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Abstract. In 1977 Chung and Yao introduced a geometric characterization in
multivariate interpolation in order to identify distributions of points such that the
Lagrange functions are products of real polynomials of first degree. We discuss and
describe completely all these configurations up to degree 4 in the bivariate case. The
number of lines containing more nodes than the degree is used for classifying these
configurations.
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1. Introduction

Multivariate interpolation is a more difficult subject than univariate
interpolation. One of the difficulties is that the solvability of the in-
terpolation problem depends on the geometric properties of the set of
interpolation points (nodes) [6]. For solvable problems, it is interesting
to express the solution by simple interpolation formulae. In 1977 Chung
and Yao introduced a geometric characterization (GC) for a set of nodes
whose associated Lagrange polynomials are products of polynomials of
first degree. If a set of nodes satisfies the GC condition, the Lagrange
interpolation formula can be explicitly given by a simple expression in
terms of the nodes, the data values and the lines used for checking the
GC condition.

Many configurations of points satisfying the GC condition in the
plane have been described [4, 2, 7]. However we are still far from
knowing all possible configurations. A relevant conjecture was stated
by Gasca and Maeztu in 1982: a set of nodes satisfying the GC condi-
tion for interpolation with polynomials of degree n must contain n + 1
collinear points.

Busch [1] verified the conjecture for degrees less than or equal to 4.
Trying to shed more light on the conjecture, we have recently obtained
another proof [3] with different arguments. However it seems difficult
to extend those arguments to n > 4.
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The information derived from the verification of the conjecture is
crucial for analyzing the possible GC configurations of points because
it introduces some simplifications in the analysis of the geometric char-
acterization.

The purpose of this paper is to describe all GC configurations of
points in the plane for degree ≤ 4. We think that knowing all possible
GC configurations of low degree can be helpful to solve more cases of
the conjecture and this in turn can be used for classifying partially or
completely the GC configurations for higher degree.

In [2], the authors stated a conjecture stronger than the above men-
tioned one: in a GC configuration of nodes of degree n, the number of
lines containing n + 1 nodes must be at least 3.

In section 2, we state both conjectures and review some auxiliary
results for arbitrary degree. In section 3, we describe the GC configu-
rations up to degree 3. The cases of degree n = 1, 2 are very simple and
so, the section is especially devoted to the case n = 3. We show that the
number of lines containing 4 nodes is at least 3 and this information is
used for describing all GC configurations for degree 3. In section 4, we
show that the number of lines containing 5 nodes in GC configurations
of degree 4 is at least 3 and we describe all these configurations.

2. Some conjectures on the geometric characterization

In the bivariate case, the GC condition can be stated as follows.

Definition 1. Let X ⊆ IR2, |X| = (n+2)(n+1)/2. The set X satisfies
the geometric characterization GCn if for each x ∈ X, there exist lines
Lx

1 , . . . , Lx
n such that

x /∈ Lx
1 ∪ · · · ∪ Lx

n, X \ {x} ⊆ Lx
1 ∪ · · · ∪ Lx

n.

We say that the lines Lx
1 , . . . , Lx

n are used by the node x ∈ X. The set
of lines used by x ∈ X is denoted by Γx and ΓX :=

⋃
x∈X Γx is the set

of lines used by some node.

Observe that if X satisfies GCn, then the Lagrange interpolation
problem on the set X is unisolvent in Πn(IR2). This implies that the
set of lines Γx is uniquely defined by the node x.

Let us precisely state the conjecture on the GC condition stated by
Gasca and Maeztu [5].

CONJECTURE 1. Let X ⊆ IR2 satisfy the GCn condition. Then there
exists a line in the plane containing n + 1 points of X.
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The lines containing n + 1 points seem to be relevant for describing
the GC configurations. The following Proposition summarizes some
properties of these lines stated in Proposition 2.1 of [2] and Proposition
2.2 of [3] that will be useful in the rest of the paper.

PROPOSITION 1. Let X be a set of nodes satisfying the GCn condi-
tion. Then

(a) No line contains more than n + 1 points of X.

(b) If n ≥ 1 and a line L contains n + 1 points of X, then L ∈ ΓX and
it is used by each point of X not lying on it.

(c) Two lines, each containing n + 1 points of X, cannot be parallel.
Their intersection belongs to X.

(d) Three lines, each containing n+1 points of X, cannot be concurrent.

(e) For any line L containing n + 1 points of X, the set X \L satisfies
the GCn−1 condition.

