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Departamento de Matemática Aplicada. University of Zaragoza, Spain

Abstract. Principal lattices in the plane are distributions of points particularly
simple to use Lagrange, Newton or Aitken-Neville interpolation formulas. Principal
lattices were generalized by Lee and Phillips, introducing three-pencil lattices, that
is, points which are the intersection of three lines, each one belonging to a different
pencil. In this contribution, a semicubical parabola is used to construct lattices of
points with similar properties. For the construction of new lattices we use cubic
pencils of lines and an addition of lines on them.
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1. Introduction

Principal lattices in the plane are the most well-known distributions of
points which give rise to unisolvent interpolation problems in Πn(IR2),
the space of bivariate polynomials of total degree not greater than n.
They are the intersection points of three pencils of equidistant parallel
lines. By a suitable change of coordinates the three pencils of lines are
given by the equations

x = i/n, y = j/n, 1− x− y = k/n, 0 ≤ i, j, k ≤ n. (1.1)

Three lines each belonging to one pencil are concurrent if and only
if i + j + k = n. Principal lattices form a simple structure of nodes
useful for posing interpolation problems in the plane because they lead
to solvable interpolation problems with simple interpolation formulae.

Lee and Phillips [6] described principal lattices as particular cases
of three-pencil lattices. The incidence properties (collinearity of points
and concurrence of lines) are invariant under projective transformations
of the plane. Pencils of concurrent lines are all lines passing through
a given vertex. From a projective point of view, pencils of parallel
lines are pencils of concurrent lines whose vertex lies on the ideal
line. So principal lattices are lattices generated by three pencils of
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lines whose vertices lie on the ideal line. Projective transformations
of principal lattices provide lattices generated by three pencils with
arbitrary collinear vertices. In [6] the general case of three pencils with
noncollinear vertices was also analyzed.

The aim of this paper is to show some distributions of points in
the plane with similar properties to those of three pencil lattices. In
Section 2 we show that the set of tangents to a semicubical parabola
can be used for a construction of that type, which is called a generalized
principal lattice.

An operation called addition of points can be defined on the set of
nonsingular points of an algebraic irreducible cubic curve, giving rise
to an abelian group. Inspired by this idea and using duality, we intro-
duced in [3] an addition on some sets of lines as a way of constructing
generalized principal lattices. In the same paper we studied the general
properties of this composition law in the case of cubic pencils of lines.
We also showed an example of construction of generalized principal
lattices from the (irreducible) cubic pencil of tangents to a deltoid.

In Section 3 of the present paper we show generalized principal
lattices generated by reducible cubic pencils of lines, complementing
in this way the theory provided in [3].

2. Lattices generated by semicubical parabolas

First we have a look to three pencil lattices in a form convenient to
our purposes. Let Λ0,Λ1,Λ2 be three pencils of lines concurrent at the
noncollinear vertices v0, v1, v2, respectively. Let p0(x, y) = 0, p1(x, y) =
0, p2(x, y) = 0 be the equations of the sides of the triangle formed by the
vertices. Then the lines of each of the pencils p1(x, y)−µ0p0(x, y) = 0,
p2(x, y) − µ1p1(x, y) = 0, p0(x, y) − µ2p2(x, y) = 0, are concurrent if
and only if µ0µ1µ2 = 1. This condition allows us to select 3n + 3 lines

Lr
i ∈ Λr, i = 0, . . . , n, r = 0, 1, 2,

such that L0
i , L

1
j , L

2
k are concurrent if and only if i + j + k = n. This

can be done, for instance, in the following form

L0
i ≡ p1(x, y)− exp(t0 + ih)p0(x, y) = 0, i = 0, . . . , n,

L1
j ≡ p2(x, y)− exp(t1 + jh)p1(x, y) = 0, j = 0, . . . , n,

L2
k ≡ p0(x, y)− exp(t2 + kh)p2(x, y) = 0, k = 0, . . . , n,
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Figure 1. A three-pencil lattice

where t0, t1, t2 ∈ IR, h ∈ IR \ {0}. The condition of concurrence for
three lines each belonging to one pencil is

exp(t0 + ih) exp(t1 + jh) exp(t2 + kh) = 1,

that is, t0 + t1 + t2 + (i + j + k)h = 0. If the following condition holds

t0 + t1 + t2 + nh = 0 (2.1)

then the lines are concurrent if and only if i+j +k = n. Figure 1 shows
an example with p0(x, y) = x − y, p1(x, y) = x + y, p2(x, y) = 5 − x,
n = 4, h = 0.5, t0 = 0.3, t1 = −1.5, t2 = −0.8.

