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Abstract: Cubic pencils of lines are classified up to projectivities. Explicit formulae for
the addition of lines on the set of nonsingular lines of the pencils are given. These formulae
can be used for constructing planar generalized principal lattices, which are sets of points
giving rise to simple Lagrange formulae in bivariate interpolation. Special attention is paid
to the irreducible nonsingular case, where elliptic functions are used in order to express
the addition in a natural form.
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1. Introduction

Principal lattices of order n are classical distributions of points in multivariate in-
terpolation, structured uniformly according to the geometry of a simplex. They give rise
to Lagrange interpolation problems unisolvent in the space of polynomials of degree not
greater than n. These lattices have often been used for the construction of finite elements
[8]. Lee and Phillips [9] extended principal lattices to a more general setting as points of
intersection of linear pencils of hyperplanes. Although the points need not to be regularly
distributed, the simplicial structure of the nodes is preserved. In the bivariate case, the
lattices introduced by Lee and Phillips are called three pencil lattices.

Given an irreducible cubic curve, a binary operation, addition of points, can be defined
in the set of nonsingular points of the cubic, with the property that the addition of three
points of the cubic is zero if they are collinear (cf. [2]). In [4], a definition of addition of
points was provided for the reducible cases.

In [3, 4], it was shown that cubic pencils of lines in the plane can be used to generate
sets of nodes with a triangular structuration and leading to simple Lagrange interpolation
formulae. A main tool was the addition of lines, which is a dualization of the addition
of points in a cubic curve. In those papers, it was shown that the principal lattice and
three-pencil lattice constructions can be regarded as particular cases of reducible cubic
pencils. The remaining cases of reducible cubic pencils were also studied. Generalized
principal lattices in the plane were introduced in [3, 4] to describe all sets of nodes with
a triangular structure including all lattices obtained from cubic pencils. They have been
extended to several variables in [5].

In [7], it was shown that planar generalized principal lattices can be obtained from
the addition of lines in a cubic pencil. In other words, planar generalized principal lattices
are just lattices coming from cubic pencils. Therefore the task of describing and classifying
all generalized principal lattices in the plane can be reduced to describing the addition of
lines in each cubic pencil.

In [4], a classification of cubic curves was recalled. By duality, a classification of cubic
pencils could be deduced. The aim of the present paper is to provide a classification of
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cubic pencils and explicit formulae for the addition of lines, which may be convenient for
practical uses. Moreover, in this task we have realized that the description of the addition
of lines in nonsingular irreducible cubic pencils of lines requires elliptic functions. We use
the Weierstrass P function to obtain a natural parameterization of irreducible nonsingular
cubic pencils. We have compiled some complementary information on the Weierstrass P
function which is scattered in the literature and can be useful for the reader (for related
additional information see [1, 10]).

Section 2 is devoted to relevant definitions and to recall some related results. Section
3 offers a classification of all cubic pencils, analyzing a representative pencil of each equiv-
alence class. An addition of lines is defined in the set of nonsingular lines of each pencil in
order to describe all generalized principal lattices.

2. Definitions and related results

In [3,4] a definition of generalized principal lattices was given. In [6], a slightly more
general definition was introduced. Let us remind this definition and some notations.

Definition 1. Let
Lr

i , i = 0, . . . , n, r = 0, 1, 2,

be 3n + 3 distinct lines of the plane such that

L0
i ∩ L1

j ∩ L2
k 6= ∅, ∀i, j, k ∈ {0, . . . , n}, i + j + k = n.

The set of points

X = {(xijk, yijk) | (xijk, yijk) := L0
i ∩ L1

j ∩ L2
k, i, j, k ∈ {0, . . . , n}, i + j + k = n},

is a generalized principal lattice of order n if

i + j + k 6= n =⇒ L0
i ∩ L1

j ∩ L2
k ∩X = ∅.

Proposition 2.2 of [6] shows that if a point in X lies on a line Lr
i , then it cannot lie

on any other line Lr
j , with j 6= i. This implies that different indices (i, j, k), i + j + k = n,

correspond to different points of X. We also observe that, as shown in Proposition 2.5 (c)
of [6], the lines Lr

i , i ∈ {0, . . . , n − 1}, r = 0, 1, 2, are uniquely determined by the set X.
Conversely, the reduced set of 3n lines Lr

i , i ∈ {0, . . . , n − 1}, r = 0, 1, 2, is sufficient to
determine all points of the set X. However, the lines Lr

n, r = 0, 1, 2, are not completely
determined by the set X. For instance, the line L0

n can be replaced by any other line
containing no point of X but (xn00, yn00).

