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Abstract. The global parametric evolution of the normalized Hamiltonian, in the problem
of the attitude dynamics of an axial-symmetric satellite in a gravity field is obtained. The
phase portrait is represented in a Mercator map. Pitch-fork bifurcations and degeneracies
(a dense set of equilibria) are found.
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§1. Introduction

Attitude dynamics of a rigid body has been studied by the most famous scientists (see e.g.
the classical Leimanis’ textbook [13] which contains a detailed list of problems and authors
involved with rigid body motion).

The rigid body in free rotation is the simplest case of the three integrable problems in
the rigid-body dynamics, but besides still is complex enough since in its integration, elliptic
functions appear. Because its relative simplicity, it has been used as benchmark of new set
of variables, or numerical methods integrating rigid body rotations among other applications.
It is also used in Astrodynamics, since a good knowledge of the attitude of spinning satellite
is essential in designing a mission, and also in astronomical problems like the rotation of
planets, satellites, asteroids, etc.

In order to maintain alive a spatial mission, it is essential the stability analysis of the
rotational motion [14, 15, 16, 7, 6], since the choice of a set of wrong initial conditions could
put the satellite in tumbling rotation, leading to a chaotic regime and ruining the mission.

Although there are substantial progresses in the understanding of small perturbations of
integrable systems by means of KAM theory and Chaos indicators (e.g. [4]), in this work,
we proceed in the following way. By means of averaging or normalization obtained by a Lie-
Deprit transformation, the original non-integrable Hamiltonian is replaced by an integrable
approximation. This allows us to know how the phase flow varies according to the initial
conditions and what are the stability regions, through a qualitative analysis of the equations
of the motion [11, 12].

In the present paper, we assume that the Earth possesses a spherically symmetry mass
distribution, that the satellite is small compared to its distance from the mass center of the
primary, and although for most of the paper we consider the satellite has three different mo-
ments of inertia, for the computations (Section 3) we will assume that the spacecraft has axial



34 Mercedes Arribas, Daniel Casanova, Antonio Elipe andManuel Palacios

symmetry. Finally, let us mention that an extension of this communication has been published
elsewhere [2].

§2. Hamiltonian of the Problem

Let us consider the problem of the rotational–translational motion of a rigid body (the satel-
lite) attracted by the Newtonian gravity field of the Earth (a point mass). To describe the
problem we will employ the polar–nodal variables (r, θ, ν, R, Θ, N).

For the attitude motion, we use the classical Serret–Andoyer variables (`, g, h, L, G, H).
For a detailed explanation on these variables and their canonicity, the reader is addressed to
[8, 9]. They are well known in the context of the rigid body rotation, but since we relate then
with the orbital ones, we briefly describe the chosen set of reference frames in order to obtain
a simpler formulation. We consider the following frames centered at the center of mass of
the satellite.

• A fixed space frame Os1s2s3.

• The principal body frame of inertia Ob1b2b3 moving rigidly with the satellite.

• The system O`0m0n, where n is the unit vector in the direction of the rotational angular
momentum G and `0 is the ascending node of the plane perpendicular to the vector G
and the space plane Os1s2.

The Serret–Andoyer variables (`, g, h, L, G, H) are defined as usual: The longitude h
of the ascending node `0 reckoned from the axis s1; the longitude g of the node `1 of the
equatorial body plane Ob1b2 on the plane perpendicular to the angular momentum reckoned
from the axis `0; the longitude ` of the body axis b1 reckoned from the node `1.

The conjugate moments are: G = ‖G‖, the norm of the rotation angular momentum
vector; H, the projection of this vector on the space axis s3, (H = G cos ε); L, the projection
of G on the body axis b3, (L = G cosσ). For details, see e.g. [8, 9, 10].

