Characterizations and tests for ALMOST M-MATRICES
 Álvaro Barreras and Juan Manuel Peña

Abstract

The concept of almost nonsingular M-matrix is analyzed and characterized. Other related concepts are studied and some applications are given.

Keywords: M-matrices, Stieltjes matrices, diagonal dominance, negative determinant. AMS classification: 15A23, 65F30, 65F05, 15B48.

§1. Introduction

Nonsingular M-matrices are very important in many applications: economics, dynamical systems, linear programming or numerical analysis, among other fields (cf. [4]). Besides, they can be characterized in many different ways. In fact, in [4], more than 50 different characterizations can be found. Recently, it has been shown that diagonally dominant $M-$ matrices is one of the few classes of matrices for which one can find accurate algorithms; for instance, for computing the singular values (see [3], [6], [9]), or the smallest eigenvalue ([2]), or the matrix inverse (cf. [1]). By accurate algorithms we mean that they can be performed to high relative accuracy independently of the conditioning of the problem (see [5]).

In this paper we introduce the concept of an almost nonsingular M-matrix and other related concepts. We prove that they inherit many properties and characterizations of nonsingular M-matrices, with the natural adaptations.

In Section 2 we introduce the main concepts and we characterize almost nonsingular M-matrices in different ways. The characterization of Theorem 4 (vi) provides a practical test (of $O\left(n^{3}\right)$ elementary operations) to check if an $n \times n$ matrix is an almost nonsingular M-matrix. Section 3 analyzes some subclasses of almost nonsingular M-matrices adding either symmetric or diagonal dominant properties. As an application of this last subclass of matrices, we give a very simple test ($o f O\left(n^{2}\right)$ elementary operations) to check if a given $n \times n$ matrix has negative determinant.

§2. Characterizations of almost M-matrices

Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ be a real square matrix. Given $k, l \in\{1,2, \ldots, n\}$, let α, β be two increasing sequences of k and l positive integers respectively less than or equal to n. Then we denote by $A[\alpha \mid \beta]$ the $k \times l$ submatrix of A containing rows numbered by α and columns numbered by β. For principal submatrices, we use the notation $A[\alpha]:=A[\alpha \mid \alpha]$. A principal submatrix of A of the form $A[1, \ldots, k]$ for $k \in\{1, \ldots, n\}$ is called a leading principal submatrix. We also denote by $A(\alpha):=A\left[\alpha^{c}\right]$, where α^{c} is the increasing rearranged complement of α in $\{1, \ldots, n\}$, that is, $\alpha^{c}=\{1, \ldots, n\} \backslash \alpha$. A real matrix with nonpositive off-diagonal entries is called a Z-matrix. An M-matrix is a Z-matrix A such that it can be expressed as $A=s I-B$, with $B \geq 0$ and
$s \geq \rho(B)$ (where $\rho(B)$ is the spectral radius of B). Let us recall that, given a Z-matrix A, then A is a nonsingular M-matrix if and only if A^{-1} is nonnegative. There are many characterizations of nonsingular M-matrices (see for instance Theorem 2.3 of Chapter 6 of [4]). We now recall some of them in the following result, which collects some conditions of the statement and proof of Theorem 2.3 of Chapter 6 of [4].
Theorem 1. Let A be a Z-matrix, then the following properties are equivalent:
(i) A is a nonsingular M-matrix.
(ii) All leading principal minors of A are positive.
(iii) All principal minors of A are positive.
(iv) $A=L U$, with L a nonsingular lower triangular Z-matrix with positive diagonal and U a nonsingular upper triangular Z-matrix with positive diagonal.
We now introduce the main definition of the paper.
Definition 1. A nonsingular Z-matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ is called an almost nonsingular M matrix if A is not an M-matrix and $A[1, \ldots, n-1]$ is a nonsingular M-matrix.

The following theorem shows that almost nonsingular M-matrices have $L D U$ decompositions such that L and U are M-matrices. Let us recall that an $L D U$ decomposition of a square matrix A is a factorization $A=L D U$ where L is a lower triangular matrix with unit diagonal, D is a diagonal matrix with nonzero diagonal entries and U is an upper triangular matrix with unit diagonal. It is well-known that, for a nonsingular matrix, this decomposition is unique.
Theorem 2. Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ be a Z-matrix. The following conditions are equivalent:
(i) A is almost nonsingular M-matrix.
(ii) $A=L D U$, where L is a lower triangular nonsingular M-matrix and U is an upper triangular nonsingular M-matrix, both with unit diagonal, and $D=\operatorname{diag}\left(d_{i}\right)_{i=1}^{n}$ with $d_{i}>0$ for all $i<n$ and $d_{n}<0$.