Definition 2. A polynomial pencil of degree n in the plane is the set of all lines

{(x, y) ∈ R2 | ax + by + c = 0}, (a, b, c) 6= (0, 0, 0),

such that
F (a, b, c) = 0,
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where F is a homogeneous polynomial of degree n in 3 variables. A polynomial pencil
of degree 1, (resp., 2, 3) is called a linear (resp., quadratic, cubic) pencil. A vertex V
of a polynomial pencil is a point such that the linear pencil of all lines passing through
V is contained in the polynomial pencil. If a polynomial pencil has a vertex, then a
homogeneous linear polynomial is a factor of F (a, b, c) and F is a reducible polynomial. A
nonsingular line of a pencil is any line ax + by + c = 0 such that

F (a, b, c) = 0,
(∂F

∂a
(a, b, c),

∂F

∂b
(a, b, c),

∂F

∂c
(a, b, c)

)
6= (0, 0, 0).

According to sections 3 and 5 of [4], we can state the following proposition.

Proposition 3. Let Λ be the set of nonsingular lines and V the set of vertices of a cubic
pencil of lines. Then a binary operation ⊕ called an addition of lines can be defined on Λ
such that the following properties hold
(a) (Λ,⊕) is an abelian group,
(b) for any distinct lines L1, L2, L3 ∈ Λ such that L1 ∩ L2 ∩ L3 ∩ V = ∅, then

L1 ⊕ L2 ⊕ L3 = 0 ⇔ L1 ∩ L2 ∩ L3 6= ∅.

In Theorem 3.1 of [4], the construction of generalized principal lattices was analyzed
assuming that an addition of lines has been defined. We recall that Definition 1 is more
general than the one given in [4]. For this reason, in Theorem 2.4 of [7], a new version of
that result was given that we restate below. We need the following notation: Λ denotes
any set of lines equipped with a binary operation ⊕ such that (a) and (b) of Proposition
3 hold, iH denotes the sum of i equal terms H ⊕ · · · ⊕H, ªH denotes the opposite of H
in the abelian group and 0 denotes the neutral element of the group.

Theorem 4. Let ⊕ be an addition of lines defined on Λ with a set of vertices V .
(i) Let H,K1,K2 be three lines of Λ. Then the 3n + 3 lines

L0
i = K1 ⊕ iH, i ∈ {0, . . . , n},

L1
j = K2 ⊕ jH, j ∈ {0, . . . , n},

L2
k = ªK1 ªK2 ⊕ (k − n)H, k ∈ {0, . . . , n},

(1)

are distinct if and only if
mH 6= 0, 0 < m ≤ n, (2)

and

K1 ªK2 ⊕ nH, ª2K1 ªK2, ªK1 ª 2K2 /∈ {mH | m ∈ {0, . . . , 2n}}. (3)

Moreover, if i, j, k ∈ {0, . . . , n}, i + j + k = n, then we have that L0
i ⊕ L1

j ⊕ L2
k = 0.

(ii) Let H, K1,K2 be three lines of Λ satisfying (2) and (3) and define L0
i , L1

j and L2
k by

(1). If i, j, k ∈ {0, . . . , n}, i + j + k = n, then L0
i , L1

j and L2
k are concurrent at a point

(xijk, yijk) := L0
i ∩L1

j ∩L2
k. Let X := {(xijk, yijk) | i, j, k ∈ {0, . . . , n}, i + j + k = n}.

If X ∩ V = ∅, then X is a generalized principal lattice.
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(iii) Let X be a generalized principal lattice of order n contained in R2\V , defined by lines
Lr

i , i ∈ {0, . . . , n}, r = 0, 1, 2, belonging to the set Λ. Then there exist H, K1,K2 ∈ Λ
satisfying (2) and (3) such that (1) holds.

In Theorem 3.5 of [7], it was shown that, if X is a generalized principal lattice, then
there exists a cubic pencil containing all the lines in the reduced determining set of 3n
lines {Lr

i | i = 0, . . . , n− 1, r = 0, 1, 2} mentioned after Definition 1. We restate it here.

