Classification of bivariate configurations with simple Lagrange interpolation formulae *

J. M. Carnicer and M. Gasca
Departamento de Matemática Aplicada. University of Zaragoza, Spain

Abstract

In 1977 Chung and Yao introduced a geometric characterization in multivariate interpolation in order to identify distributions of points such that the Lagrange functions are products of real polynomials of first degree. We discuss and describe completely all these configurations up to degree 4 in the bivariate case. The number of lines containing more nodes than the degree is used for classifying these configurations.

Keywords: bivariate interpolation, Lagrange formula, geometric characterization
AMS Subject Classification: 41A05, 65D05, 41A63

1. Introduction

Multivariate interpolation is a more difficult subject than univariate interpolation. One of the difficulties is that the solvability of the interpolation problem depends on the geometric properties of the set of interpolation points (nodes) [6]. For solvable problems, it is interesting to express the solution by simple interpolation formulae. In 1977 Chung and Yao introduced a geometric characterization (GC) for a set of nodes whose associated Lagrange polynomials are products of polynomials of first degree. If a set of nodes satisfies the GC condition, the Lagrange interpolation formula can be explicitly given by a simple expression in terms of the nodes, the data values and the lines used for checking the GC condition.

Many configurations of points satisfying the GC condition in the plane have been described $[4,2,7]$. However we are still far from knowing all possible configurations. A relevant conjecture was stated by Gasca and Maeztu in 1982: a set of nodes satisfying the GC condition for interpolation with polynomials of degree n must contain $n+1$ collinear points.

Busch [1] verified the conjecture for degrees less than or equal to 4 . Trying to shed more light on the conjecture, we have recently obtained another proof [3] with different arguments. However it seems difficult to extend those arguments to $n>4$.

[^0](c) 2002 Kluwer Academic Publishers. Printed in the Netherlands.

The information derived from the verification of the conjecture is crucial for analyzing the possible GC configurations of points because it introduces some simplifications in the analysis of the geometric characterization.

The purpose of this paper is to describe all GC configurations of points in the plane for degree ≤ 4. We think that knowing all possible GC configurations of low degree can be helpful to solve more cases of the conjecture and this in turn can be used for classifying partially or completely the GC configurations for higher degree.

In [2], the authors stated a conjecture stronger than the above mentioned one: in a GC configuration of nodes of degree n, the number of lines containing $n+1$ nodes must be at least 3 .

In section 2, we state both conjectures and review some auxiliary results for arbitrary degree. In section 3 , we describe the GC configurations up to degree 3 . The cases of degree $n=1,2$ are very simple and so, the section is especially devoted to the case $n=3$. We show that the number of lines containing 4 nodes is at least 3 and this information is used for describing all GC configurations for degree 3. In section 4, we show that the number of lines containing 5 nodes in GC configurations of degree 4 is at least 3 and we describe all these configurations.

2. Some conjectures on the geometric characterization

In the bivariate case, the GC condition can be stated as follows.
Definition 1. Let $X \subseteq \mathbb{R}^{2},|X|=(n+2)(n+1) / 2$. The set X satisfies the geometric characterization GC_{n} if for each $x \in X$, there exist lines $L_{1}^{x}, \ldots, L_{n}^{x}$ such that

$$
x \notin L_{1}^{x} \cup \cdots \cup L_{n}^{x}, \quad X \backslash\{x\} \subseteq L_{1}^{x} \cup \cdots \cup L_{n}^{x} .
$$

We say that the lines $L_{1}^{x}, \ldots, L_{n}^{x}$ are used by the node $x \in X$. The set of lines used by $x \in X$ is denoted by Γ_{x} and $\Gamma_{X}:=\bigcup_{x \in X} \Gamma_{x}$ is the set of lines used by some node.

Observe that if X satisfies GC_{n}, then the Lagrange interpolation problem on the set X is unisolvent in $\Pi_{n}\left(\mathbb{R}^{2}\right)$. This implies that the set of lines Γ_{x} is uniquely defined by the node x.