In order to describe the possible configurations we shall use the
following notation

X =
{
xij ∈ IR2 | i < j ∈ {1, . . . , n + 2}

}
, (2.1)

KX := {K ∈ ΓX | |K ∩X| = n + 1}, (2.2)
m = |KX |, KX := {K1, . . . , Km}. (2.3)

Taking into account Proposition 1, we can assume that the indices have
been arranged in such a way that that

xij ∈ Kl ⇐⇒ l = i or l = j, (2.4)

which means that xij = Ki ∩Kj for all i < j ≤ m, xij ∈ Ki \
⋃

r 6=i Kr,
for all i ≤ m < j and xij /∈ ⋃m

r=1 Kr for m < i < j.
The number m = |KX | of lines containing n + 1 points can be used

for classifying all GC configurations of nodes. In [2], the concept of
default was introduced for this purpose. It seems that the term defect
is more appropriate. We thank the referee for warning us at this point.

Definition 2. Let X ⊆ IR2 be a set satisfying the GCn condition. We
say that X has defect d if the number of lines in KX is n + 2− d.

If X is a GCn set of defect 0, then X is a natural lattice, that is, the
set of all pairwise intersections of n + 2 lines in general position.

In [2] all possible configurations of defect 0, 1, 2 were described for
arbitrary degree.

In all known GC configurations, we always find 3 lines with n + 1
points, that is the defect is always less than or equal to n − 1. The
following conjecture was launched in [2].
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CONJECTURE 2. Let X ⊆ IR2 satisfy the GCn condition. Then there
exist at least three lines in the plane containing n + 1 points of X, that
is, |KX | ≥ 3.

This conjecture is equivalent to saying that each node uses a line
with n + 1 nodes.

PROPOSITION 2. Let X ⊆ IR2 satisfy the GCn condition. Then the
following statemens are equivalent

(a) There exist at least three lines in ΓX containing n + 1 points of X.

(b) For each x ∈ X, there exist a line in Γx containing n + 1 points of
X.

Proof. If (a) holds, then by Proposition 1 (c), (d), the 3 lines are in
general position. So, for each x ∈ X, one of the 3 lines, say K, satisfies
x /∈ K. By Proposition 1 (b), x uses K, that is, K ∈ Γx.

Conversely if (b) holds, then we take x1 ∈ X and K1 a line with
n + 1 nodes used by x1. Now take x2 ∈ K1 ∩ X and K2 a line with
n+1 nodes used by x2. Since x2 /∈ K2, K2 6= K1. By Proposition 1 (c),
K1 ∩K2 is a node. Take x3 = K1 ∩K2 and K3 a line with n + 1 nodes
used by x3. Since x3 /∈ K3, the line K3 must be different from K1,K2

and then (a) holds.

The following auxiliary result is well-known (see for instance Lemma
1 of [1]). We provide the proof for the sake of completeness.

LEMMA 1. Let L1, L2, L3, M1, M2,M3 be lines such that

|(L1 ∪ L2 ∪ L3) ∩ (M1 ∪M2 ∪M3)| = 9.

If a cubic polynomial vanishes at 8 of the points in (L1 ∪ L2 ∪ L3) ∩
(M1 ∪M2 ∪M3), then it also vanishes at the remaining point.

Proof. Let xij = Li∩Mj , i, j = 1, 2, 3 and let p be a cubic polynomial
vanishing at 8 of these points. Without loss of generality we may assume
that p vanishes at all points of (L1∪L2∪L3)∩ (M1∪M2∪M3)\{x33}.
Let x14 be any point lying on M1 \ (L1 ∪ L2 ∪ L3) and let x41 be any
point in L1 \ (M1 ∪M2 ∪M3). Then the set X = {xij | i + j ≤ 5} is a
Π3(IR2)-unisolvent set (because it is a system of order 3 as defined in
[5]) and using the Lagrange formula we obtain

p =
p(x14)

L1(x14)L2(x14)L3(x14)
L1L2L3+

p(x41)
M1(x41)M2(x41)M3(x41)

M1M2M3,

which shows that p also vanishes at x33.
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Bivariate configurations with simple Lagrange formulae 5

3. GC configurations of degree less than 4

In this section we verify Conjecture 2 and describe all GCn sets of nodes
for n = 1, 2, 3.

PROPOSITION 3. Let X ⊆ IR2 be a GCn set.