Theorem 5. Let X be a generalized principal lattice of order n ≥ 4. Then there exists a
unique cubic pencil containing all the lines Lr

i , i ∈ {0, . . . , n− 1}, r = 0, 1, 2.

Remark 6. If X is a generalized principal lattice of order n < 4, then the results in
[7] show the existence of a cubic pencil containing all the lines Lr

i , i ∈ {0, . . . , n − 1},
r = 0, 1, 2, but it is not unique.

Using the above results, we can obtain a general formula for the lines Lr
i defining a

generalized principal lattice. Take any generalized principal lattice X, defined by the lines
Lr

i , i ∈ {0, . . . , n}, r = 0, 1, 2. By Theorem 5 and Remark 6, there exists a cubic pencil
containing all the lines Lr

i , i ∈ {0, . . . , n− 1}, r = 0, 1, 2. Let Λ be the set of nonsingular
lines of the cubic pencil. If the lines Lr

i , i ∈ {0, . . . , n − 1}, r = 0, 1, 2, belong to Λ (i.e.,
they are nonsingular), then, by Proposition 3, we can define an addition of lines on Λ.
Moreover, an abelian group G can be associated to Λ and we can parameterize Λ by a
bijection L : G → Λ such that L(g1 + g2) = L(g1)⊕ L(g2), g1, g2 ∈ G.

If, in addition, the set X does not contain any vertex, we deduce from Theorem 4
(iii), that there exist suitable group elements g0, g1, g2 (g0 + g1 + g2 = 0) and h such that
the lines

L(gr + ih), i ∈ {0, . . . , n}, r = 0, 1, 2, (4)

generate the generalized principal lattice X. Since, by Proposition 2.5 (c) of [6], the lines
Lr

i , i ∈ {0, . . . , n− 1}, r = 0, 1, 2 are uniquely determined by the set X, we have that

Lr
i = L(gr + ih), i ∈ {0, . . . , n− 1} r = 0, 1, 2.

Let us remark that a projective transformation of the plane maps a cubic pencil into
another cubic pencil, so that, the set of nonsingular lines Λ of one of them corresponds
to the set of nonsingular lines Λ̃ of the other one. The projective transformation gives
rise to a group isomorphism between the abelian groups Λ and Λ̃. Each set of 3n + 3
lines of Λ defining a generalized principal lattice, corresponds to a set of 3n + 3 lines of Λ̃
with the same incidence properties. Therefore, we can consider both sets of lines Λ and Λ̃
equivalent. This induces a partition on the set of all cubic pencils into equivalence classes.
Hence, it is sufficient to analyze a representative of each class, as done in the next section.
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3. Classification

A projective classification of cubic pencils can be obtained by duality of the projective
classification of cubic curves. Since we are interested in classifying generalized principal
lattices in the real plane rather than in the complex plane, we shall use the real projective
classification.

A first criterion is reducibility. Reducible pencils can be completely reducible with 3
linear factors (3 vertices), or can have 2 irreducible factors, one linear (1 vertex) and one
quadratic (the tangents to a conic). Irreducible singular pencils can be classified according
to the number of cusps of the cubic or quartic enveloped by the pencil. Another criterion
of classification is the number of connected components of the pencil, which coincides with
the number of connected components of the group and is used for classifying irreducible
nonsingular pencils. So we have the following classification.
A. Completely reducible pencils

A.1. Three collinear vertices (principal lattices)
A.2. Three noncollinear vertices (three pencil lattices)

B. Reducible pencils with one vertex and the set of tangents to a conic
B.1. Vertex interior to the conic
B.2. Vertex on the conic
B.3. Vertex exterior to the conic

C. Irreducible singular pencils
C.1. Tangents to a cubic with 1 real cusp (semicubical parabola)
C.2. Tangents to a tricuspidal quartic with 3 real cusps (deltoid)
C.3. Tangents to a tricuspidal quartic with 1 real cusp

D. Irreducible nonsingular pencils
D.1. One connected component
D.2. Two connected components

In each of the cases, we shall describe the group, a canonical cubic pencil parameterized
by the group and an addition of lines. Moreover we shall depict a representative set of
lines of the pencil in order to visualize the vertices and/or envolvent of the pencil and an
example of construction which has been computed using formula (4).

