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Abstract. The concept of almost nonsingular M–matrix is analyzed and characterized.
Other related concepts are studied and some applications are given.
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§1. Introduction

Nonsingular M–matrices are very important in many applications: economics, dynamical
systems, linear programming or numerical analysis, among other fields (cf. [4]). Besides,
they can be characterized in many different ways. In fact, in [4], more than 50 different
characterizations can be found. Recently, it has been shown that diagonally dominant M–
matrices is one of the few classes of matrices for which one can find accurate algorithms; for
instance, for computing the singular values (see [3], [6], [9]), or the smallest eigenvalue ( [2]),
or the matrix inverse (cf. [1]). By accurate algorithms we mean that they can be performed to
high relative accuracy independently of the conditioning of the problem (see [5]).

In this paper we introduce the concept of an almost nonsingular M–matrix and other
related concepts. We prove that they inherit many properties and characterizations of nonsin-
gular M–matrices, with the natural adaptations.

In Section 2 we introduce the main concepts and we characterize almost nonsingular
M–matrices in different ways. The characterization of Theorem 4 (vi) provides a practical
test (of O(n3) elementary operations) to check if an n × n matrix is an almost nonsingular
M–matrix. Section 3 analyzes some subclasses of almost nonsingular M–matrices adding
either symmetric or diagonal dominant properties. As an application of this last subclass of
matrices, we give a very simple test (of O(n2) elementary operations) to check if a given n×n
matrix has negative determinant.

§2. Characterizations of almost M–matrices

Let A = (ai j)1≤i, j≤n be a real square matrix. Given k, l ∈ {1, 2, . . . , n}, let α, β be two increasing
sequences of k and l positive integers respectively less than or equal to n. Then we denote by
A[α|β] the k × l submatrix of A containing rows numbered by α and columns numbered by β.
For principal submatrices, we use the notation A[α] := A[α|α]. A principal submatrix of A of
the form A[1, . . . , k] for k ∈ {1, . . . , n} is called a leading principal submatrix. We also denote
by A(α) := A[αc], where αc is the increasing rearranged complement of α in {1, . . . , n}, that is,
αc = {1, . . . , n} \ α. A real matrix with nonpositive off–diagonal entries is called a Z–matrix.
An M–matrix is a Z–matrix A such that it can be expressed as A = sI − B, with B ≥ 0 and
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s ≥ ρ(B) (where ρ(B) is the spectral radius of B). Let us recall that, given a Z–matrix A, then A
is a nonsingular M–matrix if and only if A−1 is nonnegative. There are many characterizations
of nonsingular M–matrices (see for instance Theorem 2.3 of Chapter 6 of [4]). We now recall
some of them in the following result, which collects some conditions of the statement and
proof of Theorem 2.3 of Chapter 6 of [4].

Theorem 1. Let A be a Z–matrix, then the following properties are equivalent:

(i) A is a nonsingular M–matrix.

(ii) All leading principal minors of A are positive.

(iii) All principal minors of A are positive.

(iv) A = LU, with L a nonsingular lower triangular Z–matrix with positive diagonal and
U a nonsingular upper triangular Z–matrix with positive diagonal.

We now introduce the main definition of the paper.

Definition 1. A nonsingular Z–matrix A = (ai j)1≤i, j≤n is called an almost nonsingular M–
matrix if A is not an M–matrix and A[1, . . . , n − 1] is a nonsingular M–matrix.

The following theorem shows that almost nonsingular M–matrices have LDU decompo-
sitions such that L and U are M–matrices. Let us recall that an LDU decomposition of a
square matrix A is a factorization A = LDU where L is a lower triangular matrix with unit
diagonal, D is a diagonal matrix with nonzero diagonal entries and U is an upper triangular
matrix with unit diagonal. It is well–known that, for a nonsingular matrix, this decomposition
is unique.

Theorem 2. Let A = (ai j)1≤i, j≤n be a Z–matrix. The following conditions are equivalent:

(i) A is almost nonsingular M–matrix.

(ii) A = LDU, where L is a lower triangular nonsingular M–matrix and U is an upper
triangular nonsingular M–matrix, both with unit diagonal, and D = diag(di)n

i=1 with
di > 0 for all i < n and dn < 0.