Let us precisely state the conjecture on the GC condition stated by Gasca and Maeztu [5].

CONJECTURE 1. Let $X \subseteq \mathbb{R}^{2}$ satisfy the GC_{n} condition. Then there exists a line in the plane containing $n+1$ points of X.

The lines containing $n+1$ points seem to be relevant for describing the GC configurations. The following Proposition summarizes some properties of these lines stated in Proposition 2.1 of [2] and Proposition 2.2 of [3] that will be useful in the rest of the paper.

PROPOSITION 1. Let X be a set of nodes satisfying the GC_{n} condition. Then
(a) No line contains more than $n+1$ points of X.
(b) If $n \geq 1$ and a line L contains $n+1$ points of X, then $L \in \Gamma_{X}$ and it is used by each point of X not lying on it.
(c) Two lines, each containing $n+1$ points of X, cannot be parallel. Their intersection belongs to X.
(d) Three lines, each containing $n+1$ points of X, cannot be concurrent.
(e) For any line L containing $n+1$ points of X, the set $X \backslash L$ satisfies the GC_{n-1} condition.

In order to describe the possible configurations we shall use the following notation

$$
\begin{gather*}
X=\left\{x_{i j} \in \mathbb{R}^{2} \mid i<j \in\{1, \ldots, n+2\}\right\}, \tag{2.1}\\
\mathcal{K}_{X}:=\left\{K \in \Gamma_{X}| | K \cap X \mid=n+1\right\}, \tag{2.2}\\
m=\left|\mathcal{K}_{X}\right|, \quad \mathcal{K}_{X}:=\left\{K_{1}, \ldots, K_{m}\right\} . \tag{2.3}
\end{gather*}
$$

Taking into account Proposition 1, we can assume that the indices have been arranged in such a way that that

$$
\begin{equation*}
x_{i j} \in K_{l} \Longleftrightarrow l=i \text { or } l=j, \tag{2.4}
\end{equation*}
$$

which means that $x_{i j}=K_{i} \cap K_{j}$ for all $i<j \leq m, x_{i j} \in K_{i} \backslash \bigcup_{r \neq i} K_{r}$, for all $i \leq m<j$ and $x_{i j} \notin \bigcup_{r=1}^{m} K_{r}$ for $m<i<j$.

The number $m=\left|\mathcal{K}_{X}\right|$ of lines containing $n+1$ points can be used for classifying all GC configurations of nodes. In [2], the concept of default was introduced for this purpose. It seems that the term defect is more appropriate. We thank the referee for warning us at this point.

Definition 2. Let $X \subseteq \mathbb{R}^{2}$ be a set satisfying the $G C_{n}$ condition. We say that X has defect d if the number of lines in \mathcal{K}_{X} is $n+2-d$.

If X is a GC_{n} set of defect 0 , then X is a natural lattice, that is, the set of all pairwise intersections of $n+2$ lines in general position.

In [2] all possible configurations of defect $0,1,2$ were described for arbitrary degree.

In all known GC configurations, we always find 3 lines with $n+1$ points, that is the defect is always less than or equal to $n-1$. The following conjecture was launched in [2].

CONJECTURE 2. Let $X \subseteq \mathbb{R}^{2}$ satisfy the GC_{n} condition. Then there exist at least three lines in the plane containing $n+1$ points of X, that is, $\left|\mathcal{K}_{X}\right| \geq 3$.

This conjecture is equivalent to saying that each node uses a line with $n+1$ nodes.

PROPOSITION 2. Let $X \subseteq \mathbb{R}^{2}$ satisfy the GC_{n} condition. Then the following statemens are equivalent
(a) There exist at least three lines in Γ_{X} containing $n+1$ points of X.
(b) For each $x \in X$, there exist a line in Γ_{x} containing $n+1$ points of X.

Proof. If (a) holds, then by Proposition 1 (c), (d), the 3 lines are in general position. So, for each $x \in X$, one of the 3 lines, say K, satisfies $x \notin K$. By Proposition 1 (b), x uses K, that is, $K \in \Gamma_{x}$.

