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Abstract: Principal lattices are classical simplicial configurations of nodes suitable for
multivariate polynomial interpolation in n dimensions. A principal lattice can be described
as the set of intersection points of n+1 pencils of parallel hyperplanes. Using a projective
point of view, Lee and Phillips extended this situation to n+1 linear pencils of hyperplanes.
In two recent papers, two of us have introduced generalized principal lattices in the plane
using cubic pencils. In this paper we analyze the problem in n dimensions, considering
polynomial, exponential and trigonometric pencils, which can be combined in different ways
to obtain generalized principal lattices. We also consider the case of coincident pencils.
An error formula for generalized principal lattices is discussed.

1. Introduction

In contrast to the univariate case, the solvability (and uniqueness of the solution) of poly-
nomial interpolation problems in several variables depends not only on the number but
also on the geometry of the points where the function has to be interpolated. To be more
precise, let x1, . . . ,xN ∈ Rn be a finite set of distinct points. The classical Lagrange in-
terpolation problem consists of finding, for given data y1, . . . , yN ∈ R, a polynomial p such
that p

(
xj

)
= yj , j = 1, . . . , N . Without further constraints, this solution is not unique,

but becomes unique for n = 1 if the degree of the polynomial is restricted to be ≤ N − 1.
This fact is often stated as that the polynomial interpolation problem with respect to ar-
bitrary N points is poised or correct for the space Π1

N−1 of all (univariate) polynomials of
degree ≤ N − 1. In other words, the univariate polynomials of limited degree form a Haar
space. The natural extension would be to consider the space Πn

m of all polynomials of total
degree ≤ m in n ≥ 1 variables. The dimension of this space is N =

(
n+m

n

)
, but even if the

number of interpolation points coincides with the dimension, the Lagrange interpolation
problem with respect to x1, . . . ,xN need not be poised for Πn

m (just consider 3 points on
a straight line in R2 and Π2

1).
To overcome the problem of non–poised point configurations, there have been various

attempts to construct sets on
(
m+n

n

)
points with respect to which the Lagrange interpo-

lation problem is poised for Πn
m. Since the classical paper by Chung and Yao [5], these

constructions mainly consist of choosing the points as appropriate intersections of hyper-
planes. The paper [6] provides constructions exploiting this idea. For more references see
[7]. Recall that a hyperplane H ⊂ Rn is the zero set of an affine function, that is,

H = {x ∈ Rn : h(x) = 0} , h(x) = v · x + c, v ∈ Rn \ {0}, c ∈ R,

where the normal vector v and the constant c are unique up to normalization by a nonzero
constant. In this paper, we will give a method to choose these hyperplanes in such a way
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that their intersections yield a proper set of interpolation points, forming a structure that
generalizes what has been named principal lattices in the literature. The bivariate case
was analyzed in [3] and [4]. Our goal is to study the case of more than two variables, which
has turned out to be much more complex. We offer a variety of constructions here without
claiming to cover all possibilities.

In Section 2 we briefly review the concept of principal lattices and a generalization
of them. In Section 3 we present our method based on families of hyperplanes which
we relate to univariate Chebyshev systems in Section 4, while Section 5 describes how to
obtain lattices by combining different families. Finally, Section 6 deals with the error of
interpolation on such a lattice, i.e., with the deviation of the interpolant from a sufficiently
smooth function, showing that principal lattices admit a rather simple and geometrically
appealing error formula as well as error estimates with a rather “univariate” flair.

2. A generalization of principal lattices
We shall denote Nm = {0, 1, . . . ,m} ⊂ Z and

Sn
m := {α = (α0, . . . , αn) ∈ Nn+1

m : |α| = m}. (1)

Principal lattices in Rn are distributions of points of the form

x =
α0

m
a0 + · · ·+ αn

m
an, α ∈ Sn

m,

where ai ∈ Rn are the vertices of a simplex in Rn (see [8] for details on the history of
these sets). In the case of the standard simplex, this set of points is X = {α/m : α ∈ Sn

m}.
Let us define

h0
α0

(x) :=
m− α0

m
− (x1 + · · ·+ xn), α0 ∈ Nm,

hr
αr

(x) := xr −
αr

m
, αr ∈ Nm, r ∈ {1, . . . , n},

and use the symbol Hr
αr

for the hyperplane defined by the equation hr
αr

(x) = 0. The point
xα = α/m, α ∈ Sn

m, of X is the intersection of the hyperplanes Hr
αr

, r = 0, . . . , n.
Lee and Phillips [9] generalized this idea introducing lattices generated by n+1 pencils

of hyperplanes
{Hr

αr
: αr ∈ Nm}, r = 0, 1, . . . , n, (2)

in the projective space Pn(R). The lattice X is the set of points {xα : α ∈ Sn
m}, where xα

is the intersection of the hyperplanes Hr
αr

, r = 0, . . . , n. In the general case, a projective
coordinate system can be chosen so that the n + 1 families of m + 1 hyperplanes (2) have
equations hr

αr
(x) = 0 with

hn
α0

(x) := µm−α0xn − x0, α0 ∈ Nm,

hr
αr

(x) := µαrxr − xr−1, αr ∈ Nm, r ∈ {1, . . . , n},

where µ ∈ R\{−1, 0, 1}. It can be shown that X is the set of points xα with homogeneous
coordinates

(µα1+α2+···+αn , µα2+···+αn , . . . , µαn , 1),
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where α ∈ Sn
m. Principal lattices can be described as the limit case when µ → 1 (cf.

Section 4 of [9] and Section 2 of [3]). For more information on this kind of lattices see [11].
In [3, 4] a generalization of principal lattices in the plane was introduced in order to

describe principal lattices as well as the lattices generated by n + 1 pencils considered in
[9] and further examples generated by cubic pencils. While in [9] all the n+1 pencils must
be different, the constructions given in [3, 4] may use repeated pencils.

Let us state this definition in the n-dimensional case.

Definition 1. Let
Hr

i , i ∈ Nm, r = 0, . . . , n,

be n + 1 families of hyperplanes containing (n + 1)(m + 1) distinct hyperplanes such that
(i) The intersection of any set of n hyperplanes Hr1

i1
, . . . ,Hrn

in
, corresponding to distinct

indices r1, . . . , rn ∈ {0, 1, . . . , n}, consists of exactly one point.
(ii) we have that

α ∈ Sn
m =⇒

n⋂
r=0

Hr
αr
6= ∅. (3)

Under these assumptions the set of points

X := {xα : xα :=
n⋂

r=0

Hr
αr

, α = (α0, . . . , αn) ∈ Sn
m}, (4)

is a generalized principal lattice of degree m (GPLm) in Rn if it satisfies the additional
condition
(iii) for any α0, . . . , αn ∈ Nm we have that

n⋂
r=0

Hr
αr
∩X 6= ∅ =⇒ α ∈ Sn

m. (5)

Remark 2. Let us see that a node lying on one hyperplane of each family xα =
⋂n

r=0 Hr
αr
∩

X cannot lie on any other hyperplane Hr
βr

for some r ∈ {0, 1, . . . , n}, βr ∈ Nm. By (5),
we have that α ∈ Sn

m. If

xα ∈ H0
α0
∩ · · · ∩Hr−1

αr−1
∩Hr

βr
∩Hr+1

αr+1
∩ · · · ∩Hn

αn
∩X,

we may apply (5) to
(α0, . . . , αr−1, βr, αr+1, . . . , αn)

and derive that

α0 + · · ·+ αr−1 + βr + αr+1 + · · ·+ αn = m = α0 + · · ·+ αr−1 + αr + αr+1 + · · ·+ αn

and so, βr = αr.

