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Abstract. This paper presents a new method using spectral approaches to compute the
Discrete Hodge Helmholtz Decomposition (DHHD) of a given vector field. This decom-
position consists in extracting the solenoidal (i.e. divergence-free), the non-solenoidal
(i.e. rotational-free or, gradient of a scalar field) and the harmonic components (that is
divergence-free and rotational-free) of a this vector field. A test case illustrates the pro-
posed method.

Keywords: Discrete Hodge Helmholtz decomposition, spectral element method.

AMS classification: 76D05, 65N35.

§1. Introduction

The Hodge Helmholtz decomposition of a general vector field u = uψ + uφ + uH is a classical
problem in applied and computational physics [11, 14]. Application areas include (among
others) electromagnetism, linear elasticity, fluid mechanics, image and video processing. A
closed form of this decomposition may be obtained for unbounded domains through Biot-
Savart type integrals. In finite domains, however such an approach is no longer feasible and
computational solutions are the only practical way to perform this decomposition.

With regard to elasticity, work by Brezzi and Fortin [7], and by Arnold and Falk [3] used
the Hodge Helmholtz decomposition theorem for the study of the Reissner-Mindlin plate
model. With regard to incompressible fluid flows, the scalar potential φ such that uφ = ∇φ in
the Hodge Helmholtz decomposition is usually related to the pressure field p, and the vector
potential uψ corresponds to the solenoidal velocity field uS both quantities being involved in
the Navier-Stokes equations [6]. Stokes and Navier-Stokes solvers decouple most of the time
the computation of the velocity and pressure fields [10]. The family of correction-pressure
time splitting methods [12] generates first a tentative velocity field that is not incompressible
but contains the right vorticity. The addition of a pressure gradient to this temporary velocity
(equivalent to Hodge Helmholtz decomposition) makes it divergence-free [9, 19]. Another
approach resorts to pressure penalization [8]. In video processing, the Hodge Helmholtz
decomposition allows to detect the fingerprint reference or hurricanes from satellite pic-
tures [16]. In [1] the authors propose a constructive spectral approaches for the Helmholtz
decomposition of a Vector Field which consists in projecting the field to be decomposed on
the kernel and the ranges of the − grad(div) operator. Recently, in [17], the authors proposed
a meshless approach for the Hodge Helmholtz decomposition while in [13], divergence-free
and curl-free wavelets are used.
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§2. Discrete Hodge Helmholtz Decomposition

Consider a given vector field u defined in some domain Ω with boundary ∂Ω. The Helmholtz
decomposition writes (see [11, Theorem 3.2, p. 40])

u = uψ + uφ + uH . (1)

The solenoidal component uψ satisfies the equations∇ · uψ = 0 in Ω,

uψ · n = 0 on ∂Ω,
(2)

while the irrotational complement uφ is such that∇ × uφ = 0 in Ω,

uφ × n = 0 on ∂Ω.
(3)

Finally, the harmonic component is both solenoidal and irrotational:

∇ · uH = 0 and ∇ × uH = 0. (4)

The main difficulty of the problem (1) consists in satisfying the solenoidal (2) and irrota-
tional constraints (3). The method we present in this paper is based on the construction of a
basis satisfying the expected constraints. Its originality lies in the way these bases are built.
To illustrate this, we will focus our presentation on how we derive a divergence-free basis.
The derivation of the rotational-free basis in 2D will be presented in Section 4. This paper
only considers the 2D case and then it is good to distinguish between curl and rot, where

∇ × u = rot u =
∂u2

∂x1
−
∂u1

∂x2
, curl φ =

(
∂φ/∂x2
−∂φ/∂x1

)
.

§3. Computation of the solenoidal component

In order to state the problem in variational form we introduce the relevant spaces of functions:

H(div,Ω) =
{
w ∈ (L2(Ω))2

∣∣∣ ∇ · w ∈ L2(Ω)
}
,

L2
0(Ω) =

{
q ∈ L2(Ω)

∣∣∣∣ ∫
Ω

q dx = 0
}
.

Let v,w ∈ H(div,Ω). We define the inner product

(v,w)H(div,Ω) = (v,w)(L2(Ω))2 + (∇ · v,∇ · w)L2(Ω) , (5)

and associated norm ‖w‖H(div,Ω) =
(
‖w‖2(L2(Ω))2 + ‖∇ · w‖2L2(Ω)

)1/2
.