(a) If n = 1, then X is formed by 3 nodes not in a line, |KX | = 3 and
the defect is 0.

(b) If n = 2, then 3 ≤ |KX | ≤ 4 and the defect is 0 or 1.

(c) If n = 3, then 3 ≤ |KX | ≤ 5 and the defect is either 0, 1 or 2.
Proof. (a) It is straightforward. A GC1 set X is formed by 3 points

not in a line and then the 3 lines joining each pair of them are the lines
with 2 nodes. Therefore, X is a natural lattice.

(b) Let X be a GC2 set and let x ∈ X. The GC2 condition implies
that the 5 points of X \ {x} must be distributed along 2 lines and one
of them will have 3 points and no more by Proposition 1. So each point
of X uses a line in KX . By Proposition 2, there exist at least 3 lines
containing 3 nodes, that is the defect is 0 or 1.

(c) From [1, 3] we know that there exists at least a line K1 containing
4 nodes.

Each point x ∈ X ∩ K1 uses 3 lines, each of them containing one
point of K1. The three lines of Γx must also contain the 6 points in
X \ K1. By Proposition 1 (e) X \ K1 is a GC2 set. By Proposition 3
(b), there are 3 lines M1,M2,M3, each of them containing 3 points of
X \K1.

Let us assume that K1 is the only line containing 4 nodes. Then
each line in Γx contains exactly 2 nodes in X \K1. Each of the 3 lines
in Γx must contain at most (and at least) one vertex of the triangle
with sides M1,M2,M3. Let Nij be the line joining the vertex Mi ∩Mj

with the only point in X \ (K1 ∪Mi ∪Mj), i 6= j ∈ {1, 2, 3} (see Figure
1). The lines N12, N13, N23 are the only lines containing exactly two
points of X \K1 (one vertex of the triangle with sides M1,M2,M3 and
a second node). Therefore Γx = {N12, N13, N23}, for each x ∈ K1 ∩X.
This is a contradiction because different points cannot use the same 3
lines.

So, we deduce that there exist at least two lines K1,K2 containing
4 nodes. By Proposition 1 (c), K1 and K2 intersect at a node. By
Proposition 1 (e), the set X \ (K1 ∪K2) is GC1, that is, it consists of
the 3 vertices of a triangle whose sides are denoted by L1, L2, L3. Take
i ∈ {1, 2} and let j 6= i, j ∈ {1, 2}. Since, by Proposition 1 (e), X \Kj is
GC2, there exist three lines containing 3 nodes in X \Kj . One of them
is Ki; the other 2 lines must be in {L1, L2, L3} and intersect Ki \Kj
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Figure 1. Only the line K1 contains 4 nodes.
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Figure 2. Two lines K1 and K2 contain 4 nodes.

at a node. So we have

|(L1 ∪ L2 ∪ L3) ∩ (Ki \Kj) ∩X| ≥ 2, j ∈ {1, 2} \ {i}, i ∈ {1, 2}.

Then one of the lines in {L1, L2, L3} intersects both K1 at a node and
K2 at another node (see Figure 2) and that line contains 4 nodes.

So, we have deduced that there exist at least three lines containing
4 nodes. The defect can be 0, 1, or 2.

Now, let us use Proposition 3 in order to describe all sets of nodes
satisfying GCn, n = 1, 2, 3. All possible configurations with defect 0,
1, 2 and arbitrary degree have already been described in [2]. We use
this information for describing completely all GC configurations up to
degree 3.

Proposition 3 (a) means that a GC1 set of nodes in the plane is just
a set of 3 noncollinear points. Let us describe now all possible GC2

configurations. If the defect is 0, then X is a natural lattice and the 6
points are the vertices of a complete quadrilateral. If the defect is 1, we
use the notations (2.1-4) for the set of nodes and lines. The 3 vertices

carni-gasca.tex; 4/12/2002; 12:11; p.6



Bivariate configurations with simple Lagrange formulae 7

Figure 3. GC2 configurations of defect 0 and 1.

Figure 4. GC3 configurations of defect 0, 1 and 2.

x12, x13, x23 of the triangle whose sides are the 3 lines K1,K2,K3 con-
taining 3 nodes are in X and the remaining nodes x14, x24, x34 are not
collinear and each one lies on a different side of the triangle, that is,
xi4 ∈ Ki. Figure 3 shows all possible GC2 configurations of defect 0,1.