A similar situation can be described for the set of tangents to a
semicubical parabola. Let us consider the semicubical parabola (y/2)2 =
(x/3)3, which can be parameterized in the form

x(t) = 3t2, y(t) = 2t3.

The parameter t represents the slope at (x(t), y(t)), t ∈ IR. Let L(t) be
the tangent line at (x(t), y(t)) whose equation is tx− y − t3 = 0. Then
three lines L(t0), L(t1), L(t2) of the family are concurrent if and only if∣∣∣∣∣∣

t0 −1 t30
t1 −1 t31
t2 −1 t32

∣∣∣∣∣∣ = 0,

that is, (t1−t0)(t2−t0)(t2−t1)(t1+t2+t3) = 0. If the lines are distinct,
we have the condition

t0 + t1 + t2 = 0.

So we have seen that if t0+t1+t2 = 0, the three lines tix−y−t3i = 0, i =
0, 1, 2, meet at the point (−(t0t1 + t1t2 + t2t0),−t0t1t2), interior to the
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Figure 2. Tangents to a semicubical parabola

semicubical parabola, that is, lying in (y/2)2 ≤ (x/3)3. Figure 2 shows
the tangents to a semicubical parabola. The slopes of three tangents
passing through the same point add up to 0.

Due to the analytic condition of concurrence, we can construct con-
figurations of points which resemble principal lattices. In this case, there
are no different pencils Λ0,Λ1,Λ2. Any two lines intersect and no more
than three lines can intersect at the same point. All the lines belong to
the same one parameter family

L(t) ≡ tx− y − t3 = 0, t ∈ IR. (2.2)

However we can again take 3n + 3 distinct lines of the family, which
we denote by Lr

i , i = 0, . . . , n, r = 0, 1, 2, such that L0
i , L

1
j , L

2
k are

concurrent if and only if i + j + k = n. This can be done with the
choice

L0
i ≡ L(t0 + ih) = 0, i = 0, . . . , n,

L1
j ≡ L(t1 + jh) = 0, j = 0, . . . , n,

L2
k ≡ L(t2 + kh) = 0, k = 0, . . . , n,

where n and t0, t1, t2, h satisfy (2.1). Figure 3 shows an example with
n = 4, h = 0.1, t0 = −1.9, t1 = 0.24, t2 = 1.26.

The common properties of the three-pencil lattices and the lat-
tices generated by the tangents to a semicubical parabola suggest the
following definition.
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Figure 3. A lattice generated by a semicubical parabola

Definition 1. Let Lr
i , i = 0, . . . , n, r = 0, 1, 2, be 3n + 3 distinct lines

such that

L0
i , L

1
j , L

2
k are concurrent ⇐⇒ i + j + k = n. (2.3)

A generalized principal lattice is the set of points

X = {xijk | xijk := L0
i ∩ L1

j ∩ L2
k, i, j, k ∈ {0, 1, . . . , n}, i + j + k = n},

(2.4)
lying on exactly one line of each family.

Chung and Yao [4] introduced the geometric characterization to
identify sets of nodes such that the Lagrange interpolation problem has
a unique solution in Πn(IR2) and the corresponding Lagrange polyno-
mials are products of linear factors.

Definition 2. A set of
(n+2

2

)
nodes X ⊆ IR2 satisfies the geomet-

ric characterization GCn if for each node x ∈ X, there exist n lines
containing all nodes in X \ {x} but not x.