Conversely if (b) holds, then we take $x_{1} \in X$ and K_{1} a line with $n+1$ nodes used by x_{1}. Now take $x_{2} \in K_{1} \cap X$ and K_{2} a line with $n+1$ nodes used by x_{2}. Since $x_{2} \notin K_{2}, K_{2} \neq K_{1}$. By Proposition 1 (c), $K_{1} \cap K_{2}$ is a node. Take $x_{3}=K_{1} \cap K_{2}$ and K_{3} a line with $n+1$ nodes used by x_{3}. Since $x_{3} \notin K_{3}$, the line K_{3} must be different from K_{1}, K_{2} and then (a) holds.

The following auxiliary result is well-known (see for instance Lemma 1 of [1]). We provide the proof for the sake of completeness.

LEMMA 1. Let $L_{1}, L_{2}, L_{3}, M_{1}, M_{2}, M_{3}$ be lines such that

$$
\left|\left(L_{1} \cup L_{2} \cup L_{3}\right) \cap\left(M_{1} \cup M_{2} \cup M_{3}\right)\right|=9 .
$$

If a cubic polynomial vanishes at 8 of the points in $\left(L_{1} \cup L_{2} \cup L_{3}\right) \cap$ $\left(M_{1} \cup M_{2} \cup M_{3}\right)$, then it also vanishes at the remaining point.

Proof. Let $x_{i j}=L_{i} \cap M_{j}, i, j=1,2,3$ and let p be a cubic polynomial vanishing at 8 of these points. Without loss of generality we may assume that p vanishes at all points of $\left(L_{1} \cup L_{2} \cup L_{3}\right) \cap\left(M_{1} \cup M_{2} \cup M_{3}\right) \backslash\left\{x_{33}\right\}$. Let x_{14} be any point lying on $M_{1} \backslash\left(L_{1} \cup L_{2} \cup L_{3}\right)$ and let x_{41} be any point in $L_{1} \backslash\left(M_{1} \cup M_{2} \cup M_{3}\right)$. Then the set $X=\left\{x_{i j} \mid i+j \leq 5\right\}$ is a $\Pi_{3}\left(\mathbb{R}^{2}\right)$-unisolvent set (because it is a system of order 3 as defined in [5]) and using the Lagrange formula we obtain
$p=\frac{p\left(x_{14}\right)}{L_{1}\left(x_{14}\right) L_{2}\left(x_{14}\right) L_{3}\left(x_{14}\right)} L_{1} L_{2} L_{3}+\frac{p\left(x_{41}\right)}{M_{1}\left(x_{41}\right) M_{2}\left(x_{41}\right) M_{3}\left(x_{41}\right)} M_{1} M_{2} M_{3}$,
which shows that p also vanishes at x_{33}.

Bivariate configurations with simple Lagrange formulae

3. GC configurations of degree less than 4

In this section we verify Conjecture 2 and describe all GC_{n} sets of nodes for $n=1,2,3$.

PROPOSITION 3. Let $X \subseteq \mathbb{R}^{2}$ be a GC_{n} set.
(a) If $n=1$, then X is formed by 3 nodes not in a line, $\left|\mathcal{K}_{X}\right|=3$ and the defect is 0 .
(b) If $n=2$, then $3 \leq\left|\mathcal{K}_{X}\right| \leq 4$ and the defect is 0 or 1 .
(c) If $n=3$, then $3 \leq\left|\mathcal{K}_{X}\right| \leq 5$ and the defect is either 0 , 1 or 2 .

Proof. (a) It is straightforward. A GC_{1} set X is formed by 3 points not in a line and then the 3 lines joining each pair of them are the lines with 2 nodes. Therefore, X is a natural lattice.
(b) Let X be a GC_{2} set and let $x \in X$. The GC_{2} condition implies that the 5 points of $X \backslash\{x\}$ must be distributed along 2 lines and one of them will have 3 points and no more by Proposition 1. So each point of X uses a line in \mathcal{K}_{X}. By Proposition 2, there exist at least 3 lines containing 3 nodes, that is the defect is 0 or 1 .
(c) From $[1,3]$ we know that there exists at least a line K_{1} containing 4 nodes.