Proof. (i)⇒ (ii) Since A[1, . . . , n−1] is a nonsingular M–matrix, by Theorem 1 all its leading
principal minors are positive and, since A is nonsingular and is not an M–matrix, det A < 0
again by Theorem 1. Since A is also nonsingular, all its leading principal minors are nonzero
and then it is well–known that A = LDU, where L (resp. U) is lower (resp. upper) triangular
with unit diagonal and D = diag(d1, . . . , dn) is a diagonal matrix with d1 = a11 (> 0) and
di = det A[1, . . . , i]/ det A[1, . . . , i − 1] (> 0) for each i = 2, . . . , n − 1. In addition, we have
the following LDU decomposition of A[1, . . . , n − 1]:

A[1, . . . , n − 1] = L[1, . . . , n − 1]D[1, . . . , n − 1]U[1, . . . , n − 1]. (2.1)

Let us prove, by induction on j, that ln j ≤ 0 for j = 1, . . . , n − 1. We have that an1 = ln1d1
and, since an1 ≤ 0 and d1 > 0 by hypothesis, we conclude that ln1 ≤ 0. Suppose now that
lnk ≤ 0 for all k ≤ j − 1. We know that

0 ≥ an j =

j∑
k=1

lnkdkuk j = ln jd ju j j +

j−1∑
k=1

lnkdkuk j = ln jd j +

j−1∑
k=1

lnkdkuk j.
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Taking into account that, by hypothesis, lnk, uk j ≤ 0 for k = 1, . . . , j − 1 and d j > 0 for
j = 1, . . . , n − 1, we can derive that ln j ≤ 0 for all j ≤ n − 1. Analogously, we can prove
that u jn ≤ 0 for all j = 1, . . . , n − 1. By (2.1), Theorem 1 and the uniqueness of the LDU
decomposition, we can deduce that L[1, . . . , n− 1] and U[1, . . . , n− 1] are Z–matrices. Thus,
L and U are triangular Z–matrices with unit diagonal and so, by Theorem 1, L and U are
nonsingular M–matrices. Finally, let us observe that

dn =
det A

det A[1, . . . , n − 1]
< 0,

and so, (ii) follows.
(ii)⇒ (i) By hypothesis, A is a Z–matrix, and so A[1, . . . , n−1] is a Z–matrix. The leading

principal minors det A[1, . . . , k] of A are d1 · · · dk > 0, k = 1, . . . , n − 1. Then, by Theorem 1
(ii) ⇒ (i), A[1, . . . , n − 1] is a nonsingular M–matrix. Finally, det A = d1 · · · dn < 0 and (i)
follows from Theorem 1. �

We can extend the previous theorem to a larger class of matrices. We say that A is a
generalized almost nonsingular M–matrix if there exists a permutation matrix P such that
PAPT is an almost nonsingular M–matrix.

Theorem 3. Let A = (ai j)1≤i, j≤n be a Z–matrix. The following conditions are equivalent:

(i) A is a generalized almost nonsingular M–matrix.

(ii) There exists a permutation matrix P such that PAPT = LDU, where L (resp. U) is
a lower (resp. upper) triangular nonsingular M–matrix with unit diagonal and D =

diag(di)n
i=1, with di > 0 for all i < n and dn < 0.

Proof. It is only necessary to apply Theorem 2 to the almost nonsingular M–matrix PAPT .
�

Let us recall that a P–matrix is a matrix with all its principal minors positive. If a nonsin-
gular matrix A is not a P–matrix but A[1, . . . , n − 1] is a P–matrix, then we say that A is an
almost P–matrix.

In the following theorem we prove that, for Z–matrices, the concepts of almost P–matrix
and almost nonsingular M–matrix are equivalent. We also provide more equivalent properties
of this class of matrices. In particular, (v) characterizes almost nonsingular M–matrices in
terms of their leading principal minors and (vi) through Gaussian elimination.

Theorem 4. Let A = (ai j)1≤i, j≤n be a Z–matrix. The following statements are equivalent:

(i) A is almost nonsingular M–matrix.

(ii) det A < 0 and A[1, . . . , n − 1] is a nonsingular M–matrix.

(iii) A is a nonsingular matrix with an odd number of negative eigenvalues, and all eigen-
values of A[1, . . . , n − 1] has positive real part.

(iv) A is an almost P–matrix.

(v) det A < 0 and det A[1, . . . , k] > 0 for all k < n.