Proof. (i) \Rightarrow (ii) Since $A[1, \ldots, n-1]$ is a nonsingular M-matrix, by Theorem 1 all its leading principal minors are positive and, since A is nonsingular and is not an M-matrix, $\operatorname{det} A<0$ again by Theorem 1. Since A is also nonsingular, all its leading principal minors are nonzero and then it is well-known that $A=L D U$, where L (resp. U) is lower (resp. upper) triangular with unit diagonal and $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ is a diagonal matrix with $d_{1}=a_{11}(>0)$ and $d_{i}=\operatorname{det} A[1, \ldots, i] / \operatorname{det} A[1, \ldots, i-1](>0)$ for each $i=2, \ldots, n-1$. In addition, we have the following $L D U$ decomposition of $A[1, \ldots, n-1]$:

$$
\begin{equation*}
A[1, \ldots, n-1]=L[1, \ldots, n-1] D[1, \ldots, n-1] U[1, \ldots, n-1] . \tag{2.1}
\end{equation*}
$$

Let us prove, by induction on j, that $l_{n j} \leq 0$ for $j=1, \ldots, n-1$. We have that $a_{n 1}=l_{n 1} d_{1}$ and, since $a_{n 1} \leq 0$ and $d_{1}>0$ by hypothesis, we conclude that $l_{n 1} \leq 0$. Suppose now that $l_{n k} \leq 0$ for all $k \leq j-1$. We know that

$$
0 \geq a_{n j}=\sum_{k=1}^{j} l_{n k} d_{k} u_{k j}=l_{n j} d_{j} u_{j j}+\sum_{k=1}^{j-1} l_{n k} d_{k} u_{k j}=l_{n j} d_{j}+\sum_{k=1}^{j-1} l_{n k} d_{k} u_{k j} .
$$

Taking into account that, by hypothesis, $l_{n k}, u_{k j} \leq 0$ for $k=1, \ldots, j-1$ and $d_{j}>0$ for $j=1, \ldots, n-1$, we can derive that $l_{n j} \leq 0$ for all $j \leq n-1$. Analogously, we can prove that $u_{j n} \leq 0$ for all $j=1, \ldots, n-1$. By (2.1), Theorem 1 and the uniqueness of the $L D U$ decomposition, we can deduce that $L[1, \ldots, n-1]$ and $U[1, \ldots, n-1]$ are Z-matrices. Thus, L and U are triangular Z-matrices with unit diagonal and so, by Theorem 1, L and U are nonsingular M-matrices. Finally, let us observe that

$$
d_{n}=\frac{\operatorname{det} A}{\operatorname{det} A[1, \ldots, n-1]}<0,
$$

and so, (ii) follows.
(ii) \Rightarrow (i) By hypothesis, A is a Z-matrix, and so $A[1, \ldots, n-1]$ is a Z-matrix. The leading principal minors $\operatorname{det} A[1, \ldots, k]$ of A are $d_{1} \cdots d_{k}>0, k=1, \ldots, n-1$. Then, by Theorem 1 (ii) $\Rightarrow(i), A[1, \ldots, n-1]$ is a nonsingular M-matrix. Finally, $\operatorname{det} A=d_{1} \cdots d_{n}<0$ and (i) follows from Theorem 1 .

We can extend the previous theorem to a larger class of matrices. We say that A is a generalized almost nonsingular M-matrix if there exists a permutation matrix P such that $P A P^{T}$ is an almost nonsingular M-matrix.
Theorem 3. Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ be a Z-matrix. The following conditions are equivalent:
(i) A is a generalized almost nonsingular M-matrix.
(ii) There exists a permutation matrix P such that $P A P^{T}=L D U$, where L (resp. U) is a lower (resp. upper) triangular nonsingular M-matrix with unit diagonal and $D=$ $\operatorname{diag}\left(d_{i}\right)_{i=1}^{n}$, with $d_{i}>0$ for all $i<n$ and $d_{n}<0$.
Proof. It is only necessary to apply Theorem 2 to the almost nonsingular M-matrix $P A P^{T}$.

Let us recall that a P-matrix is a matrix with all its principal minors positive. If a nonsingular matrix A is not a P-matrix but $A[1, \ldots, n-1]$ is a P-matrix, then we say that A is an almost P-matrix.