Consider also the proper subspace H0(div,Ω) ⊂ H(div,Ω):

H0(div,Ω) = {w ∈ H(div,Ω) | w · n = 0 on ∂Ω} .
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The admissible space for uψ in Problem (1)–(4) is a subspace of H0(div,Ω):

X = {u ∈ H0(div,Ω) | ∇ · u = 0 in Ω}.

With the inner product (5) we can define the space X⊥ by

X⊥ =
{

u ∈ H0(div,Ω)
∣∣∣ (u, v)H(div,Ω) = 0, ∀v ∈ X

}
.

The space X and X⊥ allow us to decompose each element in u ∈ H0(div,Ω) uniquely as

u = uX + uX⊥ , uX ∈ X, uX⊥ ∈ X⊥.

The divergence operator is a surjective map from H0(div,Ω) onto L2
0(Ω) and it is a bijec-

tion from X⊥ to L2
0(Ω) (see [11, Corollary 2.4]). This means that, for each w ∈ H0(div,Ω),

there exists a unique v ∈ X⊥ such that div v = div w ∈ L2
0(Ω). In particular, div−1 is a well-

defined continuous map from L2
0(Ω) to X⊥ and we have the Poincaré inequality [4, p.302]

‖v‖H(div,Ω) ≤ cP ‖div v‖L2(Ω) ,

where cP is independent of v. This implies that, if we have a set of linearly independent
functions {q1, . . . , qn} ∈ L2

0(Ω), then there exist unique vectors vi ∈ X⊥ with div vi = qi and
these vectors vi are linearly independent in X⊥ and therefore also in H0(div,Ω). The converse
only holds for X⊥. Indeed, if u and v are linearly independent in X⊥, then div u and div v
are linearly independent in L2

0(Ω). The generalization for u, v ∈ H0(div,Ω) is generally not
true: Let S = {v1, . . . , vn} be a set of linear independent vectors in H0(div,Ω) with div vi , 0
and let rank(div v1, . . . , div vn) = k, then we can select k vectors from the set S which form a
basis for a k-dimensional subspace of X⊥.

This last result is the keystone to ensure that it is always possible to reduce into a square
and invertible sub-part, the algebraic system resulting from any stable discretization of the
constraint.

3.1. Variational formulation and its discretization

The variational formulation of problem (1) writes: Find uψ ∈ X such that∫
Ω

uψ · v dx =

∫
Ω

u · v dx, ∀v ∈ X. (6)

Due to the nature of X, uφ and uH disappear.
We firstly introduce the Raviart-Thomas space [18]

Rp =
(
P0

p(Λ) ⊗ Pp−1(Λ)
)
×

(
Pp−1(Λ) ⊗ P0

p(Λ)
)
, (7)

where PN(Λ) is the space of polynomials with degree ≤ N and P0
p(Λ) denotes the space of

polynomials of degree p vanishing on ±1. The dimension of Rp is equal to 2(p − 1)p.
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The solution is approximated by uψ,p = (ux
ψ,p, u

y
ψ,p) in Rp with

ux
ψ,p(x, y) =

p−1∑
i=1

p∑
j=1

ux
ψ,p(ξi, ζ j) hi(x) h̃ j(y),

uyψ,p(x, y) =

p∑
i=1

p−1∑
j=1

uyψ,p(ζi, ξ j) h̃i(x) h j(y).

Let ΣGLL = {(ξi, ρi) | 0 ≤ i ≤ N} and ΣGL = {(ζi, ωi) | 1 ≤ i ≤ N} denote respectively the sets
of Gauss-Lobatto-Legendre and Gauss-Legendre quadrature nodes and weights (see [10]).
Likewise, hi(x) ∈ PN(Λ) and h̃ j(x) ∈ PN−1(Λ) are respectively the canonical Lagrange poly-
nomial interpolation basis built on ΣGLL and on ΣGL.

With this choice, the divergence of uψ,p is a polynomial of degree p − 1. Consequently,
if the divergence is orthogonal to all polynomial of Pp−1(Ω), it is necessarily equal to 0. This
point gives a new characterization for Xp = Rp ∩ X:

Xp =

{
uψ,p ∈ Rp

∣∣∣∣∣ ∂ux
ψ,p

∂x
+
∂uyψ,p
∂y

= 0
}
,

Xp =

{
uψ,p ∈ Rp

∣∣∣∣∣ ∫
Ω

(∂ux
ψ,p

∂x
+
∂uyψ,p
∂y

)
q dx = 0, ∀q ∈ Pp−1(Ω)

}
.