Generalized principal lattices satisfy the GCn condition because for
any point xijk, we have that

L0
i′ , i′ < i, L1

j′ , j′ < j, L2
k′ , k′ < k,

is a set of n lines containing all nodes except xijk.
The corresponding Lagrange interpolation formula follows immedi-

ately.
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3. Addition on cubic pencils and lattices generated by
reducible pencils

The set of lines ax + by + c = 0 satisfying F (a, b, c) = 0, where F is a
homogeneous cubic polynomial in 3 variables, is called a cubic pencil
of lines.

An example of a cubic pencil is the set of three pencils of lines with
vertices (x0, y0), (x1, y1) and (x2, y2), corresponding to the equation

(ax0 + by0 + c)(ax1 + by1 + c)(ax2 + by2 + c) = 0.

Analogously, it is easy to see that the set of tangents to the semicubic
parabola (y/2)2 = (x/3)3 corresponds to the equation

a3 + b2c = 0.

In both cases we have constructed generalized principal lattices associ-
ated to those pencils. Let us indicate how to construct them from any
cubic pencil.

It is well-known that the set of nonsingular points of an irreducible
algebraic cubic curve [1], [5], can be equipped with a composition law
called addition of points such that three points are collinear if and only
if they add up to zero. By duality, this means that in the set of nonsin-
gular lines of an irreducible cubic pencil we can define a composition
law called addition of lines such that three lines are concurrent if and
only if they add up to zero. This idea can be extended to reducible
cubic curves (see [2]) and then to reducible cubic pencils (see [3]).

In the general case, a set V of vertices is defined such that three lines
not meeting at a vertex add up to 0 if and only if they are concurrent
at a point of IR2 \ V . In the irreducible case, V = ∅. In the reducible
case, V is the set of vertices of the linear pencils contained in the cubic
pencil.

In each case, we can establish a parameterization L : G → Λ which
is a group isomorphism between an abelian group G and the set of
nonsingular lines of the pencil. The fact that the parameterization L is
an isomorphism means that for γ1, γ2, γ3 ∈ G,

γ1 + γ2 + γ3 = 0 and L(γ1) ∩ L(γ2) ∩ L(γ3) ∩ V = ∅ ⇐⇒
L(γ1), L(γ2), L(γ3) are concurrent at a point in IR2 \ V.

Since L is an isomorphism, the addition of lines satisfies

L(γ1) + L(γ2) = L(γ1 + γ2), γ1, γ2 ∈ G,

and then it can be seen as the binary operation on Λ induced by the
group G through the bijection L.
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In the case of all tangents to the semicubical parabola, G = IR,
the group isomorphism is given by (2.2) and the addition of lines is
L(t1) + L(t2) = L(t1 + t2).

The construction of generalized principal lattices given in [3] can be
formulated using the addition of lines. Consider the lines

L0
i = L(g0 + ih), i = 0, . . . , n,

L1
j = L(g1 + jh), j = 0, . . . , n, (3.1)

L2
k = L(g2 + kh) = 0, k = 0, . . . , n,

g0, g1, g2, h ∈ G, g0 + g1 + g2 + nh = 0,

where ih 6= 0, 0 < i ≤ 2n, and all elements

g0+ih, i = 0, . . . , n, g1+jh, j = 0, . . . , n, g2+kh, k = 0, . . . , n, (3.2)

are distinct. In the reducible case, there exist linear factors correspond-
ing to pencils with given vertices and the set of intersection points
(nodes) should not contain any vertex.

Remark 1. A projective mapping of the plane transforms a cubic pen-
cil into another cubic pencil. The set of nonsingular lines of one pencil
Λ will be transformed into the set of nonsingular lines of the other one
Λ̃. The projective mapping acts as a group isomorphism between Λ and
Λ̃ and so the associated abelian group is essentially the same. Each set
of lines of Λ (3.1) giving rise to a generalized principal lattice will be
transformed into a set of lines of Λ̃ with the same incidence properties.
So, Λ̃ also generates a generalized principal lattice. In this sense, we
consider both sets of lines Λ and Λ̃ equivalent.