In the following theorem we prove that, for Z-matrices, the concepts of almost P-matrix and almost nonsingular M-matrix are equivalent. We also provide more equivalent properties of this class of matrices. In particular, (v) characterizes almost nonsingular M-matrices in terms of their leading principal minors and (vi) through Gaussian elimination.
Theorem 4. Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ be a Z-matrix. The following statements are equivalent:
(i) A is almost nonsingular M-matrix.
(ii) $\operatorname{det} A<0$ and $A[1, \ldots, n-1]$ is a nonsingular M-matrix.
(iii) A is a nonsingular matrix with an odd number of negative eigenvalues, and all eigenvalues of $A[1, \ldots, n-1]$ has positive real part.
(iv) A is an almost P-matrix.
(v) $\operatorname{det} A<0$ and $\operatorname{det} A[1, \ldots, k]>0$ for all $k<n$.
(vi) Gaussian elimination of A can be performed without row exchanges and the pivots d_{i} satisfy $d_{i}>0$ for $i=1, \ldots, n-1$ and $d_{n}<0$.

Proof. (i) \Leftrightarrow (ii) This equivalence can be derived using Theorem 1.
(ii) \Leftrightarrow (iii) It is well known (cf. Theorem 2.5.3 of [8]) that the Z-matrix $A[1, \ldots, n-1]$ is a nonsingular M-matrix if and only if $A[1, \ldots, n-1]$ has all its eigenvalues with positive real part. Furthermore, since $\operatorname{det} A=\prod_{i=1}^{n} \lambda_{i}$, with $\lambda_{1}, \ldots, \lambda_{n}$ the eigenvalues of A, we conclude that $\operatorname{det} A<0$ if and only if A has an odd number of negative eigenvalues.
(ii) \Rightarrow (iv) By Theorem 1 the submatrix $A[1, \ldots, n-1]$ is a nonsingular M-matrix if and only if $\operatorname{det} A[\alpha]>0$ for all α such that $n \notin \alpha$, that is, $A[1, \ldots, n-1]$ is a P-matrix. So, if (ii) holds, then A is an almost P-matrix.
(iv) \Rightarrow (ii) Since we have seen in the previous paragraph that $A[1, \ldots, n-1]$ is a nonsingular M-matrix if and only if $A[1, \ldots, n-1]$ is a P-matrix, it remains to prove that, if a nonsingular Z-matrix A is not a P-matrix and $A[1, \ldots, n-1]$ is a nonsingular P-matrix, then $\operatorname{det} A<0$. Otherwise, $\operatorname{det} A>0$ and, by Theorem $1, A$ is a nonsingular M-matrix because it has all its leading principal minors positive. Then, again by Theorem 1, all principal minors of A positive, contradicting the fact that A is not a P-matrix.
(ii) $\Leftrightarrow(v)$ It can be derived applying Theorem 1 to the submatrix $A[1, \ldots, n-1]$.
(v) \Leftrightarrow (vi) Take into account that Gaussian elimination can be performed without row exchanges if and only if all $n-1$ first leading principal minors are nonzero and that, in this case, the pivots are given by $d_{1}=a_{11}$ and $d_{i}=\operatorname{det} A[1, \ldots, i] / \operatorname{det} A[1, \ldots, i-1]$ for $i=2, \ldots, n$.

Observe that condition (vi) provides a test of $O\left(n^{3}\right)$ elementary operations to check if an $n \times n Z$-matrix is an almost nonsingular M-matrix.

§3. Some subclasses of almost nonsingular M-matrices

This section considers two classes of almost nonsingular M-matrices and includes an application of the second class.

Let us recall that a symmetric nonsingular M-matrix is called a Stieltjes matrix (see [4]). Recall that a real symmetric matrix is a positive definite matrix if and only if all its leading principal minors are positive. Then a Z-matrix is Stieltjes if and only if it is positive definite. If A is a nonsingular symmetric Z-matrix such that $A[1, \ldots, n-1]$ is a Stieltjes matrix and A is not a Stieltjes matrix, then we say that A is an almost Stieltjes matrix. Clearly a matrix is almost Stieltjes if and only if it is a symmetric almost nonsingular M-matrix. The following result characterizes almost Stieltjes matrices.
Theorem 5. Let A be an $n \times n$ symmetric Z-matrix. The following statements are equivalent:
(i) A is an almost Stieltjes matrix.
(ii) $\operatorname{det} A<0$ and $A[1, \ldots, n-1]$ is an Stieltjes matrix.
(iii) $A=L D L^{T}$, where L is a lower triangular M-matrix with unit diagonal and $D=$ $\operatorname{diag}\left(d_{i}\right)_{i=1}^{n}$ with $d_{i}>0$ for all $i<n$ and $d_{n}<0$.
(iv) A has $n-1$ positive eigenvalues and 1 negative eigenvalue and $A[1, \ldots, n-1]$ has positive eigenvalues.
(v) A is an almost P-matrix.