Finally, let us describe all possible GC3 configurations. If the defect
is 0, then we have a natural lattice and the vertices are the 10 inter-
sections of 5 lines in general position. If the defect is 1, then we have 4
lines intersecting in 6 nodes. Each of the 4 lines contains an additional
node and these 4 nodes are not collinear. If the defect is 2, we use the
notations (2.1-4) in order to simplify the description. Then we have 3
lines K1,K2,K3 with 4 nodes and 3 concurrent lines L1, L2, L3, each
of them containing three nodes, L1 ∩ X = {x24, x35, x45}, L2 ∩ X =
{x15, x34, x45}, L3 ∩X = {x14, x25, x45}.

Figure 4 shows all possible GC3 configurations of defect 0, 1 and 2.

4. GC configurations of degree 4

In order to verify Conjecture 2 for n = 4, we proceed in two steps. First
we show that there exist at least two lines with 5 nodes.

LEMMA 2. Let X ⊆ IR2 be a GC4 set. Then |KX | ≥ 2.
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Figure 5. Only K1 contains 5 nodes.

Proof. From [1, 3], we know that KX contains at least one line K1.
By Proposition 1 (e), X \K1 is a GC3 set. By Proposition 3 (c) there
are 3 lines M1,M2, M3, each of them containing 4 points of X \K1. By
Proposition 1 (c), Mi ∩Mj ∈ X, i 6= j and therefore the set M3 ∩X \
(M1 ∪ M2) consists of two points y1, y2. Let N1 (respectively N2) be
the line passing through z = M1 ∩M2 and y1 (respectively y2).

Each point x ∈ X ∩ K1 uses 4 lines, each of them containing one
point of K1 \ {x}. If Mi ∈ Γx, then Mi ∩K1 ∩X 6= ∅ and |Mi ∩X| ≥ 5.
So, in this case, a second line contains 5 nodes and the statement of
the Lemma holds.

Let us assume that K1 is the only line containing 5 nodes. Then no
line in Γx, x ∈ K1 ∩X, is in the set {M1, M2,M3}. Since any line Mi

contains exactly 4 nodes and Γx consists of 4 lines none of them being
Mi, we have

|L ∩Mi ∩X| = 1, ∀L ∈ Γx, i = 1, 2, 3.

On the other hand, one of the lines in Γx must contain z = M1 ∩M2.
It follows that either N1 or N2 is in Γx.

Taking into account that K1∩X contains 5 points and each one uses
N1 or N2, there must exist two nodes xi ∈ K1 ∩X, i = 1, 2, using the
same line, say N1. Each of the three lines in Γxi \ {N1} intersects each
of the three lines K1, M1,M2 at points of X. The three nodes placed
in each Mi are Mi ∩X \ (M1 ∩M2), i = 1, 2 and the three points in K1

are K1 \ (N1 ∪ {xi}) (See Figure 5).
So, the three lines L1, L2, L3 ∈ Γx1\{N1} intersect the lines K1,M1,M2

at 9 points. The Lagrange function associated to x2 is of the form N1p,
where p is a cubic polynomial vanishing on the three lines of Γx2 \{N1}.
So, it vanishes at eight of the points of (K1∪M1∪M2)∩ (L1∪L2∪L3)
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but not at the other one, x2. This contradicts Lemma 1, showing that
the assumption that K1 is the only line containing 5 nodes leads to a
contradiction. So, |KX | ≥ 2.

PROPOSITION 4. Let X ⊆ IR2 be a GC4 set. Then 3 ≤ |KX | ≤ 6
and the defect is either 0, 1, 2 or 3.

Proof. By Lemma 2, there exist two lines K1,K2 containing at least
5 nodes. By Proposition 1 (c), |K1∩K2∩X| = 1. By Proposition 1 (e),
X\(K1∪K2) is a GC2 set and, by Proposition 3 (b), the set KX\(K1∪K2)

is formed by 3 or 4 lines. On the other hand, X \Ki is a GC3 set, and,
by Proposition 3 (c), there exist 3 lines each of them containing 4 points
of X \Ki. One of these lines must be Kj , j ∈ {1, 2} \ {i} and the other
two Li1, Li2 must be in KX\(K1∪K2) and have a node in Kj \Ki.

If any of the lines Li1, Li2, i = 1, 2 intersects Ki at a node then this
line would have 5 nodes and the Proposition follows.