(vi) Gaussian elimination of A can be performed without row exchanges and the pivots di

satisfy di > 0 for i = 1, . . . , n − 1 and dn < 0.
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Proof. (i)⇔ (ii) This equivalence can be derived using Theorem 1.
(ii)⇔ (iii) It is well known (cf. Theorem 2.5.3 of [8]) that the Z–matrix A[1, . . . , n− 1] is

a nonsingular M–matrix if and only if A[1, . . . , n−1] has all its eigenvalues with positive real
part. Furthermore, since det A =

∏n
i=1 λi, with λ1, . . . , λn the eigenvalues of A, we conclude

that det A < 0 if and only if A has an odd number of negative eigenvalues.
(ii)⇒ (iv) By Theorem 1 the submatrix A[1, . . . , n − 1] is a nonsingular M–matrix if and

only if det A[α] > 0 for all α such that n < α, that is, A[1, . . . , n − 1] is a P–matrix. So, if (ii)
holds, then A is an almost P–matrix.

(iv) ⇒ (ii) Since we have seen in the previous paragraph that A[1, . . . , n − 1] is a non-
singular M–matrix if and only if A[1, . . . , n − 1] is a P–matrix, it remains to prove that, if a
nonsingular Z–matrix A is not a P–matrix and A[1, . . . , n−1] is a nonsingular P–matrix, then
det A < 0. Otherwise, det A > 0 and, by Theorem 1, A is a nonsingular M–matrix because it
has all its leading principal minors positive. Then, again by Theorem 1, all principal minors
of A positive, contradicting the fact that A is not a P–matrix.

(ii)⇔ (v) It can be derived applying Theorem 1 to the submatrix A[1, . . . , n − 1].
(v) ⇔ (vi) Take into account that Gaussian elimination can be performed without row

exchanges if and only if all n − 1 first leading principal minors are nonzero and that, in
this case, the pivots are given by d1 = a11 and di = det A[1, . . . , i]/ det A[1, . . . , i − 1] for
i = 2, . . . , n. �

Observe that condition (vi) provides a test of O(n3) elementary operations to check if an
n × n Z–matrix is an almost nonsingular M–matrix.

§3. Some subclasses of almost nonsingular M–matrices

This section considers two classes of almost nonsingular M–matrices and includes an appli-
cation of the second class.

Let us recall that a symmetric nonsingular M–matrix is called a Stieltjes matrix (see [4]).
Recall that a real symmetric matrix is a positive definite matrix if and only if all its leading
principal minors are positive. Then a Z–matrix is Stieltjes if and only if it is positive definite.
If A is a nonsingular symmetric Z–matrix such that A[1, . . . , n − 1] is a Stieltjes matrix and A
is not a Stieltjes matrix, then we say that A is an almost Stieltjes matrix. Clearly a matrix is
almost Stieltjes if and only if it is a symmetric almost nonsingular M–matrix. The following
result characterizes almost Stieltjes matrices.

Theorem 5. Let A be an n×n symmetric Z–matrix. The following statements are equivalent:

(i) A is an almost Stieltjes matrix.

(ii) det A < 0 and A[1, . . . , n − 1] is an Stieltjes matrix.

(iii) A = LDLT , where L is a lower triangular M–matrix with unit diagonal and D =

diag(di)n
i=1 with di > 0 for all i < n and dn < 0.

(iv) A has n − 1 positive eigenvalues and 1 negative eigenvalue and A[1, . . . , n − 1] has
positive eigenvalues.

(v) A is an almost P–matrix.
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Proof. (i)⇔ (ii) This equivalence is consequence of Theorem 4.
(ii)⇒ (iii) Observe that a matrix A satisfying (ii) is, by Theorem 4, an almost nonsingular

M–matrix. Then we know that the LDU decomposition of A satisfies Theorem 2 (ii). Since
A is symmetric, U = LT and the LDU factorization of A is A = LDLT , and (iii) follows.

(iii) ⇒ (iv) If A = LDLT , then the matrices A and D are congruent and so, by the
Sylvester’s law of inertia (cf. Theorem 4.5.8 of [7], [10]) they have the same number of
positive (resp. negative) eigenvalues. In addition, (2.1) holds and, again by Sylvester’s law
of inertia all eigenvalues of A[1, . . . , n − 1] are positive.

(iv) ⇒ (ii) By (iv), det A < 0. Since all eigenvalues of A[1, . . . , n − 1] are positive, this
submatrix is positive definite and so an Stieltjes matrix.

(ii)⇔ (v) It is a consequence of the equivalence of (ii) and (iv) of Theorem 4. �

We say that a matrix A is a generalized almost Stieltjes matrix if there exists a permutation
matrix P such that PAPT is an almost Stieltjes matrix. Analogously to Theorem 3, we can
derive from Theorem 5 the following result.