The Hamiltonian function of the problem, considering only terms up to the third power
of the inverse of the distance, and after some simplifications (see [3]) may be written as

H = HK +HE +HC (2.1)

where

HK =
1
2

(R2 +
Θ2

r2 ) −
µ

r
,

HE =

(
sin2 `

2I1
+

cos2 `

2I2

)
(G2 − L2) +

1
2I3

L2,

HC = −
µ

2r3

[
(I1 − I2)(1 − 3α2) + (I3 − I2)(1 − 3γ2)

]
,

being I1, I2, I3 the principal moments of inertia of the satellite (which at this stage we assume
I1 ≤ I2 ≤ I3 ), and (α, β, γ) the unit vector in the radial direction in the body frame.

The two nodes, the orbital ν and the rotational one h, are on the same plane (Os1s2),
and in the development of the potential function, they appear only as the combination (h −
ν). Besides, in the problem of motion given by the Hamiltonian (2.1), the total angular
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momentum vector c, is an integral of the motion, and this allows us to choose the space frame
in such a way that the axis s3 coincides with this vector. (For more details, see [1, 5]).

With this election, and Θ and G standing for the orbital and rotational angular moments
respectively, in the space frame we have

Θ + G = c = (0, 0, c) with c = constant, (2.2)

and the nodes satisfy the relation h− ν = π. The angles h and ν being cyclic, the problem has
four degrees of freedom in the variables (r, θ, `, g, R, Θ, L, G).

Let us assume that the Hamiltonian (2.1) may be decomposed as

H = H0 +H1,

where the zero order term is formed by the Keplerian and Eulerian partsHK andHE , whereas
the coupled terms (HC) are of order one.

We are interested in the study of the behavior of the phase flow for different values of
the initial conditions. In order to do that, we shall make a simplification by averaging the
Hamiltonian (2.1) over the Keplerian mean anomaly.

After performing automatically this average and dropping those terms which do not con-
tain the variables, we obtain:

H∗ =

(
sin2 `

2I1
+

cos2 `

2I2

)
(G2 − L2) +

1
2I3

L2

−
µn

2Θq

[
(I1 − I2)(1 − 3α∗2) + (I3 − I2)(1 − 3γ∗2)

] (2.3)

where n is the orbital mean motion, q is the semilatus rectus, and

α∗2 = A0 + A1 cos g + A2 cos 2g + A3 cos 2` + A4 cos(g + 2`)

+A5 cos(g − 2`) + A6 cos(2g + 2`) + A7 cos(2g − 2`),

γ∗2 = G0 + G1 cos g + G2 cos 2g,

(2.4)

with the coefficients Ai and Gi expressions depending on the moments Θ, N, L, G, H (for mor
details see [1]).

§3. Qualitative analysis of the phase flow in the axisymmetric case.

For the sake of simplicity, we shall consider the case in which the satellite has axial sym-
metry of inertia, i.e., I1 = I2. Under this hypothesis, the variable ` becomes cyclic, and the
Hamiltonian is reduced to:

H∗ =
1

2I1
(G2 − L2) +

1
2I3

L2

−
µn

2Θa(1 − e2)
(I3 − I1)

[
1 − 3 (G0 + G1 cos g + G2 cos 2g)

]
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which exclusively depends on g and G and where a is the semimajor axis and e the orbital
eccentricity of the orbit. The averaged problem is of one-degree of freedom and, therefore, it
is integrable.

The zero-order of the above Hamiltonian corresponds to the rotation of an axis-symmetric
rigid body, and it is well known that its motion consists of rotations about the axis of symme-
try, thus, we will take into consideration only the perturbation.

The behavior of the flow corresponding to the perturbed part is the same as that given by

K = G0 + G1 cos g + G2 cos 2g, (3.1)

where G0, G1, G2 are

G0 = 1
2 sin2 ε cos2 σ + 1

4 (1 + cos2 ε) sin2 σ,

G1 = sin ε cos ε sinσ cosσ,

G2 = 1
4 (cos2 ε sin2 σ − sin2 ε),

which result after dropping summand constant terms and time-scaling the problem in order
to get rid of the constant factor.

