)N−1
∂2 f (t, u(λ)(t)) ζ(λ)(t) dt.

Since f is bounded, (3.2) yields a constant C(λ) > 0 such that

|u(λ)′(r)|2−p 6 C(λ)rp∗−1, r ∈ [0, 1]. (3.3)

(For the remainder of the proof, we shall use the symbol C(λ) to denote various positive
constants, the value of which may change from line to line, but is not essential to the analysis.)
In view of (H1), a first consequence of (3.3) is that

|ρ(λ)′(r)| 6 C(λ)rp∗ → 0 as r → 0.

In particular, ζ(λ1) ∈ C1[0, 1], and satisfies the linear initial value problem{
−(rN−1|u(λ1)′(r)|p−2ζ′)′ = p∗λ1rN−1∂2 f (r, u(λ1)(r)) ζ − p∗λ−1

1
(
rN−1φp(u(λ1)′(r))

)′
,

ζ(0) = ζ′(0) = 0. (3.4)

Due to the singular behaviour of the coefficients at r = 0, we cannot apply standard ODE
theory to (3.4), so we shall first establish the following result.

Lemma 8. The initial value problem (3.4) has a unique solution, defined on [0, 1].

Proof. We first remark that (3.4) is equivalent to the integral equation

ζ = Tζ + ξ,
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where

ξ(r) = p∗λ−1
1

∫ r

0
u(λ1)′(s) ds = p∗λ−1

1 (u(λ1)(r) − u(λ1)(0)),

and T : C[0, 1]→ C[0, 1] is the linear operator defined by

(Tζ)(r) = −p∗λ1

∫ r

0
|u(λ1)′(s)|2−p

∫ s

0

( t
s

)N−1
∂2 f (t, u(λ1)(t)) ζ(t) dt ds.

Existence and uniqueness of a local (near r = 0) solution of (3.4) will follow from the contrac-
tion mapping principle, if we can show that, for δ > 0 small enough, T : C[0, δ] → C[0, δ]
is a contraction. Since there are no further singularities in (0, 1], this solution can then be
extended uniquely to the whole of [0, 1] by standard ODE theory.

For ζ, ϕ ∈ C[0, 1], it follows from (3.3) and the boundedness of ∂2 f that

|(Tζ − Tϕ)(r)| 6 p∗λ1

∫ r

0
|u(λ1)′(s)|2−p

∫ s

0
|∂2 f (t, u(λ1)(t))| |ζ(t) − ϕ(t)| dt ds

6 C(λ1)
∫ r

0
sp∗−1

∫ s

0
|ζ(t) − ϕ(t)| dt ds.

Hence,

sup
[0,δ]
|(Tζ − Tϕ)| 6 C(λ1)

δp∗+1

p∗ + 1
sup
[0,δ]
|ζ − ϕ|,

showing that T : C[0, δ]→ C[0, δ] is a contraction, provided C(λ1) δ
p∗+1

p∗+1 < 1. �

Now, by uniqueness of the solution of (3.4), we must have ζ(λ1) ≡ 0 on [0, 1]. On the
other hand, since (λ1, u(λ1)) is a solution of (1.2), we have F(λ1, u(λ1)) = 0, where

F(λ, u) = u − S p(λ f (u)) = u − λp∗S p( f (u))

was introduced in Step 2 of the proof of Theorem 2. It follows that

ζ(λ1) = −[DuF(λ1, u(λ1))]−1DλF(λ1, u(λ1))

= p∗λ−1
1 [DuF(λ1, u(λ1))]−1λ

p∗

1 S p( f (u(λ1)))

= p∗λ−1
1 [DuF(λ1, u(λ1))]−1u(λ1) , 0.

This contradiction completes the proof of Theorem 3. �
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