Thirteenth International Conference Zaragoza-Pau on Mathematics and its Applications Jaca, September 15–18th 2014

Penalized variable viscosity 3D Stokes equations

Sánchez, David

SUMMARY

The analysis of the penalized Stokes problem, in its variable viscosity formulation, coupled to convection-diffusion equations is presented in this here. It models the interaction between a highly viscous fluid with variable viscosity and immersed moving and deformable obstacles. Indeed, while it is quite common to couple Poisson equations to diffusion-transport equations in plasma physics or fluid dynamics in vorticity formulations, the study of some complex fluids requires to consider together the Stokes equation in complex moving geometry and convection-diffusion equations.

Keywords: penalization method, porous thin layer, viscous fluid, convection-diffusion equations

AMS Classification:

References

 [1] [1] G. Carbou, Penalization method for viscous incompressible flow around a porous thin layer, Nonlinear Anal. Real World Appl. 5(5), 815855 (2004).

[2] R. Chatelin, P. Poncet, Hybrid grid-particle methods and Penalization : A Sherman-Morrison-Woodbury approach to compute 3D viscous flows using FFT, J. Comput. Phys. 269, 314-328, 2014.

[3] R. Chatelin, D. Sanchez, P. Poncet, Analysis of penalized variable viscosity 3D Stokes equations coupled to diffusion and transport, submitted.

[4] M. Gazzola, P. Chatelain, W. M. van Rees, and P. Koumoutsakos, Simulations of single and multiple swimmers with non-divergence free deforming geometries, J. Comput. Phys. 230(19), 70937114, 2011.

¹Department University Postal address email@address