Otherwise, the lines Li1, Li2, i = 1, 2 have only 4 nodes and Li1∩Ki∩
X = Li2 ∩Ki ∩X = ∅, i = 1, 2. This means that |KX\(K1∪K2)| = 4 and
the set X \(K1∪K2) is a natural lattice. Let us take x := L21∩K1 ∈ X
and identify the lines in Γx (see Figure 6).

By Proposition 1 (b), the line K2 (containing 5 nodes) belongs to
Γx. By Proposition 1 (a), X \K2 is GC3 and, using Proposition 1 (b),
it is easy to see that the line L22 (containing 4 nodes) belongs to Γx.
The 5 remaining nodes form the set X \ (K2 ∪ L22 ∪ {x}). Two of
them are in K1 \ (L21 ∪ L22), other two in L21 ∩ (L11 ∪ L12) and the
last one is L11 ∩ L22. These 5 nodes must be placed in the 2 lines of
Γx \{K2, L22}, which cannot be either K1 or L21. So there exists a line
in Γx \ {K2, L22} containing 3 nodes: one in K1 \ (L21 ∪ L22), another
one in L21 ∩ (L11 ∪ L12) and the third one is L11 ∩ L22. Then the line
must be L11 or L12 and it intersects K1 at a node, contradicting our
assumption. Therefore |KX | ≥ 3.

Now we are ready to describe all GC4 sets. All these sets have 15
nodes. The cases of defect 0,1,2 have been described in [2]. If the defect
is 0, then we have a natural lattice, that is the 15 pairwise intersections
of 6 lines in general position. The case of defect 1 can also be easily
described: 5 lines Ki, i = 1, 2, 3, 4, 5, in general position intersecting at
10 points and the remaining 5 points are not collinear each of them
placed on a different line Ki, i = 1, 2, 3, 4, 5.

In order to simplify the description of the GC4 sets with defect
2, let us use the notations (2.1–4). We have 4 lines Ki containing 5
nodes, i = 1, 2, 3, 4. Three of the 5 nodes in X ∩Ki are the intersection
with the remaining lines Kj , xij = Ki ∩ Kj , j ∈ {1, 2, 3, 4} \ {i}, i ∈
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Figure 6. Proof of the existence of a third line containing 5 nodes.

Figure 7. GC4 configurations of defect 0, 1 and 2.

{1, 2, 3, 4}. Only one node x56 lies outside the lines containing 5 nodes.
The additional nodes xi5, xi6 on the lines Ki, i = 1, 2, 3, 4, are contained
in 3 lines L1, L2, L3 which are concurrent at the node x56 ∈ L1∩L2∩L3.
Each line Li contains 3 or 4 nodes. More precisely, two of them contain
4 nodes and the remaining one 3 nodes.

Figure 7 shows GC4 configurations of defect 0, 1 and 2.
Let us now describe the GC4 sets with defect 3.
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Figure 8. A GC4 configuration of defect 3.
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PROPOSITION 5. A set X is GC4 with defect 3 if and only if the
nodes can be labelled in the form (2.1) and the following properties
simultaneously hold:

(i) There exist lines K1,K2,K3 in general position, containing 5 nodes,
such that (2.4) holds.

(ii) There exist lines L1, L2, L3 in general position, containing 4 nodes,
such that

xij ∈ Lk ⇐⇒ (j = k+3, 1 ≤ i ≤ 3, i 6= k) or (4 ≤ i < j ≤ 6, k+3 ∈ {i, j})
(4.1)

for each k ∈ {1, 2, 3}.
(iii) There exist lines M1,M2,M3 in general position, containing 3
nodes, such that

xij ∈ Mk ⇐⇒ (j = i+3, 1 ≤ i ≤ 3, i 6= k) or (4 ≤ i < j ≤ 6, k+3 /∈ {i, j})
(4.2)

for each k ∈ {1, 2, 3}.
Proof. Let X be a GC4 with defect 3. Then the nodes can be labelled

such that (2.1–4) hold for m = 3. By Proposition 1 (e), the set X \
(K1 ∪K2 ∪K3) is GC1 and it consists of 3 points x45, x46, x56, forming
a triangle. The 3 sides of the triangle are the lines in KX\(K1∪K2∪K3)