Each point $x \in X \cap K_{1}$ uses 3 lines, each of them containing one point of K_{1}. The three lines of Γ_{x} must also contain the 6 points in $X \backslash K_{1}$. By Proposition 1 (e) $X \backslash K_{1}$ is a GC_{2} set. By Proposition 3 (b), there are 3 lines M_{1}, M_{2}, M_{3}, each of them containing 3 points of $X \backslash K_{1}$.

Let us assume that K_{1} is the only line containing 4 nodes. Then each line in Γ_{x} contains exactly 2 nodes in $X \backslash K_{1}$. Each of the 3 lines in Γ_{x} must contain at most (and at least) one vertex of the triangle with sides M_{1}, M_{2}, M_{3}. Let $N_{i j}$ be the line joining the vertex $M_{i} \cap M_{j}$ with the only point in $X \backslash\left(K_{1} \cup M_{i} \cup M_{j}\right), i \neq j \in\{1,2,3\}$ (see Figure 1). The lines N_{12}, N_{13}, N_{23} are the only lines containing exactly two points of $X \backslash K_{1}$ (one vertex of the triangle with sides M_{1}, M_{2}, M_{3} and a second node). Therefore $\Gamma_{x}=\left\{N_{12}, N_{13}, N_{23}\right\}$, for each $x \in K_{1} \cap X$. This is a contradiction because different points cannot use the same 3 lines.

So, we deduce that there exist at least two lines K_{1}, K_{2} containing 4 nodes. By Proposition 1 (c), K_{1} and K_{2} intersect at a node. By Proposition 1 (e), the set $X \backslash\left(K_{1} \cup K_{2}\right)$ is GC_{1}, that is, it consists of the 3 vertices of a triangle whose sides are denoted by L_{1}, L_{2}, L_{3}. Take $i \in\{1,2\}$ and let $j \neq i, j \in\{1,2\}$. Since, by Proposition 1 (e), $X \backslash K_{j}$ is GC_{2}, there exist three lines containing 3 nodes in $X \backslash K_{j}$. One of them is K_{i}; the other 2 lines must be in $\left\{L_{1}, L_{2}, L_{3}\right\}$ and intersect $K_{i} \backslash K_{j}$

Figure 1. Only the line K_{1} contains 4 nodes.

Figure 2. Two lines K_{1} and K_{2} contain 4 nodes.
at a node. So we have

$$
\left|\left(L_{1} \cup L_{2} \cup L_{3}\right) \cap\left(K_{i} \backslash K_{j}\right) \cap X\right| \geq 2, \quad j \in\{1,2\} \backslash\{i\}, \quad i \in\{1,2\}
$$

Then one of the lines in $\left\{L_{1}, L_{2}, L_{3}\right\}$ intersects both K_{1} at a node and K_{2} at another node (see Figure 2) and that line contains 4 nodes.

So, we have deduced that there exist at least three lines containing 4 nodes. The defect can be 0,1 , or 2 .

Now, let us use Proposition 3 in order to describe all sets of nodes satisfying $\mathrm{GC}_{n}, n=1,2,3$. All possible configurations with defect 0 , 1,2 and arbitrary degree have already been described in [2]. We use this information for describing completely all GC configurations up to degree 3.

Proposition 3 (a) means that a GC_{1} set of nodes in the plane is just a set of 3 noncollinear points. Let us describe now all possible GC_{2} configurations. If the defect is 0 , then X is a natural lattice and the 6 points are the vertices of a complete quadrilateral. If the defect is 1 , we use the notations (2.1-4) for the set of nodes and lines. The 3 vertices

Figure 3. GC ${ }_{2}$ configurations of defect 0 and 1.