Now, let us show that for any node xα, α ∈ Sn
m, there cannot exist any other index

β ∈ Sn
m such that xβ = xα. Take any r ∈ {0, . . . , n} and then xα ∈ Hr

βr
. By Remark 2, we
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have βr = αr. Since r is arbitrary, we have β = α. So the cardinality of the set of nodes
X defined in (4) is #Sn

m =
(
m+n

n

)
.

Let us note that, in contrast to [9], we do not impose that any family of hyperplanes
is contained in a linear pencil. We shall describe constructions of GPLm sets where each
family is not contained in a linear pencil.

Generalized principal lattices satisfy the geometric characterization of Chung and Yao
[5]. This property characterizes sets of

(
m+n

n

)
nodes in the plane which are unisolvent for

the Lagrange interpolation problem in Πn
m and whose Lagrange polynomials are products

of linear factors.

Definition 3. A set of
(
m+n

n

)
nodes X ⊆ Rn satisfies the geometric characterization GCm

if for each node x ∈ X, there exist m hyperplanes containing all nodes in X \ {x} but not
x.

Proposition 4. Let X be a GPLm set. Then X satisfies GCm and hence it is a unisolvent
set for the Lagrange interpolation problem in Πn

m. A Lagrange formula for the interpolant
Lmf of a function f ∈ C(Rn) is given by

Lmf =
∑

α∈Sn
m

f (xα)
n∏

r=0

αr−1∏
i=0

hr
i

hr
i (xα)

, (6)

where hr
i (x) = 0 is the equation of the hyperplane Hr

i , i ∈ Nm, r = 0, . . . , n.

Proof: Given α ∈ Sn
m, the m hyperplanes

Hr
i , 0 ≤ i ≤ αr − 1, r = 0, . . . , n, (7)

contain all nodes of X \ {xα} but not xα.
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3. Construction of generalized principal lattices
In the bivariate case [3, 4], constructions of generalized principal lattices were obtained
parameterizing the families of lines by elements of a group G. The groups arising in
these constructions were the additive group of real numbers R, R × Zk, where Zk =
{0, 1, . . . , k−1} is the additive group of integers modulo k, and quotient groups like R/2πZ.

In order to extend the constructions to more than two variables, let us assume that
we have n + 1 families of hyperplanes parameterized depending on a parameter ω ∈ G,
where G is an abelian group, that is,

{Hr(ω) : ω ∈ G}, r = 0, . . . , n,

and assume that the following properties hold:

(P1) The intersection of any n distinct hyperplanes, Hr1(ωr1), . . . , Hrn(ωrn
), corresponding

to distinct indices r1, . . . , rn ∈ {0, 1, . . . , n}, consists of exactly one point.

(P2) Let ω0, . . . , ωn ∈ G be such that the hyperplanes Hr(ωr), r = 0, . . . , n, are distinct.
Then

⋂n
r=0 Hr(ωr) 6= ∅ if and only if ω0 + · · ·+ ωn = 0.

It is important to mention that we need not require the families Hr(ω) to be distinct.
In fact, the examples in Section 4 will even use coincident families

H0(ω) = H1(ω) = · · · = Hn(ω), ω ∈ G.

The following proposition shows how to construct generalized principal lattices.

Proposition 5. Let Hr(ω), ω ∈ G, r = 0, . . . , n be n + 1 families of hyperplanes such
that (P1) and (P2) hold. Let δ ∈ G, ω0,r ∈ G, r = 0, . . . , n, be such that

ω0,0 + ω0,1 + · · ·+ ω0,n + mδ = 0. (8)

If the (n + 1)(m + 1) hyperplanes

Hr
i := Hr(ωi,r), ωi,r = ω0,r + iδ, i ∈ Nm, r = 0, . . . , n,

are distinct, then they define a GPLm set in Rn.

Proof: Since the hyperplanes are distinct, property (i) of Definition 1 clearly follows from
(P1). Given any α ∈ Sn

m, the hyperplanes Hr
αr

= H(ω0,r + αrδ) correspond to parameter
values ω0,r + αrδ. By (8), we have

n∑
r=0

(ω0,r +αrδ) = ω0,0+ω0,1+· · ·+ω0,n+(α0+· · ·+αn)δ = ω0,0+ω0,1+· · ·+ω0,n+mδ = 0

and deduce from (P2), that
⋂n

r=0 Hr
αr
6= ∅ and so (ii) of Definition 1 follows. Now we can

define X as in (4) and it only remains to check (iii) of Definition 1. Let us assume that
for αr ∈ Nm, r = 0, . . . , n,

⋂n
r=0 Hr

αr
∩ X 6= ∅. By (4), the intersection point is a node
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xβ with β ∈ Sn
m. So xβ =

⋂n
r=0 Hr

βr
=

⋂n
r=0 Hr

αr
∩ X. Let us show that αr = βr for all

r ∈ {0, 1, . . . , n}. Taking into account that

xβ ∈ H0
β0
∩ · · · ∩Hr−1

βr−1
∩Hr

αr
∩Hr+1

βr+1
∩ · · · ∩Hn

βn
,

we have by (P2)

ω0,0 + ω0,1 + · · ·+ ω0,n + (β0 + · · ·+ βr−1 + αr + βr+1 + · · ·+ βn)δ = 0,

ω0,0 + ω0,1 + · · ·+ ω0,n + (β0 + · · ·+ βr−1 + βr + βr+1 + · · ·+ βn)δ = 0,

and we obtain
(αr − βr)δ = 0.

Since the hyperplanes Hr
i , i ∈ Nm, are distinct, we must have that ωr,0 + iδ are distinct

group elements and therefore iδ 6= 0 for all i ∈ Z, 0 < |i| ≤ m. So, we have that αr = βr

for any r ∈ {0, 1, . . . , n}. Therefore α = β ∈ Sn
m.

In order to analyze the families of hyperplanes Hr(ω), we need to consider their
equations

f1,r(ω)x1 + · · ·+ fn,r(ω)xn + f0,r(ω) = 0.