Proof. (i) \Leftrightarrow (ii) This equivalence is consequence of Theorem 4.
(ii) \Rightarrow (iii) Observe that a matrix A satisfying (ii) is, by Theorem 4, an almost nonsingular M-matrix. Then we know that the $L D U$ decomposition of A satisfies Theorem 2 (ii). Since A is symmetric, $U=L^{T}$ and the $L D U$ factorization of A is $A=L D L^{T}$, and (iii) follows.
(iii) \Rightarrow (iv) If $A=L D L^{T}$, then the matrices A and D are congruent and so, by the Sylvester's law of inertia (cf. Theorem 4.5.8 of [7], [10]) they have the same number of positive (resp. negative) eigenvalues. In addition, (2.1) holds and, again by Sylvester's law of inertia all eigenvalues of $A[1, \ldots, n-1]$ are positive.
(iv) \Rightarrow (ii) By (iv), $\operatorname{det} A<0$. Since all eigenvalues of $A[1, \ldots, n-1]$ are positive, this submatrix is positive definite and so an Stieltjes matrix.
$(i i) \Leftrightarrow(v)$ It is a consequence of the equivalence of (ii) and (iv) of Theorem 4.
We say that a matrix A is a generalized almost Stieltjes matrix if there exists a permutation matrix P such that $P A P^{T}$ is an almost Stieltjes matrix. Analogously to Theorem 3, we can derive from Theorem 5 the following result.
Theorem 6. Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ be a symmetric Z-matrix. The following conditions are equivalent:
(i) A is a generalized almost Stieltjes matrix.
(ii) There exists a permutation matrix P such that $P A P^{T}=L D L^{T}$, where L is a lower triangular nonsingular M-matrix with unit diagonal and $D=\operatorname{diag}\left(d_{i}\right)_{i=1}^{n}$, with $d_{i}>0$ for all $i<n$ and $d_{n}<0$.

We now recall some notations related to Gaussian elimination. Given a square matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ such that Gaussian elimination can be performed without row exchanges, Gaussian elimination consists of a succession of at most $n-1$ major steps resulting in a sequence of matrices:

$$
A=A^{(1)} \longrightarrow A^{(2)} \longrightarrow \cdots \longrightarrow A^{(n)}=U
$$

where $A^{(t)}=\left(a_{i j}^{(t)}\right)_{1 \leq i, j \leq n}$ has zeros below its main diagonal in the first $t-1$ columns and U is upper triangular with the pivots on its main diagonal. In order to obtain $A^{(t+1)}$ from $A^{(t)}$ we produce zeros in column t below the pivot $a_{t t}^{(t)}(\neq 0)$ by subtracting multiples of row t from the rows beneath it.

A matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ is strictly diagonally dominant $(S D D)$ if $\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|$ for each $i=1, \ldots, n$. If a nonsingular matrix A is not SDD but $A[1, \ldots, n-1]$ is SDD then we say that A is an almost SDD matrix. Finally, a matrix A is a generalized almost SDD matrix if there exists a permutation matrix P such that $P A P^{T}$ is an almost SDD matrix.

By the Levy-Desplanques Theorem (cf. Corollary 5.6.17 of [7]) an SDD matrix is nonsingular. If, in addition, all diagonal entries are positive then it is well-known that A has positive determinant. In fact, using the Gershgorin circles, it can be deduced that all eigenvalues have positive real part, and so the determinant is positive. The following result shows a sufficient condition for negative determinant, which corresponds to a class of generalized almost SDD matrices.

Theorem 7. Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ be a Z-matrix and let $A(k)$ be the principal submatrix of A removing row and column k. If $a_{t t}<0, a_{k k}>0$ for all $k \neq t$ and $A(k)$ is an SDD matrix, then $\operatorname{det} A<0$.