3.2. A basis for Xp

The first step consists in determining the dimension of the space Xp, that we denote by N1:

N1 = dim Rp − N2 = 2(p − 1)p − N2,

where N2 is the dimension of the range of the divergence operator which is also the dimension
of Pp−1(Ω) ∩ L2

0(Ω) and then equals to p2 − 1. We deduce that N1 = (p − 1)2.
Remark 1. One can also view N2 as the number of necessary and sufficient equations to
ensure ∇ · uψ,p ≡ 0:

∇ · uψ,p ∈ Pp−1(Ω) so N2 ≤ p2.

Due to the boundary conditions (here uψ,p · n = 0 on ∂Ω), there is a dependent equation in
the two dimensional case [5], since∫

Ω

∇ · uψ,pL0(x)L0(y)dx = 0, ∀uψ,p ∈ Rp.

Indeed, the polynomial L0(x)L0(y) is a spurious mode and it reduces the number of indepen-
dent equations from p2 to p2 − 1. Consequently, we require N2 = p2 − 1 test functions q to
ensure

∫
Ω
∇ · uψ,p q dx = 0.

Once the dimension is known, we describe now how to proceed to derive a divergence
free basis from any N1 given vectors of Rp
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D uψ,p = 0

2p(p − 1)

p2 − 1

Figure 1: Algebraic system.

D1 D2

u1
ψ,p

u2
ψ,p

= 0

N1 N2

N2

Figure 2: Decomposition of D.

D1 u1
ψ,p + D2 u2

ψ,p = 0

N1 N2

N2

Figure 3: Algebraic system.

3.2.1. Algebraic characterization of Xp

Let uψ,p be in Xp. The divergence of uψ,p is orthogonal to p2 − 1 polynomials of degree p− 1.
It is equivalent to saying that the divergence of uψ,p nullifies into p2 − 1 Gauss points. The
algebraic divergence equation writes D uψ,p = 0, where D is a rectangular matrix with p2 − 1
rows and 2p(p − 1) columns (see Figure 1).

One splits D into D1⊕D2 and uψ,p into u1
ψ,p⊕u2

ψ,p. The vector u1
ψ,p contains N1 = (p−1)2

values of uψ,p, whereas u2
ψ,p contains the N2 = p2 − 1 remaining values (see Figure 2). The

equation D uψ,p = 0 becomes D1 u1
ψ,p + D2 u2

ψ,p = 0, as shown in Figure 3.
Since, the p2 − 1 rows of D are independent, there exists at least one choice of matrix D2

invertible and the system leads to a relation between u2
ψ,p and u1

ψ,p:

u2
ψ,p = −D−1

2 D1u1
ψ,p. (8)

This equation is very important since it means that, if we have any part u1
ψ,p of uψ,p, we can

build the complementary u2
ψ,p such that divergence of uψ,p equals 0. This argument allows us

to build a basis of Xp.

3.2.2. Basis of Xp

The technique we use to project any vector of Rp on Xp is in the spirit of that published in [2]
and used to solve the Stokes problem.

We consider vp ∈ Rp. Our strategy consists in combining implicitly:

• A reduction from vp to v1
p.

• An extension from v1
p to wp =

(
v1

p, v2
p
)

such that∇·wp = 0 ensured by the multiplication
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of v1
p by the matrix

M =

[
IN1

−D−1
2 D1

]
.

The first block of M is the identity matrix of order N1. The second block contains N2
rows and N1 columns. It ensures the passage from v1

p to v2
p.

• For each vp ∈ Rp one associates a vector wp of Xp.

By consequent, our strategy for the construction of a basis of Xp consists in:

• Choosing N1 = (p − 1)2 vectors (vk
p)k=1..N1 of the basis of Rp.

• For each one of these N1 vectors, we consider its N1-size reduced part denoted by vk,1
p .

• We carry out the divergence-free extension (wk
p)k=1..N1 = (M vk,1

p )k=1..N1 .

The (wk
p)k=1..N1 family is a basis of Xp. Consequently, uψ,p ∈ Xp can be decomposed

according to uψ,p =
∑N1

k=1 αkwk
p and the discrete variational formulation similar to (6) writes:

Find uψ,p ∈ Xp such that
N1∑

k=1

(
wk

p,w
i
p
)

pαk =
(
up,wi

p
)

p.

This can be written as
Mα = F ,

with, for 1 ≤ i, k ≤ N1,

M ik =
(
wk

p,w
i
p
)

p,

F k =
(
u,wk

p
)

p.