Figure 4. GC 3 configurations of defect 0,1 and 2.
x_{12}, x_{13}, x_{23} of the triangle whose sides are the 3 lines K_{1}, K_{2}, K_{3} containing 3 nodes are in X and the remaining nodes x_{14}, x_{24}, x_{34} are not collinear and each one lies on a different side of the triangle, that is, $x_{i 4} \in K_{i}$. Figure 3 shows all possible GC_{2} configurations of defect 0,1 .

Finally, let us describe all possible GC_{3} configurations. If the defect is 0 , then we have a natural lattice and the vertices are the 10 intersections of 5 lines in general position. If the defect is 1 , then we have 4 lines intersecting in 6 nodes. Each of the 4 lines contains an additional node and these 4 nodes are not collinear. If the defect is 2 , we use the notations (2.1-4) in order to simplify the description. Then we have 3 lines K_{1}, K_{2}, K_{3} with 4 nodes and 3 concurrent lines L_{1}, L_{2}, L_{3}, each of them containing three nodes, $L_{1} \cap X=\left\{x_{24}, x_{35}, x_{45}\right\}, L_{2} \cap X=$ $\left\{x_{15}, x_{34}, x_{45}\right\}, L_{3} \cap X=\left\{x_{14}, x_{25}, x_{45}\right\}$.

Figure 4 shows all possible GC_{3} configurations of defect 0,1 and 2 .

4. GC configurations of degree 4

In order to verify Conjecture 2 for $n=4$, we proceed in two steps. First we show that there exist at least two lines with 5 nodes.

LEMMA 2. Let $X \subseteq \mathbb{R}^{2}$ be a GC_{4} set. Then $\left|\mathcal{K}_{X}\right| \geq 2$.

Figure 5. Only K_{1} contains 5 nodes.

Proof. From [1, 3], we know that \mathcal{K}_{X} contains at least one line K_{1}. By Proposition 1 (e), $X \backslash K_{1}$ is a GC_{3} set. By Proposition 3 (c) there are 3 lines M_{1}, M_{2}, M_{3}, each of them containing 4 points of $X \backslash K_{1}$. By Proposition 1 (c), $M_{i} \cap M_{j} \in X, i \neq j$ and therefore the set $M_{3} \cap X \backslash$ $\left(M_{1} \cup M_{2}\right)$ consists of two points y_{1}, y_{2}. Let N_{1} (respectively N_{2}) be the line passing through $z=M_{1} \cap M_{2}$ and y_{1} (respectively y_{2}).

Each point $x \in X \cap K_{1}$ uses 4 lines, each of them containing one point of $K_{1} \backslash\{x\}$. If $M_{i} \in \Gamma_{x}$, then $M_{i} \cap K_{1} \cap X \neq \emptyset$ and $\left|M_{i} \cap X\right| \geq 5$. So, in this case, a second line contains 5 nodes and the statement of the Lemma holds.

Let us assume that K_{1} is the only line containing 5 nodes. Then no line in $\Gamma_{x}, x \in K_{1} \cap X$, is in the set $\left\{M_{1}, M_{2}, M_{3}\right\}$. Since any line M_{i} contains exactly 4 nodes and Γ_{x} consists of 4 lines none of them being M_{i}, we have

$$
\left|L \cap M_{i} \cap X\right|=1, \quad \forall L \in \Gamma_{x}, \quad i=1,2,3 .
$$

On the other hand, one of the lines in Γ_{x} must contain $z=M_{1} \cap M_{2}$. It follows that either N_{1} or N_{2} is in Γ_{x}.

Taking into account that $K_{1} \cap X$ contains 5 points and each one uses N_{1} or N_{2}, there must exist two nodes $x_{i} \in K_{1} \cap X, i=1,2$, using the same line, say N_{1}. Each of the three lines in $\Gamma_{x_{i}} \backslash\left\{N_{1}\right\}$ intersects each of the three lines K_{1}, M_{1}, M_{2} at points of X. The three nodes placed in each M_{i} are $M_{i} \cap X \backslash\left(M_{1} \cap M_{2}\right), i=1,2$ and the three points in K_{1} are $K_{1} \backslash\left(N_{1} \cup\left\{x_{i}\right\}\right)$ (See Figure 5).