each of them containing 2 points of X \ (K1 ∪ K2 ∪ K3). For k ∈
{1, 2, 3}, X \Kk is a GC3 set and by Proposition 3 (c), there exist 3
lines containing 4 points in X \ Kk. Two of them are Ki, i 6= k and
we denote the remaining one by Lk. By Proposition1 (c) applied to
the GC3 set X \ Kk, each line Lk intersects the lines Ki, i 6= k, at
a node in X \ Kk. Let us observe that L1, L2, L3 are the three lines
in KX\(K1∪K2∪K3). Again by Proposition 1 (c) applied to the GC1 set
X \ (K1 ∪ K2 ∪ K3), each line Lk intersects Li, i 6= k, at a node in
X \ (K1 ∪K2 ∪K3). Therefore each line Lk contains at least 4 nodes:
two of them are intersections with the lines Li, i 6= k, and the other
two are the intersections with the lines Ki, i 6= k. By assumption, only
K1, K2 and K3 contain 5 nodes and then |Lk ∩X| = 4. So we can label
the points in X in such a way that (4.1) holds.

The 5 points in the line Ki are the intersections Ki ∩Kj with the
other lines Kj , j 6= i, the intersections Ki ∩Lj with the lines Lj , j 6= i,
and one point xi,i+3 not placed on other lines L1, L2 or L3, or Kj ,
j 6= i.

Let Mk be the line passing through xi,i+3, xj,j+3, where i, j, k ∈
{1, 2, 3}, i, j 6= k, i < j. Using Proposition 1 (e) and taking into account
that Kk and Lk do not intersect at a node, we see that set X \(Kk∪Lk)
is GC2. By Proposition 3 (b), there exist 3 lines, each of them containing
3 points of the set X \ (Kk ∪ Lk). Two of them are Ki, Kj , i, j 6= k,
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i < j. The third line must contain the points xi,i+3, xj,j+3, xi+3,j+3,
i, j, k ∈ {1, 2, 3}, i, j 6= k, i < j and must therefore be Mk. So, each line
Mk contains a third node xi+3,j+3 = Li ∩Lj , i, j, k ∈ {1, 2, 3}, i, j 6= k,
i < j. This shows that (4.2) holds.

Conversely, if X is a set (2.1) such that (2.4), (4.1) and (4.2) holds,
then GC4 holds. A node xi+3,j+3, i, j ∈ {1, 2, 3}, i < j, uses the
lines K1,K2,K3 and the line Lk, k ∈ {1, 2, 3} \ {i, j}, passing through
{x45, x46, x56} \ {xi+3,j+3}. A node xi,i+3, i ∈ {1, 2, 3} uses the lines
Kj , Lj , j ∈ {1, 2, 3} \ {i}. A node xi,j+3, i, j ∈ {1, 2, 3}, i 6= j, uses
the lines Kl, l 6= {1, 2, 3} \ {i} and Lk, Mk for k ∈ {1, 2, 3} \ {i, j}.
Finally, the nodes xij , i, j ∈ {1, 2, 3}, i < j, use the lines Kk, Lk, Mk,
k ∈ {1, 2, 3} \ {i, j} and the line passing through xi,j+3 and xj,i+3.

The previous proposition shows an easy way of constructing a GC4

set with defect 3 (see Figure 8). Take any 3 straight lines K1,K2,K3

in general position in the plane and let xij = Ki ∩Kj , 1 ≤ i < j ≤ 3.
Take one point on each Ki different from the intersections with the
other two lines and denote it by xi,i+3, 1 ≤ i ≤ 3. Let M1 be the
straight line joining x25, x36, M2 the line joining x14, x36 and M3 the
line joining x14, x25. Take now any three points x56 ∈ M1, x46 ∈ M2

and x45 ∈ M3, none of them on the lines Kj , 1 ≤ j ≤ 3. Finally let L1

be the line joining x45, x46, L2 the line joining x45, x56, and L3 the line
joining x46, x56. If no line Li, 1 ≤ i ≤ 3, is parallel to any Kj , j 6= i, and
Kj ∩Li /∈ {x12, x13, x23}, j 6= i, then the intersections xj,i+3 = Kj ∩Li,
j 6= i, are the 6 remaining nodes of the GC4 set with defect 3.
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Matemática Argentina, 36 (1990), 33–38.

2. J. M. Carnicer and M. Gasca, Planar Configurations with Simple Lagrange
Formula, in: Mathematical Methods in CAGD: Oslo 2000, eds. Tom Lyche and
Larry L. Schumaker (Vanderbilt University Press, Nashville, TN, 2000) pp. 55–
62.

3. J. M. Carnicer and M. Gasca, A conjecture on multivariate polynomial inter-
polation, Revista de la Real Academia de Ciencias. Serie A. Matemáticas. 95
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