Having in mind that the inclination angles σ and ε are given in terms of the moments L,
G, H by

cosσ =
L
G
, cos ε =

H
G
, and cosσ = (L/H) cos ε,

we choose p = L/H as a parameter to make a qualitative analysis of the phase flow.
Making the change

η = cos ε, where |η| ≤ η̂ = min{1, 1/p},

the Hamiltonian becomes simpler

K = 1
2 p2η2(1 − η2) + 1

4 (1 + η2)(1 − p2η2)

+pη2
√

1 − p2η2
√

1 − η2 cos g + 1
4 (2η2 − 1 − p2η4) cos 2g,

(3.2)

with the coordinates (g, η) ∈ [0, 2π) × [−η̂, η̂].
Let us note that the Hamiltonian (3.2) enjoys some symmetries. Indeed, it is symmetric

respect to the axis η = 0 and the line g = π. So, we may restrict our analysis to the region
(g, η) ∈ [0, π] × [0, η̂]. Besides, since K (g, η; p) = K (g ± π, η;−p), we reduce our analysis
to p ≥ 0.

3.1. Analytical study
Equilibria are the solutions of the system

dg
dt

=
∂K

∂G
=
∂K

∂η

∂η

∂G
=
−H
G2

(
∂G0

∂η
+
∂G1

∂η
cos g +

∂G2

∂η
cos 2g

)
= 0, (3.3)

dG
dt

= −
∂K

∂g
= (G1 + 4G2 cos g) sin g = 0. (3.4)
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After some algebra, we have

∂G0

∂η
+
∂G1

∂η
cos g +

∂G2

∂η
cos 2g = −

1
2
η(6η2 p2 − 1 − p2)

+
ηp(2 − 3(1 + p2)η2 + 4p2η4)√

1 − η2
√

1 − p2η2
cos g + η(1 − p2η2) cos 2g = 0.

(G1 + 4G2 cos g) sin g =(
pη2

√
1 − η2

√
1 − p2η2 + (−1 + 2η2 − p2η4) cos g

)
sin g = 0.

(3.5)

This system is complex enough to solve it, but some particular solutions can be obtained.

• If η = 0 the first equation of the system 3.5 is always null. Besides, the second equation
reduces to sin 2g = 0, which is satisfied for g = kπ/2 (k ∈ Z). Since our analysis is reduced to
the interval g ∈ [0, π], the equilibria are the points E0 = (0, 0), E1 = (0, π/2), and E2 = (0, π).

• If η , 0, we have two cases:

a) The second equation of 3.5 is satisfied for g = kπ (k ∈ Z). Then, the first equation of
system 3.5 becomes

∂G0

∂η
±
∂G1

∂η
+
∂G2

∂η
= 0,

depending on either g = 0 (+) or g = π (−), or explicitly,

η

1
2

(3 + p2 − 8p2η2) ±
p(2 − 3(1 + p2)η2 + 4p2η4)√

1 − η2
√

1 − p2η2

 = 0.

If p , 1, isolated equilibrium points can appear if η ∈ [−η̂, η̂].
When p = 1 and g = π, the expression ∂(G0 −G1 + G2)/∂η ≡ 0 for whatever value of
η ∈ [−1, 1]. Thus, for p = 1, the segment Dπ = (π, η) is made of equilibria; hence, we
are in presence of a degeneracy.

b) Assume now that sin g , 0, then the second equation 3.4 holds when

G1 + 4G2 cos g = 0 or cos g = −G1/(4G2). (3.6)

b.1) Case p = 1.
Then the above equation (from the second equation of Eq. 3.5) becomes η2 − (1 −
η2) cos g = 0, that is,

η =

√
cos g

1 + cos g
. (3.7)

By replacing this value of η into the first equation of the system 3.5, we see that it is
always satisfied for whatever value of g, hence, we meet another degeneracy (D0) for
p = 1. Every point on the curve 3.7 for p = 1 is an equilibrium of the system.
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b.2) Case p , 1;
If we replace 3.6 into equation 3.3, the possible equilibria will result by solving the
equation