So, the three lines $L_{1}, L_{2}, L_{3} \in \Gamma_{x_{1}} \backslash\left\{N_{1}\right\}$ intersect the lines K_{1}, M_{1}, M_{2} at 9 points. The Lagrange function associated to x_{2} is of the form $N_{1} p$, where p is a cubic polynomial vanishing on the three lines of $\Gamma_{x_{2}} \backslash\left\{N_{1}\right\}$. So, it vanishes at eight of the points of $\left(K_{1} \cup M_{1} \cup M_{2}\right) \cap\left(L_{1} \cup L_{2} \cup L_{3}\right)$
but not at the other one, x_{2}. This contradicts Lemma 1, showing that the assumption that K_{1} is the only line containing 5 nodes leads to a contradiction. So, $\left|\mathcal{K}_{X}\right| \geq 2$.

PROPOSITION 4. Let $X \subseteq \mathbb{R}^{2}$ be a GC_{4} set. Then $3 \leq\left|\mathcal{K}_{X}\right| \leq 6$ and the defect is either 0, 1, 2 or 3.

Proof. By Lemma 2, there exist two lines K_{1}, K_{2} containing at least 5 nodes. By Proposition 1 (c), $\left|K_{1} \cap K_{2} \cap X\right|=1$. By Proposition 1 (e), $X \backslash\left(K_{1} \cup K_{2}\right)$ is a GC_{2} set and, by Proposition 3 (b), the set $\mathcal{K}_{X \backslash\left(K_{1} \cup K_{2}\right)}$ is formed by 3 or 4 lines. On the other hand, $X \backslash K_{i}$ is a GC_{3} set, and, by Proposition 3 (c), there exist 3 lines each of them containing 4 points of $X \backslash K_{i}$. One of these lines must be $K_{j}, j \in\{1,2\} \backslash\{i\}$ and the other two $L_{i 1}, L_{i 2}$ must be in $\mathcal{K}_{X \backslash\left(K_{1} \cup K_{2}\right)}$ and have a node in $K_{j} \backslash K_{i}$.

If any of the lines $L_{i 1}, L_{i 2}, i=1,2$ intersects K_{i} at a node then this line would have 5 nodes and the Proposition follows.

Otherwise, the lines $L_{i 1}, L_{i 2}, i=1,2$ have only 4 nodes and $L_{i 1} \cap K_{i} \cap$ $X=L_{i 2} \cap K_{i} \cap X=\emptyset, i=1,2$. This means that $\left|\mathcal{K}_{X \backslash\left(K_{1} \cup K_{2}\right)}\right|=4$ and the set $X \backslash\left(K_{1} \cup K_{2}\right)$ is a natural lattice. Let us take $x:=L_{21} \cap K_{1} \in X$ and identify the lines in Γ_{x} (see Figure 6).

By Proposition 1 (b), the line K_{2} (containing 5 nodes) belongs to Γ_{x}. By Proposition 1 (a), $X \backslash K_{2}$ is GC_{3} and, using Proposition 1 (b), it is easy to see that the line L_{22} (containing 4 nodes) belongs to Γ_{x}. The 5 remaining nodes form the set $X \backslash\left(K_{2} \cup L_{22} \cup\{x\}\right)$. Two of them are in $K_{1} \backslash\left(L_{21} \cup L_{22}\right)$, other two in $L_{21} \cap\left(L_{11} \cup L_{12}\right)$ and the last one is $L_{11} \cap L_{22}$. These 5 nodes must be placed in the 2 lines of $\Gamma_{x} \backslash\left\{K_{2}, L_{22}\right\}$, which cannot be either K_{1} or L_{21}. So there exists a line in $\Gamma_{x} \backslash\left\{K_{2}, L_{22}\right\}$ containing 3 nodes: one in $K_{1} \backslash\left(L_{21} \cup L_{22}\right)$, another one in $L_{21} \cap\left(L_{11} \cup L_{12}\right)$ and the third one is $L_{11} \cap L_{22}$. Then the line must be L_{11} or L_{12} and it intersects K_{1} at a node, contradicting our assumption. Therefore $\left|\mathcal{K}_{X}\right| \geq 3$.

