A parabolic $\Delta_{p(\cdot)}$ problem

G. Warnault, J. Giacomoni ${ }^{1}$ and S. Tiwari ${ }^{2}$

Minisymposium : nonlinear PDE

SUMMARY

In this communication, we are interested in the parabolic partial differential equation involving the $p(x)$-laplacian:

$$
\left(P_{T}\right): \begin{cases}\frac{d u}{d t}-\Delta_{p(x)} u=f(x . u) & \text { in } Q_{T}:=(0, T) \times \Omega \\ u=0 & \text { on }(0, T) \times \partial \Omega \\ u(0, \cdot)=u_{0} & \text { in } \Omega\end{cases}
$$

where we assume that $T>0$ and Ω is a smooth domain of $\mathbb{R}^{d}(d \geq 2)$ and $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function locally Lipschitz with respect to the second variable uniformly in the first. The variable exponent is a measurable function $p: \Omega \rightarrow(1, \infty)$ satisfying

$$
1<p^{-}=\operatorname{ess} \inf _{\Omega} p(.) \leq p() \leq p^{+}=\operatorname{ess} \sup _{\Omega} p(.)<d
$$

and $\Delta_{p(\cdot)} u$ denotes the formal differential operator $\operatorname{div}\left[|\nabla u|^{p(x)-2} \nabla u\right]$.
We study the problem $\left(P_{T}\right)$ under growth assumptions on the nonlinearity f and on the initial data u_{0}, under this conditions we obtain existence and stabilization results.

Keywords: parabolic equation, $p($.$) -Laplace, variable exponents$

AMS Classification: 35J92, 35K92, 46E30.

${ }^{1}$ LMAP UMR CNRS 5142		
Université de Pau et des Pays de l'Adour	${ }^{2}$ Indian Institute of Technology	
Avenue de l'université - BP 1155	Delhi	
64013 Pau Cedex, France	Department of Mathematics	
guillaume.warnault@univ-pau.fr	New Delhi, India	
jacques.giacomoni@univ-pau.fr	swetatiwari.iitd@gmail.com	