∂G0

∂η
−
∂G1

∂η

G1

4G2
+
∂G2

∂η

 G2
1

8G2
2

− 1
 = 0,

which in terms of η, is

η(1 − p2)(−1 + 4η2 − 4(1 − p2)η4 − 4p2η6 + p4η8)
2(1 − 2η2 + p2η4)2 = 0,

or equivalently,
−1 + 4η2 − 4(1 − p2)η4 − 4p2η6 + p4η8 = 0, (3.8)

since the cases η = 0 and p = 1 have been already studied.
For each value of the parameter p we have to solve the above equation 3.8, to obtain η
and with it we get the angle g from Eq. 3.6.
The above equation can be put as

−1 + 4ξ − 4(1 − p2)ξ2 − 4p2ξ3 + p4ξ4 = 0, with ξ = η2, η ≤ η̂.

easier to solve numerically. Note that, by means of Descartes rule of signs, it follows
that this equation always has a negative root, hence there is at least one root and at most
three positive roots. There are two positive roots if the resultant of the polynomial
vanishes, which happens for pd = 1.2033783313; there are three positive roots for
p < pd and there is only one positive root when p > pd. But the root ξ0 must be
in the interval ξ0 ∈ [0, η̂2], with η̂ = min{1/p, 1}, and this condition is satisfied for
p ≤ 2.64575. That is to say, this equilibrium (let us call it S 2) only exist for 0 < p ≤
2.64575. In addition, for 0 < p < 1 another equilibrium exists (we name it S 1).

3.2. Stability and bifurcations
The linear stability of the equilibria is determined by the characteristic equation of the differ-
ential system.

After a time scaling t 7−→ τ given by the relation

dτ =
∂η

∂G
dt,

the variational equations of the motion in an equilibrium point are

d δg
d τ

= A δη + B δg,
d δη
d τ

= −C δη − D δg,

or in matricial form
d
d τ

(
δg
δη

)
=

(
B A
−D −C

) (
δg
δη

)
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where

A =
∂2K

∂η2 , B =
∂2K

∂η∂g
= C, D =

∂2K

∂g2 ,

evaluated at the equilibrium.
The associated characteristic polynomial equation is λ2 + (AD − B2) = 0 and, therefore,

the equilibrium is unstable when AD − B2 < 0.
Let us consider some of the equilibria just obtained.
For the point (π, 0), the characteristic polynomial becomes

λ2 + (AD − B2) = λ2 + 1
2 (3 − 4p + p2),

thus, this point will be unstable when 3 − 4p + p2 < 0, that is, when p ∈ (1, 3). Bifurcations
(that is, change of stability) occur in the extrema of this interval, that is to say, for p = 1 and
for p = 3. In fact, these two values are the bifurcation values of p as portrayed in the phase
space graphics (see Fig. 1).

For the point (π/2, 0), the characteristic polynomial becomes

λ2 + (AD − B2) = λ2 +
1
2

(1 − p2),

hence, this point is stable for p ∈ [0, 1) and unstable for p > 1. The bifurcation occurs at
p = 1.

For the origin, the discriminant ∆ = (AD − B2) = (3 + 4p + p2)/2 is positive for p > 0,
which means that is always stable in the studied interval and, therefore, the origin does not
bifurcate.

The sign of the discriminant may be used to determine the stability of whatever equilib-
rium, and this is how we found the stability of the different cases shown in Table 1.

(g, η) Existence Stable
E0 (0,0) always p ≥ 0
E1 (π/2, 0) always (0, 1)
E2 (π, 0) always (0, 1) ∪ (3,∞)
M1 (0, η0) p , 1 (0, 1)
M2 (π, ηπ) 1 < p ≤ 3 (1,3)
Dπ (π, η) p = 1 Degeneracy
D0 (gη, η) p = 1 Degeneracy
S 1 (g1, η1) (0, 1) Never
S 2 (g2, η2) 0 < p ≤ 2.64575 (1, 2.64575)

Table 1: Equilibria, their stability and degeneracies of the phase flow

§4. Graphical analysis.