Now we are ready to describe all GC_{4} sets. All these sets have 15 nodes. The cases of defect $0,1,2$ have been described in [2]. If the defect is 0 , then we have a natural lattice, that is the 15 pairwise intersections of 6 lines in general position. The case of defect 1 can also be easily described: 5 lines $K_{i}, i=1,2,3,4,5$, in general position intersecting at 10 points and the remaining 5 points are not collinear each of them placed on a different line $K_{i}, i=1,2,3,4,5$.

In order to simplify the description of the GC_{4} sets with defect 2 , let us use the notations (2.1-4). We have 4 lines K_{i} containing 5 nodes, $i=1,2,3,4$. Three of the 5 nodes in $X \cap K_{i}$ are the intersection with the remaining lines $K_{j}, x_{i j}=K_{i} \cap K_{j}, j \in\{1,2,3,4\} \backslash\{i\}, i \in$

Figure 6. Proof of the existence of a third line containing 5 nodes.

Figure 7. GC 4_{4} configurations of defect 0,1 and 2 .
$\{1,2,3,4\}$. Only one node x_{56} lies outside the lines containing 5 nodes. The additional nodes $x_{i 5}, x_{i 6}$ on the lines $K_{i}, i=1,2,3,4$, are contained in 3 lines L_{1}, L_{2}, L_{3} which are concurrent at the node $x_{56} \in L_{1} \cap L_{2} \cap L_{3}$. Each line L_{i} contains 3 or 4 nodes. More precisely, two of them contain 4 nodes and the remaining one 3 nodes.

Figure 7 shows GC_{4} configurations of defect 0,1 and 2 .
Let us now describe the GC_{4} sets with defect 3 .

Figure 8. A GC4 configuration of defect 3.

PROPOSITION 5. A set X is GC_{4} with defect 3 if and only if the nodes can be labelled in the form (2.1) and the following properties simultaneously hold:
(i) There exist lines K_{1}, K_{2}, K_{3} in general position, containing 5 nodes, such that (2.4) holds.
(ii) There exist lines L_{1}, L_{2}, L_{3} in general position, containing 4 nodes, such that
$x_{i j} \in L_{k} \Longleftrightarrow(j=k+3,1 \leq i \leq 3, i \neq k)$ or $(4 \leq i<j \leq 6, k+3 \in\{i, j\})$
for each $k \in\{1,2,3\}$.
(iii) There exist lines M_{1}, M_{2}, M_{3} in general position, containing 3 nodes, such that
$x_{i j} \in M_{k} \Longleftrightarrow(j=i+3,1 \leq i \leq 3, i \neq k)$ or $(4 \leq i<j \leq 6, k+3 \notin\{i, j\})$
for each $k \in\{1,2,3\}$.
Proof. Let X be a GC_{4} with defect 3 . Then the nodes can be labelled such that $(2.1-4)$ hold for $m=3$. By Proposition 1 (e), the set $X \backslash$ $\left(K_{1} \cup K_{2} \cup K_{3}\right)$ is GC_{1} and it consists of 3 points x_{45}, x_{46}, x_{56}, forming a triangle. The 3 sides of the triangle are the lines in $\mathcal{K}_{X \backslash\left(K_{1} \cup K_{2} \cup K_{3}\right)}$ each of them containing 2 points of $X \backslash\left(K_{1} \cup K_{2} \cup K_{3}\right)$. For $k \in$ $\{1,2,3\}, X \backslash K_{k}$ is a GC_{3} set and by Proposition 3 (c), there exist 3 lines containing 4 points in $X \backslash K_{k}$. Two of them are $K_{i}, i \neq k$ and we denote the remaining one by L_{k}. By Proposition1 (c) applied to the GC_{3} set $X \backslash K_{k}$, each line L_{k} intersects the lines $K_{i}, i \neq k$, at a node in $X \backslash K_{k}$. Let us observe that L_{1}, L_{2}, L_{3} are the three lines in $\mathcal{K}_{X \backslash\left(K_{1} \cup K_{2} \cup K_{3}\right)}$. Again by Proposition 1 (c) applied to the GC_{1} set $X \backslash\left(K_{1} \cup K_{2} \cup K_{3}\right)$, each line L_{k} intersects $L_{i}, i \neq k$, at a node in $X \backslash\left(K_{1} \cup K_{2} \cup K_{3}\right)$. Therefore each line L_{k} contains at least 4 nodes: two of them are intersections with the lines $L_{i}, i \neq k$, and the other two are the intersections with the lines $K_{i}, i \neq k$. By assumption, only K_{1}, K_{2} and K_{3} contain 5 nodes and then $\left|L_{k} \cap X\right|=4$. So we can label the points in X in such a way that (4.1) holds.