The incidence properties are invariant under projective transformations and therefore we
shall rather use homogeneous coordinates to express the equations in the form

hr(x0, . . . , xn;ω) = 0,

where

hr(x0, . . . , xn;ω) =
n∑

j=0

fj,r(ω)xj .

We shall omit the dependence on the variables x0, . . . , xn and also write Hr(ω) instead
of hr(x0, . . . , xn;ω). This notational convention means that we do not make a distinc-
tion between the hyperplane Hr(ω) and the linear function hr(x0, . . . , xn;ω) such that
hr(1, x1, . . . , xn;ω) = 0 is the equation defining Hr(ω).

We next show that principal lattices are generated by families of hyperplanes satisfying
(P1) and (P2). To that end, we choose G = R and

H0(t) = tx0 − (x1 + · · ·+ xn), Hr(t) = tx0 + xr, r = 1, . . . , n.

The intersection of Hr(tr), r = 0, . . . , n, gives rise to a system of equations

A(x0, . . . , xn)T = 0,

whose coefficient matrix A is 
t0 −1 −1 · · · −1
t1 1 0 · · · 0

t2 0 1
. . .

...
...

...
. . . . . . 0

tn 0 · · · 0 1

 . (9)

6



Since any n rows of A are independent, (P1) holds. The n + 1 hyperplanes are concurrent
if and only if det A = 0. Since detA = t0 + · · ·+ tn, (P2) holds.

Let us analyze the Lee and Phillips construction of lattices generated by n+1 pencils.
We choose G = R× Z2 and

Hr(t, s) = xr − (−1)s exp(t)xr+1, t ∈ R, s ∈ Z2, r ∈ Zn.

Here by r ∈ Zn we mean that the indexing is cyclic and that xn+1 denotes x0. The
intersection of Hr(tr, sr), r = 0, . . . , n, corresponds to nontrivial solutions of the system
A(x0, . . . , xn)T = 0, where A is

1 −µ0 0 · · · 0
0 1 −µ1 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 −µn−1

−µn 0 · · · 0 1

 , (10)

with µi = (−1)si exp(ti). Since any n rows of A are independent, (P1) holds. The hyper-
planes Hr(tr) are concurrent if and only if 0 = det A = 1− µ0 · · ·µn, that is,

(−1)s0+···+sn exp(t0 + · · ·+ tn) = 1,

which is equivalent to s0 + · · ·+ sn = 0 and t0 + · · ·+ tn = 0. So (P2) is also satisfied.

4. Generalized principal lattices obtained from a single family

In this section we will provide a general construction process for an arbitrary number of
variables with respect to the three additive groups R, R× Z2 and R/2πZ. In the sequel,
G will always stand for one of these three groups which are also locally compact Hausdorff
spaces, so that the tools from Approximation Theory we are going to use in this section
are well defined and accessible, cf. [10].

The goal is to find functions fj : G → R, j = 0, . . . , n, such that, for ω0, . . . , ωn ∈ G
distinct,

det

 f0 (ω0) . . . fn (ω0)
...

. . .
...

f0 (ωn) . . . fn (ωn)

 = 0 ⇐⇒
n∑

j=0

ωj = 0, (11)

according to the concurrency condition (P2). Clearly, such conditions are very closely
related to the concept of Chebyshev spaces. Recall that a k-dimensional space F of functions
with basis say f1, . . . , fk is called a Chebyshev space (and the basis is called a Haar system)
on a set X if for any choice of distinct points xi ∈ X, i = 1, . . . , k, one has that

Ψ (x1, . . . , xk) := det (fj (xi) : i, j = 1, . . . , k) 6= 0.

The following simple lemma is crucial to our construction.
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Lemma 6. Let f0, . . . , fn, fn+1 be a Haar system on G and f =
∑n+1

j=0 αjfj a nonzero
function, vanishing on distinct ω0, . . . , ωn ∈ G:

f(ω0) = · · · = f(ωn) = 0.

Then

det

 f0 (ω0) . . . fn (ω0)
...

. . .
...

f0 (ωn) . . . fn (ωn)

 = 0, (12)

if and only if αn+1 = 0, that is, f is a linear combination of f0, . . . , fn.

Proof: Let ω ∈ G\{ω0, . . . , ωn}. The coefficients of f with respect to the basis f0, . . . , fn+1

satisfy 
f0(ω0) . . . fn(ω0) fn+1(ω0)

...
. . .

...
...

f0(ωn) . . . fn(ωn) fn+1(ωn)
f0(ω) . . . fn(ω) fn+1(ω)




α0
...

αn

αn+1

 =


0
...
0

f(ω)

 .

Observe that f(ω) 6= 0 because f is a nonzero function vanishing on ω0, . . . , ωn, and
(f0, . . . , fn+1) is a Haar system. By Cramer’s rule, we have

αn+1 =
f(ω)

Ψ(ω0, . . . , ωn, ω)
det

 f0 (ω0) . . . fn (ω0)
...

. . .
...

f0 (ωn) . . . fn (ωn)

 ,

where

Ψ(ω0, . . . , ωn, ω) = det


f0(ω0) . . . fn(ω0) fn+1(ω0)

...
. . .

...
...

f0(ωn) . . . fn(ωn) fn+1(ωn)
f0(ω) . . . fn(ω) fn+1(ω)

 .

Since f(ω) and Ψ(ω0, . . . , ωn, ω) are nonzero we have that αn+1 = 0 if and only if (12)
holds.

Lemma 6 is the key to finding functions f0, . . . , fn such that (11) holds in order to
construct pencils of hyperplanes satisfying properties (P1) and (P2).

Proposition 7. Let f0, . . . , fn, fn+1 be a Haar system on G. Assume that for any distinct
ω0, . . . , ωn ∈ G, we can find a nonzero function vanishing on ω0, . . . , ωn,

f(ω;ω0, . . . , ωn) =
n+1∑
j=0

αj(ω0, . . . , ωn)fj(ω),

with
αn+1(ω0, . . . , ωn) = ϕ(ω0 + · · ·+ ωn),
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where ϕ : G → R is a function such that ϕ(ω) = 0 if and only if ω = 0. Let us define the
pencil of hyperplanes

H(ω) =
n∑

j=0

fj(ω) xj , ω ∈ G.

Then we have
(a) Hyperplanes corresponding to distinct parameter values are distinct, that is, H(ω1)

6= H(ω2), for any ω1 6= ω2 in G.
(b) The coincident pencils Hr(ω) := H(ω), r = 0, . . . , n, satisfy (P1) and (P2).
(c) For any ω0,0, ω0,1, . . . , ω0,n, δ ∈ G with ω0,0 +ω0,1 + · · ·+ω0,n +mδ = 0 and such that

the (n + 1)(m + 1) values

ωi,r = ω0,r + iδ, i ∈ Nm, r = 0, . . . n,

are all distinct, the families of hyperplanes Hr
i = H(ωi,r) define a GPLm set.