Proof. Let us consider the permutation matrix P that permutes the rows t and n of A and let $B=\left(b_{i j}\right)_{1 \leq i, j \leq n}:=P A P^{T}$. Recall that, by Theorem 2.5.3 of [8], an SDD Z-matrix is a nonsingular M-matrix. Thus, we have that the matrix $B[1, \ldots, n-1]$ is a nonsingular M-matrix. Since the (n, n) entry (a principal submatrix) of B is negative by hypothesis, we conclude from Theorem 1 that B is not an M-matrix.

Since the matrix $B[1, \ldots, n-1]$ is a Z-matrix with positive leading principal minors, then it is easy to check that we can perform the Gaussian elimination without row exchanges until obtaining an upper triangular matrix U with the first $n-1$ diagonal entries d_{1}, \ldots, d_{n-1} positive and nonpositive off-diagonal entries (in fact, $B[1, \ldots, n-1]$ is a nonsingular M-matrix by Theorem 1 and it is well-known that Gaussian elimination preserves this property). Let us see that at each step of Gaussian elimination, the (n, n) entry decreases and let us denote by $d_{n}:=b_{n n}^{(n)}$ the (n, n) entry of $B^{(n)}=U$. It is sufficient to prove it at the first step $B^{(1)} \longrightarrow B^{(2)}$ (analogously, it can be proved at any step). The (n, n) entry of $B=B^{(1)}$ is updated as

$$
b_{n n}^{(2)}=b_{n n}^{(1)}-\frac{b_{n 1}^{(1)}}{b_{11}^{(1)}} b_{1 n}^{(1)},
$$

where $b_{n 1}, b_{1 n} \leq 0$ and $b_{11}>0$. Thus $b_{n n}^{(2)} \leq b_{n n}(<0)$ and, continuing Gaussian elimination, we can prove that $d_{n}=b_{n n}^{(n)} \leq b_{n n}^{(n-1)} \leq \ldots \leq b_{n n}^{(2)} \leq b_{n n}<0$. Finally, we have that $\operatorname{det} A=$ $d_{1} \cdots d_{n}<0$.

Observe that checking if a given $n \times n Z$-matrix satisfies the hypothesis of Theorem 7 requires $O\left(n^{2}\right)$ elementary operations.

An illustrative example of the criterion of negative determinant of Theorem 7 is given by the following matrix

$$
A=\left(\begin{array}{cccc}
8 & -2 & 0 & -1 \\
-2 & 7 & -1 & -8 \\
-2 & -5 & 8 & -7 \\
0 & -7 & -1 & -2
\end{array}\right)
$$

It has negative determinant by Theorem 7. A direct computation shows that $\operatorname{det} A=-5586$.

Acknowledgements

Research Partially Supported by the Spanish Research Grant MTM2012-31544, by Gobierno de Aragón and Fondo Social Europeo.

References

[1] Alfa, A. S., Xue, J., and Ye, Q. Entrywise perturbation theory for diagonally dominant M-matrices with applications. Numer. Math. 90 (1999), 401-414.
[2] Alfa, A. S., Xue, J., and Ye, Q. Accurate computation of the smallest eigenvalue of a diagonally dominant M-matrix. Math. Comp. 71 (2001), 217-236.
[3] Barreras, A., and Peña, J. M. Accurate and efficient LDU decomposition of diagonally dominant M-matrices. Electronic J. Linear Algebra 24 (2012), 153-167.
[4] Berman, A., and Plemmons, R. J. Nonnegative matrices in the mathematical sciences. Classics in Applied Mathematics, 9, SIAM, Philadelphia, 1994.
[5] Demmel, J., Gu, M., Eisenstat, S., Slapnicar, I., Veselic, K., and Drmac, K. Computing the singular value decomposition with high relative accuracy. Linear Algebra Appl. 299 (1999), 21-80.
[6] Demmel, J., and Koev, P. Accurate SVDs of weakly diagonally dominant M-matrices. Numer. Math. 98 (2004), 99-104.
[7] Horn, R. A., and Johnson, C. R. Matrix Analysis. Cambridge University Press, Cambridge, 1990.
[8] Horn, R. A., and Johnson, C. R. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1994.
[9] Peña, J. M. LDU decompositions with L and U well conditioned. Electronic Transactions of Numerical Analysis 18 (2004), 198-208.
[10] Sylvester, J. J. A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitutions to the form of a sum of positive and negative squares. Phil. Mag. 4 (1852), 142.

Álvaro Barreras and Juan Manuel Peña
Departamento de Matemática Aplicada/IUMA
Universidad de Zaragoza
50009 Zaragoza, Spain
albarrer@unizar.es and jmpena@unizar.es