To show how the phase flow evolves with the parameter p, we shall use portraits of the phase
flow for different values of the parameter. The equilibria corresponding to these chosen values
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of the parameter are given in Table 2.
In the plots of Fig. 1, we present the phase portrait on the Mercator chart (g, η) for several

values of the parameter p. In fact, and due to the symmetries previously mentioned, the
phase portrait is a cylinder, and because of the symmetry about the line g = π, we only need
to consider the interval 0 ≤ g ≤ π.

Let us start with p = 3.1; the phase flow is represented in upper left corner of Figure 1.
On the horizontal axis, η = 0, we can see three equilibria E0, E1 and E2 at g = 0, π/2, π

respectively. Point E1 = (π/2, 0) is unstable, whereas the other two E0 = (0, 0) and E2 =

(π, 0) are stable. Besides, the point M1 = (0, 0.290433) is an unstable equilibrium.
For p = 3 there is a pitch-fork bifurcation at the point (π, 0). Indeed, as we can observe

in Fig. 1, for p ≥ 3 it is stable; however, for p < 3, this point is unstable and there is one
new stable point, M2, (Fig. 1, first row to the right) on the vertical axis η = π, inside the
homoclinic orbit that springs out from the point (π, 0).

Let us analyze the phase flow after the pitchfork bifurcation, that is, for p < 3; the flow is
similar until we reach the value p = 2.64575 in which a new equilibrium point appears, S 2.
For smaller values of p and p > 1, the flow is qualitatively the same; we can see it in Fig.
1 b), c) and d) for p = 1.9, p = 1.5 and p = 1.1 respectively. We see six equilibria, three
stable E0, M2 and S 2, and other three unstable, namely, the points E1, E2 and M1. Again, the
numerical values of these points for those parameters are in Table 2.

p M1 M2 S 1 S 2

3.1 (0, 0.290433) — — —
1.9 (0, 0.439634) (π, 0.326986) — (1.32596, 0.426428)
1.5 (0, 0.530549) (π, 0.486062) — (1.26394, 0.461031)
1.1 (0, 0.664703) (π, 0.789791) — (1.20922, 0.504821)
0.9 (0, 0.752870) — (1.18297, 0.531349) (2.49967, 0.956788)
0.7 (0, 0.848647) — (1.15665, 0.561792) (2.34531, 0.892025)

Table 2: Equilibria for several values of the parameter p.

At p = 1 there are two degeneracies as we already proved in the above section. The first
one (Dπ) is the line g = π, which is a dense set of equilibria; indeed, as p→ 1, the homoclinic
orbit emanating at the point (π, 0), narrows until it collapses into the straight line g = π, which
is made of equilibria (Fig. 1, e). As soon as p < 1, the degeneracy breaks out and only two
equilibrium points remain, the stable E2 = (π, 0) and another one unstable, M2.

Simultaneously, another degeneracy happens (D0); the heteroclinic orbit connecting un-
stable points on the axis g = 0 coalesces as p→ 1 with the homoclinic orbit emanating from
E1 = (π/2, 0) and the resulting curve is made of equilibria. As soon as p < 1, this degeneracy
breaks out, and there are three new equilibria, one unstable S 1 and two stable E1 and M1 (Fig.
1 f) and g)). In sum, for 0 ≤ p < 1, in the phase rectangle (g, η) ∈ [0, π] × [0, 1/2), there are
six equilibria (Fig. 1, last row), four stable (E0, E1, E2 and M1) and two unstable (S 1 and
S 2).
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Figure 1: Evolution of the fhase flow through one pitch-fork bifurcation at p = 3.0 and two
simultaneous degeneracies at p = 1 (third row). The values of the parameter p from left to
right and from top to bottom are a)3.1, b)1.9, c)1.5, d)1.1, e)1.0, f)0.9 and g)0.7 .
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