Finally, this system is equivalent to

MT BM u1
ψ,p = MT B up,

where B refers to the classical mass matrix computed using the (hi × h̃ j) ⊗ (h̃i × h j) basis.

§4. Computation of the irrotational component

A similar strategy to that described previously is used to compute the irrotational component
uφ, so we will limit to the description of the outline and we will not give all the details of its
implementation.

Firstly, we introduce three spaces of functions:

H(rot,Ω) =
{
w ∈ (L2(Ω))2

∣∣∣ ∇ × w ∈ L2(Ω)
}
,

H0(rot,Ω) = {w ∈ H(rot,Ω) | w × n = 0 on ∂Ω} ,

Y = {u ∈ H0(rot,Ω) | ∇ × u = 0 in Ω} .
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The variational formulation of Problem (1) writes: Find uφ ∈ Y such that∫
Ω

uφ · v dx =

∫
Ω

u · v dx, ∀v ∈ Y.

For the discretization, we introduce the Nédélec space [15]

Np =
(
Pp−1(Λ) ⊗ P0

p(Λ)
)
×

(
P0

p(Λ) ⊗ Pp−1(Λ)
)
.

The solution is approximated by uφ,p = (ux
φ,p, u

y
φ,p) ∈ Yp = Np ∩ Y with

ux
φ,p(x, y) =

p∑
i=1

p−1∑
j=1

ux
φ,p(ζi, ξ j) h̃i(x) h j(y),

uyφ,p(x, y) =

p−1∑
i=1

p∑
j=1

uyφ,p(ξi, ζ j) hi(x) h̃ j(y).

As previously, we build a basis of Yp. With the same reasoning as for Xp and taking into
account the same spurious mode L0(x)L0(y), we determine the size of Yp equal to N1 =

(p − 1)2.
Then the constraint ∇ × uφ,p = 0 is written into N1 = (p − 1)2 Gauss points and gives

an algebraic equations Ruφ,p = 0. A splitting strategy for the matrix R into R1 ⊕ R2 and the
vector uφ,p into u1

φ,p ⊕ u2
φ,p gives R1u1

φ,p + R2u2
φ,p = 0 and finally u2

φ,p = −R−1
2 R1u1

φ,p.
Thanks to the (N1 + N2) × N1 matrix

N =

[
IN1

−R−1
2 R1

]
,

we can construct a basis of Yp.
Finally we obtain the system NT B̃N u1

φ,p = NT B̃ up, where B̃ refers to the classical mass
matrix computed using (h̃i × h j) ⊗ (hi × h̃ j) basis.

§5. Numerical results

To illustrate the efficiency of our approach for the Hodge Helmholtz decomposition, we have
made a numerical experiment in the square Ω = (−1,+1)2 with the case u = uψ + uφ + uH

corresponding to the following components:

uψ =
(
sin(πx) cos(πy),− sin(πy) cos(πx)

)
,

uφ =
(
sin(πy) cos(πx), sin(πx) cos(πy)

)
,

uH = (0.5,−1).

The component uψ,p is approximated as outlined in Section 3, while the irrotational part uφ,p
is computed as outlined in Section 4. Finally, uH is calculated by the relation uH = u−uψ−uφ.

Table 1 gives ‖∇ · uψ,p‖L2(Ω) and ‖∇ × uφ,p‖L2(Ω) as a function of the polynomial degree p.
As expected, the norms remain close to round-off independently of p.

Figure 4 exhibits on a semi-logarithmic scale the (L2(Ω))2-norm of the error for the three
components as a function of the polynomial degree p. We can observe a spectral decrease.

Figure 5 displays the Hodge Helmholtz decomposition of the vector u.
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p 4 8 12 16

‖∇ · uψ,p‖L2(Ω) 8.56 × 10−16 1.71 × 10−15 1.95 × 10−15 5.23 × 10−15

‖∇ × uφ,p‖L2(Ω) 4.90 × 10−16 2.18 × 10−15 3.87 × 10−15 5.09 × 10−15

Table 1: L2(Ω)-norm of the divergence and the rotational of solenoidal and irrotational com-
ponents.
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Ψ
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 -u
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L

2
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Φ

||
L

2
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Ψ,p

 -∇ × u
Ψ

||
L

2

Figure 4: (L2(Ω))2-norm of the error as a function of the polynomial degree p.

uψ

u φ u
H

u uψ

u φ u
H

uu uψuψ

u φ u
H

u uψ

u φ u
H

u

uφ uH

Figure 5: Decomposition of the vector and its three components.
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