Proof: (a) and (b) If ω0, . . . , ωn are distinct, then, by Lemma 6, the matrix

M(ω0, . . . , ωn) :=

 f0 (ω0) . . . fn (ω0)
...

. . .
...

f0 (ωn) . . . fn (ωn)


has zero determinant if and only if ϕ(ω0 + · · ·+ ωn) = 0, that is, ω0 + · · ·+ ωn = 0.

For any distinct ω0, . . . , ωi−1, ωi+1, . . . , ωn ∈ G, let us define

ωi = −(ω0 + · · ·+ ωi−1)− (ωi+1 + · · ·+ ωn)

and consider any ω ∈ G \ {ω0, . . . , ωn}. Then the matrix

M(ω0, . . . , ωi−1, ω, ωi+1, . . . , ωn) =



f0 (ω0) . . . fn (ω0)
...

. . .
...

f0 (ωi−1) . . . fn (ωi−1)
f0 (ω) . . . fn (ω)

f0 (ωi+1) . . . fn (ωi+1)
...

. . .
...

f0 (ωn) . . . fn (ωn)


has nonzero determinant because

ϕ(ω0 + . . . + ωi−1 + ω + ωi+1 + · · ·+ ωn) = ϕ(ω − ωi) 6= 0.

Therefore any n rows of M(ω0, . . . , ωi−1, ω, ωi+1, . . . , ωn) are linearly independent and the
intersection of the n hyperplanes

⋂
r 6=i H(ωr) is exactly one point. Since this can be

done for any i ∈ {0, . . . , n}, the hyperplanes H(ω0), . . . ,H(ωn), corresponding to distinct
parameters ω0, . . . , ωn, are distinct and moreover (P1) holds. Finally, (P2) follows from
the fact that, for any choice of distinct ω0, . . . , ωn, detM(ω0, . . . , ωn) = 0 if and only if
ω0 + · · ·+ ωn = 0.

Part (c) of the proposition follows from (a), (b) and Proposition 5.

Now we are ready to show some relevant examples of the above construction of GPLm

sets.
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Example 1. For the group G = R, we choose the Haar system defined by fj(t) = tj ,
j = 0, . . . , n − 1, fn(t) = tn+1 and fn+1(t) = tn. For any selection of distinct points
t0, . . . , tn, the coefficient of the polynomial

f(t) = (t− t0) · · · (t− tn) =
n+1∑
j=0

αjfj(t),

in tn is αn+1 = −(t0 + · · ·+ tn) and therefore we find that the pencil

H(t) =
n−1∑
j=0

tj xj + tn+1 xn, t ∈ R, (13)

satisfies the hypotheses of Proposition 7.

Example 2. For the group G = R × Z2 we write ω = (t, s) ∈ R × Z2 and apply the
transformation µ := (−1)s exp t ∈ R∗ := R \ {0}. Then we use the Haar system on the
multiplicative group R∗

fj(µ) = µj , j = 0, . . . , n− 1, fn(µ) = µn − (−1)nµ−1, fn+1(µ) = µ−1

and define for distinct µ0, . . . , µn in R∗

f(µ) = µ−1
n∏

j=0

(
1− µ

µj

)
=

n+1∑
j=0

αjfj(µ).

The coefficient with respect to fn+1 is then computed to be αn+1 = 1−µ−1
0 · · ·µ−1

n . Then
αn+1 = 0 if and only if µ0 · · ·µn = 1, that is, s0 + · · · + sn = 0 and t0 + · · · + tn = 0.
Therefore the pencil

H(t, s) =
n−1∑
j=0

(−1)js exp(jt)xj + [(−1)ns exp(nt)− (−1)n−s exp(−t)]xn, t ∈ R, s ∈ Z2

(14)
satisfies the hypotheses of Proposition 7.

Example 3. In the last case G = R/2πZ, the function f to be considered will be

f(t) =
n∏

j=0

sin
t− tj

2
=

n+1∑
j=0

αjfj(t), (15)

but the Haar system (f0, . . . , fn+1) will depend on n. If n is odd, n = 2k + 1, we set
f0(t) = 1, f2j−1(t) = cos(jt) and f2j(t) = sin(jt), j = 1, . . . , k + 1, while for the even case
n = 2k we choose the functions f2j(t) = sin (2j+1)t

2 and f2j+1(t) = cos (2j+1)t
2 , j = 0, . . . , k.

10



In order to identify the coefficient αn+1 in both cases, we rewrite (15) in terms of complex
exponentials and expand it, using the abbreviation T = t0 + · · ·+ tn, into

(2i)n+1 f(t) =
n∏

j=0

(
ei(t−tj)/2 − e−i(t−tj)/2

)
= ei((n+1)t−T )/2 + (−1)n+1e−i((n+1)t−T )/2

−
n∑

j=0

(
ei((n−1)t−T+2tj)/2 + (−1)n+1e−i((n−1)t−T+2tj)/2

)
+ · · ·

(16)

For n = 2k + 1, (16) yields

f(t) = (−1)(n+1)/22−n

[
cos

( (n + 1)t
2

− T

2

)
−

n∑
j=0

cos
( (n− 1)t

2
− T − 2tj

2

)
+ · · ·

]
= (−1)k+12−(2k+1)

[
cos((k + 1)t) cos

T

2
+ sin((k + 1)t) sin

T

2
+ · · ·

]
.

The coefficient αn+1 is

α2k+2 = (−1)k+12−(2k+1) sin
T

2
and vanishes if and only if T ∈ 2πZ. Therefore the pencil

H(t) = x0 +
k+1∑
j=1

x2j−1 cos(jt) +
k∑

j=1

x2j sin(jt)

satisfies the hypotheses of Proposition 7.

If n = 2k, on the other hand, the expansion (16) becomes

f(t) = (−1)n/22−n

sin
( (n + 1)t

2
− T

2

)
−

n∑
j=0

sin
( (n− 1)t

2
− T − 2tj

2

)
+ · · ·


= (−1)k2−2k

[
sin

(2k + 1)t
2

cos
T

2
− cos

(2k + 1)t
2

sin
T

2
+ · · ·

]
.

The coefficient αn+1 is

α2k+1 = (−1)k+12−2k sin
T

2
and therefore

H(t) =
k∑

j=0

x2j sin
(2j + 1)t

2
+

k−1∑
j=0

x2j+1 cos
(2j + 1)t

2

satisfies the hypotheses of Proposition 7.