A. COMPLETELY REDUCIBLE PENCILS

They consist of three linear pencils with vertices V1, V2, V3. Two different cases arise.
If the three vertices are collinear then we can take them without loss of generality in the
ideal line and recover principal lattices, an example providing interpolation sets classical in
bivariate interpolation. The case of noncollinear vertices is essentially the Lee and Phillips
construction of three pencil lattices introduced in [9].

The interpolation points are intersections of three lines adding up to zero. In order
to apply Theorem 4, we need to choose lines not intersecting at a vertex, that is, not
belonging to the same linear pencil. Then we need to take three lines L(ti, ri) in A.1
(resp., L(ti, si, ri) in A.2), i = 0, 1, 2, with three different indices ri ∈ Z3 i = 0, 1, 2.
Without loss of generality, we can take r0 = 0, r1 = 1 and r2 = 2. In A.1, it is sufficient to
choose t0, t1, t2 ∈ R such that t0+t1+t2 = 0. In A.2, we also have to choose s0, s1, s2 ∈ Z2

such that s0+s1+s2 = 0 and different cases may arise according to four different choices of
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the si ∈ Z2, i = 0, 1, 2. Either s0 = s1 = s2 = 0 or only one si is zero, i = 0, 1, 2. The four
cases correspond to intersections in each of the four quadrants (connected components) in
which the axes divide the plane in Figure A.2 (left).

A.1. Completely reducible cubic pencils. Principal lattices.

We take as vertices the direction of the axes and the direction of the bisector of the 2nd
and 4th quadrant.
— Group: R× Z3.
— Pencil: L(t, 0) ≡ x = t, L(t, 1) ≡ y = t, L(t, 2) ≡ x + y = −t, t ∈ R.
— Addition of lines: L(t1, r1)⊕ L(t2, r2) = L(t1 + t2, r1 + r2), t1, t2 ∈ R, r1, r2 ∈ Z3.

2

2

1

1
0

-1

0

-2

-1-2

2

2

1

1

0

-1

0

-2

-1-2

Figure A.1. Three directional mesh (left) and a principal lattice (right)

A.2. Completely reducible cubic pencils. Three pencil lattices.

The vertices are taken now to be the origin and the directions of the axes.
— Group: R× Z2 × Z3.
— Pencil: L(t, s, 0) ≡ x = (−1)s exp(t), L(t, s, 1) ≡ y = (−1)s exp(−t), L(t, s, 2) ≡ y =

(−1)s exp(t)x, t ∈ R, s ∈ Z2.
— Addition of lines: L(t1, s1, r1) ⊕ L(t2, s2, r2) = L(t1 + t2, s1 + s2, r1 + r2), t1, t2 ∈ R,

s1, s2 ∈ Z2, r1, r2 ∈ Z3.

6



-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 1 2 3 4

0

1

2

3

4

1 2 3 4

Figure A.2. A mesh generated by three pencils (left) and a three pencil lattice (right)

B. REDUCIBLE PENCILS: ONE QUADRATIC AND ONE LINEAR PENCIL
Now let us discuss the classification of lattices generated by (reducible) cubic pencils con-
sisting of an irreducible quadratic pencil and a linear pencil. Let V be the vertex of the
linear pencil and C the envolvent of the quadratic pencil, which is an irreducible conic.
There are three different cases according to the relative position of V and C. The first
case, V interior to C, will be illustrated with the tangents to a circle and the lines through
its center. The second case, where V lies on C, will be illustrated with the tangents to a
parabola and its diameters (lines parallel to the axis). The third case, V exterior to C,
will be illustrated with the tangents to an equilateral hyperbola and the lines through its
center. All these cases have been analyzed in [3].