The lattice generated by a completely reducible pencil (product of
three linear pencils) is the three-pencil lattice studied in [6]. According
to Remark 1, we have two essentially different cases. The first case
corresponds to three noncollinear vertices and an example is discussed
in the previous section. The second case corresponds to three collinear
vertices and gives rise to all projective transformations of principal
lattices (1.1). Both cases are considered in more detail in [3].

The remaining reducible cases are lattices generated by two pencils:
a linear pencil and an irreducible quadratic pencil (that is, the set
of tangents to an irreducible conic). According to Remark 1, we must
distinguish three essentially different cases. The vertex in the interior of
the conic, the vertex lying on the conic and the vertex in the exterior
of the conic. The set of nonsingular lines are all lines of the pencil
excluding the tangents to the conic from the vertex.
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Figure 4. Tangents to a circle and lines through its center

We are going to analyze the three cases and then we shall sketch
the construction of generalized principal lattices from them, taking into
account the different group structures. Let us analyze first the reducible
cubic pencil formed by the tangents to a conic and a linear pencil with
a vertex interior to the conic. Without loss of generality, we may take
as the conic the circle

x2 + y2 − 1 = 0

and the vertex at the origin (0, 0). The equation of the pencil is given
by

(a2 + b2 − c2)c = 0.

We can parameterize the tangents to a circle and the lines through the
origin by

L(α, 1) ≡ cos αx + sinαy − 1 = 0,

L(α, 0) ≡ sin(α/2)x + cos(α/2)y = 0, α ∈ IR. (3.3)

The line L(α, 1) is the tangent to the circle at (cos α, sinα) and the
line L(α, 0) is the line through the origin with slope − tan(α/2). Let us
remark that L(α + 2π, r) = L(α, r), for all α ∈ IR, r = 0, 1. Figure 4
shows a set of tangents to the circle and lines through the origin.

Two tangents to the conic L(α1, 1), L(α2, 1) and one line through
the origin L(α0, 0) are concurrent if and only if∣∣∣∣∣∣

0 sin(α0/2) cos(α0/2)
−1 cos(α1) sin(α1)
−1 cos(α2) sin(α2)

∣∣∣∣∣∣ = 0. (3.4)
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The left hand side of (3.4) is

2 sin ((α0 + α1 + α2)/2) sin ((α2 − α1)/2)

and, assuming that the tangents to the conic are distinct, α1 6= α2,
(3.4) reduces to α0 + α1 + α2 ∈ 2πZZ.

Let us denote by ZZ2 the additive group of integers modulo 2. Then
L can be regarded as a bijection between the group IR/2πZZ ×ZZ2 and
the cubic pencil

(α + 2πZZ, r) ∈ IR/2πZZ × ZZ2 7→ L(α, r),

such that if the corresponding group elements add up to zero then the
three lines are concurrent. Conversely, if three lines are concurrent at
a point which is not the origin, then the corresponding group elements
add up to zero.

Now, let us analyze the reducible cubic pencil formed by the tangents
to a conic and a linear pencil with a vertex on the conic. Without loss
of generality, we may take as the conic the parabola

y = x2

and as the vertex of the linear pencil the ideal point corresponding to
the direction of the vector (0, 1). Then the equation of the pencil is
given by

(a2 − 4bc)b = 0.

We can parameterize the tangents to the parabola and the lines of the
linear pencil by

L(t, 1) ≡ y − 2tx + t2 = 0, L(t, 0) ≡ x + t/2 = 0, t ∈ IR. (3.5)

The line L(t, 1) is the tangent to the parabola at (t, t2) and the line
L(t, 0) is a line parallel to the Y axis. Figure 5 shows a set of tangents
to the parabola and lines parallel to the Y axis.