11



Remark 8. Changes of variables in the projective space lead to other families of hyper-
planes generating GPLm sets, which are projective images of the sets defined above. In
the first example these families are of the form

H(t) = f0(t)x0 + · · ·+ fn(t)xn,

where f0, . . . , fn form a basis of the polynomial space generated by 1, t, . . . , tn−1, tn+1. In
the second example they can be written as

H(t, s) = f0((−1)s exp(t))x0 + · · ·+ fn((−1)s exp(t))xn,

where f0, . . . , fn form a basis of the space of Laurent polynomials generated by 1, µ, . . . ,
µn−1, µn − (−1)nµ−1. Finally, in the third example a general form of the pencil is

H(t) = f0(t)x0 + · · ·+ fn(t)xn,

where f0, . . . , fn form a basis of the subspace of trigonometric polynomials generated by
1, cos t, sin t, . . . , cos((n/2 − 1)t), sin((n/2 − 1)t), cos(nt/2), if n is even and of the space
generated by sin(t/2), cos(t/2), . . . , sin((n− 2)t/2), cos((n− 2)t/2t), sin(nt/2), if n is odd.

5. Generalized principal lattices combining different families

In the preceding section we have shown how to check conditions (P1) and (P2) for gen-
eralized principal lattices, finding systems of functions satisfying (11). However, we have
used Lemma 6 to avoid the explicit computation of the determinant.

In this section we want to combine the examples of Section 4 in order to generate
new examples. In this case, it is not so easy to apply Lemma 6. A general method will be
provided for examples 1 and 2 and a particular instance will be shown for Example 3. We
shall apply Proposition 5 to check the validity of our constructions.

We introduce the notation

V (g; t0, . . . , tn) :=


1 t0 · · · tn−1

0 g(t0)
1 t1 · · · tn−1

1 g(t1)
1 t2 · · · tn−1

2 g(t2)
...

...
...

...
1 tn · · · tn−1

n g(tn)


and, for the usual Vandermonde matrix, we write

V (t0, . . . , tn) := V ((·)n; t0, . . . , tn).

The divided difference [t0, . . . , tn]g is the coefficient cn of tn in the interpolating poly-
nomial p(t) = c0 + c1t + · · ·+ cntn of g at t0, . . . , tn. Observe that

(c0, . . . , cn)T = V (t0, . . . , tn)−1(g(t0), . . . , g(tn))T

12



for distinct t0, . . . , tn. So, it follows that

V (t0, . . . , tn)−1V (g; t0, . . . , tn) =


1 0 · · · 0 ∗
0 1 · · · 0 ∗
...

...
. . .

...
...

0 0 · · · 1 ∗
0 0 · · · 0 [t0, . . . , tn]g

 . (17)

In Example 1, we know that the polynomial of degree at most n interpolating g(t) =
tn+1 at t0, . . . , tn is

tn+1 − (t− t0) · · · (t− tn) = (t0 + · · ·+ tn)tn + lower degree terms

and so
[t0, . . . , tn]g = t0 + · · ·+ tn, for g(t) = tn+1. (18)

In Example 2, the polynomial of degree not greater that n interpolating g(µ) =
µn − (−1)nµ−1 at µ0, . . . , µn is

µn− (−1)nµ−1− (µ−1
0 µ−1) · · · (µ−1

n µ−1)µ−1 = (1−µ−1
0 · · ·µ−1

n )µn + lower degree terms

and so
[µ0, . . . , µn]g = 1− (µ0 · · ·µn)−1, for g(µ) = µn − (−1)nµ−1. (19)

Next, we point out how to combine several families of Example 1. We choose p different
families (13) of degrees k1, . . . , kp, with k1 + · · · + kp = n + 1. Let us partition the set of
indices I := {0, 1, . . . , n}, into p subsets I =

⋃p
l=1 Il, #Il = kl, l = 1, . . . , p,

Il := {r ∈ I : k1 + · · ·+ kl−1 ≤ r < k1 + · · ·+ kl}. (20)

We take

Hr(t) =
k1−2∑
j=0

tjxj + tk1xn−p+1 − tk1−1
n∑

j=n−p+2

xj (21)

for r ∈ I1 and

Hr(t) =
kl−2∑
j=0

tjxk1+···+kl−1−(l−1)+j + tklxn−p+1 + tkl−1xn−p+l (22)

for r ∈ Il, l = 2, . . . , p.
Let us apply Proposition 5 to construct generalized principal lattices. In order to check

(P1) and (P2) we need to deal with the coefficient matrix of the linear system Hr(tr) = 0,
r = 0, . . . , n,

A =


A11 0 · · · 0 B1 C1

0 A22
. . .

... B2 C2
...

. . . . . . 0
...

...
0 · · · 0 App Bp Cp

 .
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In the above formula
All := (tj−1

i )i∈Il;j∈{1,...,kl−1}

is the kl × (kl − 1) matrix formed by the kl − 1 first columns of the Vandermonde matrix
V (ti; i ∈ Il). The matrix

Bl := (tkl
i )i∈Il

,

is a kl × 1 matrix. The k1 × (p − 1) matrix C1 is formed by p − 1 repeated columns
(−tk1−1

i )i∈I1 and the kl× (p−1) matrix Cl, l = 2, . . . , p, is formed by zero columns, except
the (l − 1)-th column which is of the form (tkl−1

i )i∈Il
. Observe that any nonzero column

of any Cl is the last column of the Vandermonde matrix V (ti; i ∈ Il).
Let us show that

det A = (−1)σ(t0 + · · ·+ tn)
p∏

l=1

∏
i>j∈Il

(ti − tj), σ ∈ {0, 1} (23)

where σ depends only on k1, . . . , kp. If, for some l ∈ {1, . . . , p}, we have ti = tj , i, j ∈ Il,
then two rows of A are equal and det A = 0 and formula (23) holds. Otherwise the matrix
W := diag(V1, . . . , Vp), where Vl := V (ti; i ∈ Il), is nonsingular and

E := W−1A =


V −1

1 A11 0 · · · 0 V −1
1 B1 V −1

1 C1

0 V −1
2 A22

. . .
... V −1

2 B2 V −1
2 C2

...
. . . . . . 0

...
...

0 · · · 0 V −1
p App V −1

p Bp V −1
p Cp

 .

Then

det A = det W detE = det E

p∏
l=1

detVl = detE

p∏
l=1

∏
i>j∈Il

(ti − tj). (24)

Let us compute det E. Observe that V −1
l All is the kl × (kl − 1) matrix formed by the first

kl − 1 columns of the identity. Expanding the determinant of E by the first n + 1 − p
columns we get that det E coincides up to a sign (which only depends on the size of the
blocks) with the determinant of the p× p submatrix Ê formed by the last p columns and
the last row of each block

Ê := (ek1+···+kl,n−p+j)l,j∈{1,...,p}. (25)

Taking into account (17) and (18) we have

êl,1 = ek1+···+kl,n−p+1 = [ti; i ∈ Il](·)kl =
∑
i∈Il

ti, l = 1, . . . , p.