According to Theorem 4, we need to choose three lines not intersecting at a vertex. In
this case, there is only one vertex. This implies that exactly one of the three lines belongs
to the linear pencil and the other two belong to the quadratic pencil. Then we need to take
three lines L(ti, ri) in B.1 or B.2 (resp., L(ti, si, ri) in B.3), i = 0, 1, 2 with one of the ri’s
equal to 0 and the other two ri’s equal to 1. Without loss of generality, we can take r0 = 0,
r1 = r2 = 1. In B.1, it is sufficient to choose t0, t1, t2 ∈ R such that t0 + t1 + t2 ∈ 2πZ.
In B.2 and B.3, we have to choose t0, t1, t2 ∈ R such that t0 + t1 + t2 = 0. In B.3 we also
have to choose s0, s1, s2 ∈ Z2 such that s0 + s1 + s2 = 0 and we have three possible choices
of the si ∈ Z2, i = 0, 1, 2. Either s0 = 0 and s1 = s2 = 0, or s0 = 0 and s1 = s2 = 1, or
s0 = 1 and s1 6= s2.

B.1. Reducible pencil. Vertex interior to the conic.
C is a circle and V its center.
— Group: (R/2πZ)× Z2.
— Curve: x(t) = cos t, y(t) = sin t, t ∈ R.
— Pencil: L(t, 0) ≡ sin(t/2)x + cos(t/2)y = 0, L(t, 1) ≡ cos t x + sin t y = 1, t ∈ R/2πZ.
— Addition of lines: L(t1, r1)⊕L(t2, r2) = L(t1 +t2, r1 +r2), t1, t2 ∈ R/2πZ, r1, r2 ∈ Z2.
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–2 2

0

1

1

Figure B.1. Tangents to a circle and its diameters (left)
and a generalized principal lattice (right)

B.2. Reducible pencil. Vertex on the conic.

C is a parabola and V the direction of its axis.
— Group: R× Z2.
— Curve: x(t) = t, y(t) = t2, t ∈ R.
— Pencil: L(t, 0) ≡ x + t/2 = 0, L(t, 1) ≡ y − 2tx + t2 = 0, t ∈ R.
— Addition of lines: L(t1, r1)⊕ L(t2, r2) = L(t1 + t2, r1 + r2), t1, t2 ∈ R, r1, r2 ∈ Z2.

–1

1

–1 1

–1

0

1

–1 1

Figure B.2. Tangents to a parabola and its diameters (left)
and a generalized principal lattice (right)
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B.3. Reducible pencil. Vertex exterior to the conic.
C is a hyperbola and V the intersection of its asymptotes.
— Group: R× Z2 × Z2.
— Curve: x(t) = (−1)s exp(t), y(t) = (−1)s exp(−t), t ∈ R, s ∈ Z2.
— Pencil: L(t, s, 0) ≡ y−(−1)s exp(t)x = 0, L(t, s, 1) ≡ (−1)s exp(t)y+(−1)s exp(−t)x−

2 = 0, t ∈ R, s ∈ Z2.
— Addition of lines: L(t1, s1, r1) ⊕ L(t2, s2, r2) = L(t1 + t2, s1 + s2, r1 + r2), t1, t2 ∈ R,

s1, s2 ∈ Z2, r1, r2 ∈ Z2.

–4

–2

0

2

4

–4 –2 2 4

0

1

2

1 2

Figure B.3. Tangents to a hyperbola and its diameters (left)
and a generalized principal lattice (right)

C. IRREDUCIBLE SINGULAR CUBIC PENCILS
Irreducible pencils with singular lines admit a rational parameterization, which leads to
a simple description of the groups in terms of polynomial, trigonometric and hyperbolic
functions, similarly to the reducible cases. There are three distinct cases. The first case
corresponds to the tangents to a semicubical parabola and has associated a particularly
simple group, the additive group of the real numbers. The envelop of the pencil is a cubic
with 1 real cusp, that is, another semicubical parabola. In the second case the lines envelop
a tricuspidal quartic with 3 real cusps. Finally, the third case corresponds to the tangents
to a tricuspidal quartic with two complex cusps. The first case was analyzed in [3] and the
second case in [4].

In order to obtain an interpolation point, we need to choose three lines of the pencil.
In C.2, it is sufficient to choose t0, t1, t2 ∈ R such that t0 + t1 + t2 ∈ 2πZ. In C.1 and C.3,
we have to choose t0, t1, t2 ∈ R such that t0 + t1 + t2 = 0. In C.3 we also have to choose
s0, s1, s2 ∈ Z2 such that s0 + s1 + s2 = 0 and we have two possible choices of the si ∈ Z2,
i = 0, 1, 2. Either s0 = s1 = s2 = 0, or exactly one of the si’s is 0 and the other two are 1,
corresponding to each of the connected components in which the interpolation points may
appear, as shown in Figure C.3 (left)
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C.1. Irreducible singular cubic pencils. Tangents to a semicubical parabola.