Theorem 6. Let A = (ai j)1≤i, j≤n be a symmetric Z–matrix. The following conditions are
equivalent:

(i) A is a generalized almost Stieltjes matrix.

(ii) There exists a permutation matrix P such that PAPT = LDLT , where L is a lower
triangular nonsingular M–matrix with unit diagonal and D = diag(di)n

i=1, with di > 0
for all i < n and dn < 0.

We now recall some notations related to Gaussian elimination. Given a square matrix
A = (ai j)1≤i, j≤n such that Gaussian elimination can be performed without row exchanges,
Gaussian elimination consists of a succession of at most n − 1 major steps resulting in a
sequence of matrices:

A = A(1) −→ A(2) −→ · · · −→ A(n) = U,

where A(t) = (a(t)
i j )1≤i, j≤n has zeros below its main diagonal in the first t − 1 columns and U is

upper triangular with the pivots on its main diagonal. In order to obtain A(t+1) from A(t) we
produce zeros in column t below the pivot a(t)

tt (, 0) by subtracting multiples of row t from
the rows beneath it.

A matrix A = (ai j)1≤i, j≤n is strictly diagonally dominant (SDD) if |aii| >
∑

j,i |ai j| for each
i = 1, . . . , n. If a nonsingular matrix A is not SDD but A[1, . . . , n−1] is SDD then we say that
A is an almost SDD matrix. Finally, a matrix A is a generalized almost SDD matrix if there
exists a permutation matrix P such that PAPT is an almost SDD matrix.

By the Levy-Desplanques Theorem (cf. Corollary 5.6.17 of [7]) an SDD matrix is nonsin-
gular. If, in addition, all diagonal entries are positive then it is well–known that A has positive
determinant. In fact, using the Gershgorin circles, it can be deduced that all eigenvalues have
positive real part, and so the determinant is positive. The following result shows a sufficient
condition for negative determinant, which corresponds to a class of generalized almost SDD
matrices.

Theorem 7. Let A = (ai j)1≤i, j≤n be a Z–matrix and let A(k) be the principal submatrix of A
removing row and column k. If att < 0, akk > 0 for all k , t and A(k) is an SDD matrix, then
det A < 0.
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Proof. Let us consider the permutation matrix P that permutes the rows t and n of A and
let B = (bi j)1≤i, j≤n := PAPT . Recall that, by Theorem 2.5.3 of [8], an SDD Z–matrix is
a nonsingular M–matrix. Thus, we have that the matrix B[1, . . . , n − 1] is a nonsingular
M–matrix. Since the (n, n) entry (a principal submatrix) of B is negative by hypothesis, we
conclude from Theorem 1 that B is not an M–matrix.

Since the matrix B[1, . . . , n−1] is a Z–matrix with positive leading principal minors, then
it is easy to check that we can perform the Gaussian elimination without row exchanges until
obtaining an upper triangular matrix U with the first n−1 diagonal entries d1, . . . , dn−1 positive
and nonpositive off–diagonal entries (in fact, B[1, . . . , n − 1] is a nonsingular M–matrix by
Theorem 1 and it is well–known that Gaussian elimination preserves this property). Let us
see that at each step of Gaussian elimination, the (n, n) entry decreases and let us denote by
dn := b(n)

nn the (n, n) entry of B(n) = U. It is sufficient to prove it at the first step B(1) −→ B(2)

(analogously, it can be proved at any step). The (n, n) entry of B = B(1) is updated as

b(2)
nn = b(1)

nn −
b(1)

n1

b(1)
11

b(1)
1n ,

where bn1, b1n ≤ 0 and b11 > 0. Thus b(2)
nn ≤ bnn (< 0) and, continuing Gaussian elimination,

we can prove that dn = b(n)
nn ≤ b(n−1)

nn ≤ . . . ≤ b(2)
nn ≤ bnn < 0. Finally, we have that det A =

d1 · · · dn < 0. �

Observe that checking if a given n × n Z–matrix satisfies the hypothesis of Theorem 7
requires O(n2) elementary operations.

An illustrative example of the criterion of negative determinant of Theorem 7 is given by
the following matrix

A =


8 −2 0 −1
−2 7 −1 −8
−2 −5 8 −7
0 −7 −1 −2

 .
It has negative determinant by Theorem 7. A direct computation shows that det A = −5586.
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