Similarly, we can deduce that

ê1,j = ek1,n−p+j = −[ti; i ∈ I1](·)k1−1 = −1, j = 2, . . . , p.

14



We also have that

êl,j = ek1+···+kl,j = 0, j, l = 2, . . . , n, j 6= l,

because it corresponds to a zero column of V −1
l Cl. Finally

êl,l = ek1+···+kl,l = [ti; i ∈ Il](·)kl−1 = 1, l = 2, . . . , n.

So, we have that

Ê =



∑
i∈I1

ti −1 −1 · · · −1∑
i∈I2

ti 1 0 · · · 0∑
i∈I3

ti 0 1
. . .

...
...

...
. . . . . . 0∑

i∈Ip
ti 0 · · · 0 1


is a matrix analogous to (9) and has determinant t0 + t1 + · · ·+ tn. This observation allows
us to obtain det E = (−1)σ(t0 + · · ·+ tn), σ ∈ {0, 1}, and, by (24), formula (23) holds.

Now, let us verify (P1) and (P2). Take t0, . . . , tn ∈ R such that

ti, i ∈ Il are distinct, (26)

for all l ∈ {1, . . . , p}. For any r ∈ Il and l ∈ {1, . . . , p}, we take t ∈ R such that

t 6= ti, ∀i ∈ Il \ {r}, t 6= −
∑

i∈Il,i 6=r

ti.

The coefficient matrix of the system

Hi(ti) = 0, i ∈ {0, 1, . . . , n}, i 6= r

Hr(t) = 0,

has nonzero determinant. Therefore, the set of solutions of the homogeneous system of
equations Hi(ti) = 0, i ∈ {0, 1, . . . , n}, i 6= r, is a one-dimensional vector subspace of
Rn+1, that is, the hyperplanes Hi(ti), i ∈ {0, 1, . . . , n}, i 6= r, are distinct and intersect
exactly at one point. So (P1) holds. Finally, (P2) follows from (23), which implies that,
the determinant of the matrix of the system Hr(ti) = 0, r = 0, . . . , n, is zero if and only
if t0 + · · · + tn = 0. According to Proposition 5, we can define a generalized principal
lattice taking, t0,0, . . . , t0,n and t in R such that

∑n
r=0 t0,r + mt = 0 and the hyperplanes

Hr
i = Hr(t0,r + it), i ∈ Nm, r ∈ {0, . . . , n}. In order to have distinct hyperplanes we only

need that, for each l ∈ {1, . . . , p}, the values

t0,r + it, i ∈ Nm, r ∈ Il,

are distinct.
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Now we want to combine several families of Example 2. We choose p different families
(14) corresponding to spaces of Laurent polynomials 〈µ−1, 1, . . . , µkl−1〉, l = 1, . . . , p, where
k1 + · · · + kp = n + 1. Let us partition the set of indices I = {0, 1, . . . , n}, in p subsets
I =

⋃p
l=1 Il, #Il = kl, l = 1, . . . , p, as in (20). For t ∈ R, s ∈ Z2, we define the families

Hr(t, s) :=
kl−2∑
j=0

(−1)js exp(jt)xk1+···+kl−1−(l−1)+j + (−1)(kl−1)s exp((kl − 1)t)xn−p+l+

(−1)kl−s exp(−t)xn−p+l+1, r ∈ Il, l = 1, . . . , p− 1,

Hr(t, s) :=
kp−2∑
j=0

(−1)js exp(jt)xk1+···+kp−1−(p−1)+j + (−1)(kp−1)s exp((kp − 1)t)xn+

(−1)kp−s exp(−t)xn−p+1, r ∈ Ip.

(27)
The coefficient matrix of the linear system Hr(tr, sr) = 0, r = 0, . . . , n, can be written in
the form

A =


A11 0 · · · 0 F1

0 A22
. . .

... F2
...

. . . . . . 0
...

0 · · · 0 App Fp

 .

Let us describe the nonzero blocks of this matrix in terms of µr = (−1)sr exp(tr), r =
0, . . . , n. The block

All := (µj−1
i )i∈Il;j∈{1,...,kl−2}

is the kl × (kl − 1) matrix formed by the kl − 1 first columns of the Vandermonde matrix
V (µi; i ∈ Il). The block Fl is the kl×p matrix formed by zero columns, except for the l-th
column, which is of the form (µkl−1

i )i∈Il
, and the (l + 1)-th column, which is of the form

((−1)klµ−1
i )i∈Il

for l = 1, . . . , p−1. In the case l = p the role of the (l+1)-th column of Fl

is played by the first column, that is, all columns of Fp are zero except for the first column
which is of the form ((−1)kpµ−1

i )i∈Ip and the last column which is of the form (µkp−1
i )i∈Ip .

Let us show that

detA = (−1)σ(1− µ−1
0 · · ·µ−1

n )
p∏

l=1

∏
i>j∈Il

(µi − µj), σ ∈ {0, 1}, (28)

where σ depends only on k1, . . . , kp. As in the preceding example, we define

E := W−1A =


V −1

1 A11 0 · · · 0 V −1
1 F1

0 V −1
2 A22

. . .
... V −1

2 F2

...
. . . . . . 0

...
0 · · · 0 V −1

p App V −1
p Fp

 ,
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where W := diag(V1, . . . , Vp), Vl := V (µi; i ∈ Il). Then

det A = detE

p∏
l=1

∏
i>j∈Il

(µi − µj).

The determinant of E coincides up to a sign with the determinant of the p× p submatrix
(25) formed by the last p columns and the last row of each block. All elements of Ê are
zero (because they correspond to zero columns of A) except for

êll = [µi; i ∈ Il](·)kl−1 = 1, l = 1, . . . , p,

êl,l+1 = (−1)kl [µi; i ∈ Il](·)−1 = −
∏
i∈Il

µ−1
i , l = 1, . . . , p− 1,

and
êp,1 = (−1)kp [µi; i ∈ Ip](·)−1 = −

∏
i∈Ip

µ−1
i ,

that is

Ê =



1 −
∏

i∈I1
µ−1

i 0 · · · 0

0 1 −
∏

i∈I2
µ−1

i

. . .
...

... 0
. . . . . . 0

0
...

. . . 1 −
∏

i∈Ip−1
µ−1

i

−
∏

i∈Ip
µ−1

i 0 · · · 0 1


.