— Group: R.
— Curve: x(t) = 3t2, y(t) = 2t3, t ∈ R.
— Pencil: L(t) ≡ y = tx− t3, t ∈ R.
— Addition of lines: L(t1)⊕ L(t2) = L(t1 + t2), t1, t2 ∈ R.
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0

1

2

1 2 3

-3
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-1

0

1

2

3

1 2 3 4

Figure C.1. Tangents to a semicubical parabola (left) and
a generalized principal lattice (right)

C.2. Irreducible singular cubic pencils. Tangents to a tricuspidal quartic with three real
cusps.

— Group: R/2πZ.
— Curve: x(t) = cos t(cos t + 1), y(t) = sin t(cos t− 1).
— Pencil: L(t) ≡ y = tan(t/2)x− sin(t), t ∈ R/2πZ.
— Addition of lines: L(t1)⊕ L(t2) = L(t1 + t2), t1, t2 ∈ R/2πZ.

C.3. Irreducible singular cubic pencils. Tangents to a tricuspidal quartic with only one real
cusp.

— Group: R× Z2.
— Curve: x(t, s) = cosh t(cosh t + (−1)s), y(t, s) = sinh t((−1)s cos t− 1), t ∈ R, s ∈ Z2.
— Pencil: L(t, 0) ≡ y = tanh(t/2)x − sinh(t), L(t, 1) ≡ y = − tanh(t/2)−1x − sinh(t),

t ∈ R.
— Addition of lines: L(t1, s1)⊕ L(t2, s2) = L(t1 + t2, s1, s2), t1, t2 ∈ R, s1, s2 ∈ Z2.
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Figure C.2. Tangents to a tricuspidal quartic with three real cusps (left)
and a generalized principal lattice (right)
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Figure C.3. Tangents to a tricuspidal quartic with one real cusp (left)
and a generalized principal lattice (right)
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D. IRREDUCIBLE NONSINGULAR CUBIC PENCILS
Irreducible nonsingular cubic pencils cannot be parameterized with rational functions. A
natural parameterization can be done in terms of elliptic functions, that is doubly periodic
meromorphic functions with half-periods ω1, ω3 ∈ C. A third half-period ω2 = −(ω1 +ω3)
is used for symmetry reasons. There are different kinds of irreducible nonsingular cubic
pencils from the projective point of view, according to the relation between both half-
periods of the function. However, the associated complex groups are all isomorphic to the
toroidal group (R/2πZ)× (R/2πZ).

In the case of real cubic pencils, we can distinguish up to isomorphisms two differ-
ent groups, the connected group R/2πZ and the group with two connected components
(R/2πZ) × Z2. In each case, one has a one-parameter family of essentially different pro-
jective cubic pencils, with additions of lines described by the corresponding group.

Let us recall some facts about the parameterization of real cubic curves using the
Weierstrass P function, which is a solution of the differential equation

P ′(t)2 = 4P3(t)− g2P(t)− g3,

where g2, g3 ∈ R. The set of all complex points of the algebraic cubic with equation

y2 = 4x3 − g2x− g3.

is given by the complex parameterization

γ(t) = (x(t), y(t)) = (P(t),P ′(t)), t ∈ C.

The above parameterization has the advantage that an addition (with neutral element the
ideal point corresponding to the direction of the Y axis) on the set of nonsingular points
of the cubic is given by

γ(t1)⊕ γ(t2) = γ(t1 + t2),

because of the addition formula for Weierstrass P functions
∣∣∣∣∣∣

1 P(t0) P ′(t0)
1 P(t1) P ′(t1)
1 P(t2) P ′(t2)

∣∣∣∣∣∣
= 0, t0 + t1 + t2 = 0.

Let us observe that, although it is convenient to work with two parameters g2, g3 ∈ C,
the set of curves y2 = 4x3 − g2x − g3 is essentially uniparametric, because the change of
variables x̃ = µ2x, ỹ = µ3y, transforms the cubic into a projectively equivalent curve

ỹ2 = 4x̃3 − µ−4g2x̃− µ−6g3.