Two tangents to the conic L(t1, 1), L(t2, 1) and one line through the
origin L(t0, 0) are concurrent if and only if∣∣∣∣∣∣

t0/2 1 0
t21 −2t1 1
t22 −2t2 1

∣∣∣∣∣∣ = 0. (3.6)

The left hand side of (3.6) is (t2 − t1)(t0 + t1 + t2) and, assuming that
the tangents to the parabola are distinct, t1 6= t2, (3.6) reduces to
t0 + t1 + t2 = 0. Then L can be regarded as a bijection between the
group IR× ZZ2 and the cubic pencil

(t, r) ∈ IR× ZZ2 7→ L(t, r),
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Figure 5. Tangents to a parabola and lines parallel to the Y axis

such that if the corresponding group elements add up to zero then the
three lines are concurrent. Conversely, if three lines are concurrent at
a point which is not the origin, then the corresponding group elements
add up to zero.

Finally, let us consider the reducible cubic pencil formed by the tan-
gents to a conic and a linear pencil with a vertex exterior to the conic.
Without loss of generality, we may take as the conic the hyperbola

xy = 1

and as the vertex the intersection points of the asymptotes, that is the
origin. Then the equation of the pencil is given by

(c2 − 4ab)c = 0.

The singular lines of the pencil are the asymptotes. We can parame-
terize the tangents to the hyperbola and the lines of the linear pencil
by

L(t, s, 1) ≡ (−1)s exp(t)y + (−1)s exp(−t)x− 2 = 0,

L(t, s, 0) ≡ y − (−1)s exp(t)x = 0, t ∈ IR, s ∈ ZZ2. (3.7)

The line L(t, s, 1) is the tangent to the hyperbola at the point

((−1)s exp(t), (−1)s exp(−t))

and the line L(t, s, 0) is a line through the origin, different from the
asymptotes. Figure 6 shows a set of tangents to the hyperbola and
lines through the origin.
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Figure 6. Tangents to a hyperbola and lines through the origin

Two tangents to the conic L(t1, s1, 1), L(t2, s2, 1) and one line through
the origin L(t0, s0, 0) are concurrent if and only if∣∣∣∣∣∣

0 −µ0 1
−2 µ−1

1 µ1

−2 µ−1
2 µ2

∣∣∣∣∣∣ = 0, (3.8)

where µi = (−1)si exp(ti), i = 0, 1, 2. The left hand side of (3.8) is
2µ−1

1 µ−1
2 (µ2 − µ1)(1− µ0µ1µ2) and, assuming that the tangents to the

hyperbola are distinct, µ1 6= µ2, (3.8) reduces to µ0µ1µ2 = 1, that is
t0 + t1 + t2 = 0 and s0 + s1 + s2 = 0. Then L can be regarded as a
bijection between the group IR× ZZ2 × ZZ2 and the cubic pencil

(t, s, r) ∈ IR× ZZ2 × ZZ2 7→ L(t, s, r),

such that if the corresponding group elements add up to zero then the
three lines are concurrent. Conversely, if three lines are concurrent at
a point which is not the origin, then the corresponding group elements
add up to zero.

Let us now sketch the construction of generalized principal lattices
in the three cases. Formula (3.1) combined with (3.3) (resp., (3.5) and
(3.7)) allows us to generate them. We choose n, g0, g1, g2, h, provided
that ih 6= 0, 0 < i ≤ 2n, all elements (3.2) are distinct and the set of
nodes does not include the vertex. This last condition is satisfied if the
following condition holds: h and exactly one element among g0, g1, g2

belong to the set IR/2πZZ × {0}, (resp., IR× {0}, IR× ZZ2 × {0}).
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Figure 7. Generalized principal lattices generated by reducible cubic pencils

Figure 7 left shows a lattice generated by (3.1) using the lines (3.3)
and taking n = 4, h = (0.14, 0), g0 = (−1.56, 0), g1 = (0.05, 1), g2 =
(0.95, 1). Figure 7 center shows a lattice generated by (3.1) using the
lines (3.5) and taking n = 5, h = (0.12, 0), g0 = (−0.80, 0), g1 =
(−0.45, 1), g2 = (0.65, 1). Figure 7 right shows a lattice generated by
(3.1) using the lines (3.7) and taking n = 5, h = (0.12, 0, 0), g0 =
(−0.40, 0, 0), g1 = (−0.65, 0, 1), g2 = (0.45, 0, 1).
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