The matrix Ê is analogous to the matrix (10) and so we obtain

detE = (−1)σ(1− (µ0 · · ·µn)−1),

where σ ∈ {0, 1}. As in the previous example, it is straightforward to check (P1) and (P2)
for the families of hyperplanes defined by (27). The construction of generalized principal
lattices using Proposition 5 is completely analogous. We take t0,0, . . . , t0,n and t in R,
s0,0, . . . , s0,n and s in Z2 such that

∑n
r=0 t0,r + mt = 0,

∑n
r=0 s0,r + ms = 0 and choose

the hyperplanes Hr
i = Hr(t0,r + it, s0,r + is), i ∈ Nm, r ∈ {0, . . . , n}. In order to have

distinct hyperplanes we only need that for each l ∈ {1, . . . , p},

(t0,r + it, s0,r + is) i ∈ Nm, r ∈ Il,

are distinct group elements.
Let us finish this section providing a three dimensional example, combining two fam-

ilies with G = R/2πZ

H1(t) = H2(t) = cos(t)x0 + sin(t)x1 + x2,

H3(t) = H4(t) = cos(t)x0 − sin(t)x1 + x3.
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The intersection of Hr(tr) = 0, r = 0, 1, 2, 3, leads to a system with coefficient matrix

A =


cos(t0) sin(t0) 1 0
cos(t1) sin(t1) 1 0
cos(t2) − sin(t2) 0 1
cos(t3) − sin(t3) 0 1

 .

We have

detA = −det
(

cos(t1)− cos(t0) sin(t1)− sin(t0)
cos(t3)− cos(t2) − sin(t3) + sin(t2)

)
= −4 sin((t1 − t0)/2) sin((t3 − t2)/2) det

(
− sin((t0 + t1)/2) cos((t0 + t1)/2)
− sin((t2 + t3)/2) − cos((t2 + t3)/2)

)
= −4 sin((t1 − t0)/2) sin((t3 − t2)/2) sin((t0 + t1 + t2 + t3)/2).

So, if t1−t0, t3−t2 /∈ 2πZ, the determinant of A vanishes if and only if t0+t1+t2+t3 ∈ 2πZ.
Hence (P1) and (P2) hold.

In contrast with the previous examples of this section, we have not been able to derive
a general construction with parameterizations using trigonometric functions of the families
of hyperplanes. Our first attempts indicate that there may be a restriction on the sizes of
the blocks k1, . . . , kp.

6. Remainder formulas for principal lattices

In this section, we will derive some general facts on the error of interpolation, i.e., on the
function f − Lmf , provided that f is a sufficiently smooth function. It will turn out that
these formulas are in accordance with the geometric nature of the interpolation nodes in
GPLm sets. To that end, we first note that condition (i) of Definition 1 ensures that the
points

xα :=
n⋂

j=1

Hj
αj
∈ Rn, α ∈ Nn

m, |α| ≤ m (29)

indexed by the dehomogeneized multiindex α = (α1, . . . , αn) are well–defined. Observe
that there is no loss of information with this change of notation because we can recover
α0 by α0 = m− |α|. For |α| ≤ m we also define the polynomials

pα :=
n∏

j=1

αj−1∏
k=0

hj
k

hj
k (xα)

=:
φα

φα (xα)
(30)

of total degree |α| ≤ m. We observe that φα(xα) 6= 0 because the hyperplanes (7) do not
contain xα. We also introduce the partial ordering “≤” on Nn

m, writing α ≤ β iff αj ≤ βj

for j = 1, . . . , n, and α < β iff α ≤ β and α 6= β.
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Lemma 9. The polynomials pα and the points xα, |α| ≤ m, satisfy the following proper-
ties:

(i) If pα

(
xβ

)
6= 0, then α ≤ β.

(ii) pα

(
xβ

)
= δα,β , for any α, β with |β| ≤ |α| ≤ m.

Proof: If there exists 1 ≤ j ≤ n such that βj < αj , then xβ ∈ Hj
βj
⊆ Hj

0 ∪ · · · ∪ Hj
αj−1

and therefore hj
k

(
xβ

)
= 0 for some 0 ≤ k ≤ αj − 1, which proves (i). Condition (ii), on

the other hand, follows from (i) and taking into account that β ≥ α implies that either
|α| < |β| or α = β.

In the terminology of [12], Lemma 9 says that the polynomials pα, |α| ≤ m, form
a Newton basis for interpolation in Πn

m. The coefficients λαf in the Newton form of the
interpolation polynomial

Lmf =
∑

|α|≤m

λαf pα,

the so-called finite differences, measure the error of lower degree interpolation at the in-
terpolation nodes,

λαf =
(
f − L|α|−1f

)
(xα) , (31)

and admit an integral representation that has been given in [12]. To state this formula, we
need some more notation. A path µ of length k + 1 is a vector (µ0, . . . , µk) of multiindices
µj ∈ Nn

m such that |µj | = j, j = 0, . . . ,m. Denoting the totality of all such paths by Λm,
we associate to any path µ ∈ Λm

(i) a set Xµ := {xµ0 , . . . ,xµm} of interpolation nodes,
(ii) an m–th order partial differential operator

Dm
µ := Dxµm−xµm−1 · · ·Dxµ1−xµ0 (32)

following the directional derivatives along the path,
(iii) a number

πµ :=
m−1∏
j=0

pµj
(xµj+1) . (33)

By means of the simplex spline integral∫
[X]

f =
∫

∆N

f(Xu) du, X ⊂ Rn, #X = N,

where

∆N := {(u1, . . . , uN ) : u1, . . . , uN ≥ 0, u1 + · · ·+ uN = 1}, Xu := u1x1 + · · ·+ uNxN ,

we then obtain the following error formula that is valid for any f ∈ Cm+1 (Rn), see
Theorem 3.4 and Theorem 3.6 of [12]:

f(x)− Lmf(x) =
∑

µ∈Λm

pµm(x) πµ

∫
[Xµ,x]

Dx−xµm Dm
µ f. (34)
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Note that, despite of the innocent appearance of this formula, the number of terms in the
sum is tremendous: even in two variables it is already (m + 1)! while in general it will be
of the form

m−1∏
j=0

(
n + j

j + 1

)
=

(
n

1

)(
n + 1

2

)
· · ·

(
n + m− 1

m

)
,

which makes it very difficult to even derive useful error estimates for the interpolation
polynomial. In the case of our configuration of interpolation points formula (34) can be
significantly simplified due to the very special form of the Newton polynomials. The first
observation is that, due to Lemma 9, we have that

πµ 6= 0 ⇒ µ ∈ Λ̂m := {µ ∈ Λm : µj ≤ µj+1, j = 0, . . . ,m− 1} ,

reducing the number of terms in the sum (34) to a mere nm. A closer look at πµ reveals
even more structure: by definition we have for µ ∈ Λm that

pµm
(x) πµ =

φµm
(x)

φµm
(xµm)

m−1∏
j=0

φµj (xµj+1)
φµj

(xµj )
= φµm

(x)
m−1∏
j=0

φµj (xµj+1)
φµj+1 (xµj+1)

. (35)

Since µ ∈ Λ̂m, we have that µj ≤ µj+1 and |µj+1| = j + 1 = |µj | + 1, hence µj+1 =
µj + ε`(µ,j), where εk, k = 1, . . . , n, denotes the unit multiindices of order 1. Fixing j for
the moment and writing α = µj , ` = `(µ, j), it then follows that

φµj

φµj+1

=
φα

φα+ε`

=
1

h`
α`

.