The number of connected components of the set of real points of the cubic coincides
with the number of connected components of the group. If t ranges over R, then

γ(t), t ∈ R,
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describes one connected component of the real cubic. If the curve has two connected
components, we also need to consider a parameterization of the second component of the
real cubic

γ(t + ω3), t ∈ R,

where ω3 denotes the pure imaginary semiperiod. By duality we derive the corresponding
properties of the cubic pencils which we describe below. We also observe that the envolvent
of the cubic pencil is a sextic curve with nine complex cusps (three of them real) with one
or two connected components according to the number of components of the group.

In order to obtain an interpolation point, we need to choose three lines of the pencil.
In D.1, it is sufficient to choose t0, t1, t2 ∈ R such that t0 + t1 + t2 ∈ 2ω2Z. In D.2,
we have to choose t0, t1, t2 ∈ R such that t0 + t1 + t2 ∈ 2ω1Z and s0, s1, s2 ∈ Z2 such
that s0 + s1 + s2 = 0. We have two possible choices of the si ∈ Z2, i = 0, 1, 2. Either
s0 = s1 = s2 = 0 or exactly one of the si’s is 0, corresponding to each of the connected
components in which the interpolation points may appear, as shown in Figure D.2.

D.1. Irreducible nonsingular cubic pencils with one connected component.

In this case, ω1 and ω3 are complex conjugates and ω2 is real and positive.
— Group: R/2ω2Z.
— Pencil: L(t) ≡ P ′(t)y = P(t)x + 1, t ∈ R/2ω2Z.
— Addition of lines: L(t1)⊕ L(t2) = L(t1 + t2), t1, t2 ∈ R/2ω2Z.

-0. 1

0

0.1

-0.6 -0.4 -0.2

-1

-0. 8

-0. 4

0

0.4

0.8

1

-4 -2 2 4

Figure D.1. Irreducible nonsingular cubic pencils with g2 = 0, g3 = 25 (left)
and with g2 = 0, g3 = −25 (right)
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Figure D.2. Irreducible nonsingular cubic pencils with g2 = 25, g3 = 0

D.2. Irreducible nonsingular cubic pencils with two connected components.

In this case ω1 is real and positive and ω3 is pure imaginary.
— Group: (R/2ω1Z)× Z2.
— Pencil: L(t, 0) ≡ P ′(t)y = P(t)x + 1. L(t, 1) ≡ P ′(t + ω3)y = P(t + ω3)x + 1,

t ∈ R/2ω3Z.
— Addition of lines: L(t1, s1)⊕L(t2, s2) = L(t1+t2, s1+s2), t1, t2 ∈ R/2ω1Z, s1, s2 ∈ Z2.

Finally, let us remark that evaluation of the Weierstrass P function is only available
in some computer algebra systems and needs longer computation time than other usual
operations. However, the addition of lines in a cubic pencil can be expressed as a rational
function of the line coordinates (a, b). The condition on three lines

biy = aix + 1, i = 0, 1, 2,

of the pencil
b2 = 4a3 − g2a− g3,

to sum up to zero is ∣∣∣∣∣∣

a0 b0 1
a1 b1 1
a2 b2 1

∣∣∣∣∣∣
= 0.
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Then we have

bi = b1 + m(ai − a1), i = 0, 1, 2, where m =
b2 − b1

a2 − a1
,

which implies that ai, i = 0, 1, 2, are the roots of the cubic equation

(b1 + m(a− a1))2 = 4a3 − g2a− g3.

Therefore a0 + a1 + a2 = m2/4. So we obtain a0, b0 in terms of ai, bi, i = 1, 2,

a0 = −(a1 + a2) +
1
4
m2, b0 = b1 + m(a0 − a1).

Taking into account that the opposite of the line b0y = a0x + 1 is the line −b0y = a0x + 1,
we see that the sum of the lines biy = aix + 1, i = 1, 2 is the line by = ax + 1 with

a = −(a1 + a2) +
1
4
m2, b = −b1 −m(a− a1), m =

b2 − b1

a2 − a1
.

This addition formula allows us to construct easily generalized principal lattices corre-
sponding to cubic pencils of the form b2 = 4a3 − g2a− g3.

Acknowledgement: The authors wish to thank Prof. Enrique Artal of the University
of Zaragoza for his useful remarks concerning Algebraic Geometry and Elliptic Functions.
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