We write the affine functions associated to the hyperplanes as h`
α`

(x) = v`,α` ·x+ c`,α`
for

v`,α` ∈ Rn, c`,α`
∈ R, and assume that ‖v`,α`‖2 = 1 for all of these vectors; if we want

to make them unique, we could, for example, require that the first nonzero entry of the
vector is positive. Using this explicit form, we now obtain that

h`
α`

(
xα+ε`

)
= h`

α`
(xα) + v`,α` ·

(
xα+ε` − xα

)
= v`,α` ·

(
xα+ε` − xα

)
,

since xα ∈ H`
α`

. Let us introduce the notation vµ,j := v`,(µj)` and recall that α = µj ,
α + ε` = µj + ε`(µ,j) = µj+1. The above formula can be written

φµj
(xµj+1)

φµj+1 (xµj+1)
=

1
vµ,j · (xµj+1 − xµj )

.

Substituting back into (35), we thus find that

pµm(x) πµ = φµm(x)
m−1∏
j=0

1
vµ,j · (xµj+1 − xµj )

. (36)
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Recall from (29) that xµj is the intersection of H1
α1

, . . . ,Hn
αn

while xµj+1 is the common
point of H1

α1
, . . . ,H`−1

α`−1
,H`

α`+1,H
`+1
α`+1

, . . . ,Hn
αn

. Thus, xµj+1 − xµj is a multiple of the
normalized directional vector yµ,j of the straight line⋂

k∈{1,...,n}\{`}

Hk
αk

and since H`
α`

intersects this straight line in precisely one point, the normal vector of H`
α`

cannot be perpendicular to the directional vector yµ,j and therefore we have that

0 6= vµ,j · (xµj+1 − xµj ) =: ρµ,j‖xµj+1 − xµj‖2,

where ρµ,j denotes the nonzero cosine of the angle of intersection. In particular, (36) is
indeed well–defined. Defining the normalized directional derivatives

D̂m
µ := Dyµ,m−1 . . . Dyµ,0 =

Dxµm−xµm−1

‖xµm − xµm−1‖2
· · · Dxµ1−xµ0

‖xµ1 − xµ0‖2

=
ρµ,m−1

vµ,m−1 · (xµm − xµm−1)
Dxµm−xµm−1 · · ·

ρµ,0

vµ,0 · (xµ1 − xµ0)
Dxµ1−xµ0

and the product ρµ :=
∏m−1

j=0 ρµ,j 6= 0, we thus get from (36) the error formula

f(x)− Lmf(x) =
∑

µ∈Λ̂m

φµm
(x) ρ−1

µ

∫
[Xµ,x]

Dx−xµm D̂m
µ f. (37)

This formula has a remarkable property: the differential operator D̂m
µ under the integral is

invariant under scaling, a property very similar to the univariate case. From (37) we will
finally derive an error estimate for the interpolant. To that end, let Ω ⊂ Rn be a compact
set which contains all the interpolation points xα, |α| ≤ n, and define the diameter of Ω
as usual as

diam(Ω) := max
x,y∈Ω

‖x− y‖2.

For a function f defined on Ω we consider the following family of (semi)norms

‖f‖Ω := max
x∈Ω

|f(x)| ,
∥∥∥f (k)

∥∥∥
Ω

= max
x∈Ω

max
|α|=k

∣∣∣∣ ∂kf

∂xα
(x)

∣∣∣∣ , k = 1, 2, . . .

Moreover, let

ρ := min
{
|ρµ,j | : µ ∈ Λ̂m, j = 0, . . . ,m− 1

}
denote the cosine of the smallest angle of intersection.
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Theorem 10. If f ∈ Cm+1 (Rn) and Ω ⊂ Rn is a convex compact set containing the
interpolation points, then the interpolant Lmf satisfies

‖f − Lmf‖Ω ≤ n2m+1 diam(Ω)m+1

ρm

∥∥f (m+1)
∥∥

Ω

(m + 1)!
. (38)

Proof: We set α := µm and consider

φα(x) =
n∏

j=1

αj−1∏
k=0

hj
k(x).

For each j, k choose xj,k such that hj
k

(
xj,k

)
= 0 and note that again

hj
k(x) = hj

k

(
xj,k

)
+ vj,k ·

(
x− xj,k

)
= vj,k ·

(
x− xj,k

)
,

from which we conclude for x ∈ Ω that

|φα(x)| =
n∏

j=1

αj−1∏
k=0

∣∣vj,k ·
(
x− xj,k

)∣∣ ≤ n∏
j=1

αj−1∏
k=0

∥∥x− xj,k
∥∥

2
≤ diam(Ω)m. (39)

Next, we define for µ ∈ Λ̂m the directions

ym = x− xµm , yj =
xµj+1 − xµj

‖xµj+1 − xµj‖2

, j = 0, . . . ,m− 1, (40)

and consider the differential operator Dy0 · · ·Dymf on Ω, where we have that∣∣Dy0 · · ·Dymf
∣∣ ≤ ∥∥y0

∥∥
2

∥∥Dy1 · · ·Dym∇f
∥∥

2
≤

∥∥y0
∥∥

2

∥∥Dy1 · · ·Dym∇f
∥∥

1
,

and, by induction and taking into account (40),

∣∣Dy0 · · ·Dymf
∣∣ ≤ m∏

j=0

∥∥yj
∥∥

2

∥∥∥f (m+1)
∥∥∥

1
=

m∏
j=0

∥∥yj
∥∥

2

∑
|α|=m+1

(
m + 1

α

) ∣∣∣∣∂m+1f

∂xα

∣∣∣∣
≤ diam(Ω)nm+1

∥∥∥f (m+1)
∥∥∥

Ω
.

Substituting this estimate and (39) into (37), the claim (38) follows immediately from
recalling that

∫
[Xµ,x]

1 = 1/(m + 1)!.

The error estimate (38) is indeed remarkable as it is practically the univariate one,
except two “natural” multivariate ingredients: the dimension curse n2m+1 (which could
be reduced to nm by a modification of the seminorm

∥∥f (m+1)
∥∥) and the geometry term

ρ−m depending on the angles of intersection between the hyperplanes. Note that ρ ≤ 1
and that ρ = 1 if and only if all hyperplanes intersect perpendicularly which essentially
corresponds to the situation that xα = α/m, the triangular grid which has already been
investigated in [1], cf. [2].
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