The 5 points in the line K_{i} are the intersections $K_{i} \cap K_{j}$ with the other lines $K_{j}, j \neq i$, the intersections $K_{i} \cap L_{j}$ with the lines $L_{j}, j \neq i$, and one point $x_{i, i+3}$ not placed on other lines L_{1}, L_{2} or L_{3}, or K_{j}, $j \neq i$.

Let M_{k} be the line passing through $x_{i, i+3}, x_{j, j+3}$, where $i, j, k \in$ $\{1,2,3\}, i, j \neq k, i<j$. Using Proposition 1 (e) and taking into account that K_{k} and L_{k} do not intersect at a node, we see that set $X \backslash\left(K_{k} \cup L_{k}\right)$ is GC_{2}. By Proposition $3(\mathrm{~b})$, there exist 3 lines, each of them containing 3 points of the set $X \backslash\left(K_{k} \cup L_{k}\right)$. Two of them are $K_{i}, K_{j}, i, j \neq k$,
$i<j$. The third line must contain the points $x_{i, i+3}, x_{j, j+3}, x_{i+3, j+3}$, $i, j, k \in\{1,2,3\}, i, j \neq k, i<j$ and must therefore be M_{k}. So, each line M_{k} contains a third node $x_{i+3, j+3}=L_{i} \cap L_{j}, i, j, k \in\{1,2,3\}, i, j \neq k$, $i<j$. This shows that (4.2) holds.

Conversely, if X is a set (2.1) such that (2.4), (4.1) and (4.2) holds, then GC_{4} holds. A node $x_{i+3, j+3}, i, j \in\{1,2,3\}, i<j$, uses the lines K_{1}, K_{2}, K_{3} and the line $L_{k}, k \in\{1,2,3\} \backslash\{i, j\}$, passing through $\left\{x_{45}, x_{46}, x_{56}\right\} \backslash\left\{x_{i+3, j+3}\right\}$. A node $x_{i, i+3}, i \in\{1,2,3\}$ uses the lines $K_{j}, L_{j}, j \in\{1,2,3\} \backslash\{i\}$. A node $x_{i, j+3}, i, j \in\{1,2,3\}, i \neq j$, uses the lines $K_{l}, l \neq\{1,2,3\} \backslash\{i\}$ and L_{k}, M_{k} for $k \in\{1,2,3\} \backslash\{i, j\}$. Finally, the nodes $x_{i j}, i, j \in\{1,2,3\}, i<j$, use the lines K_{k}, L_{k}, M_{k}, $k \in\{1,2,3\} \backslash\{i, j\}$ and the line passing through $x_{i, j+3}$ and $x_{j, i+3}$.

The previous proposition shows an easy way of constructing a $G C_{4}$ set with defect 3 (see Figure 8). Take any 3 straight lines K_{1}, K_{2}, K_{3} in general position in the plane and let $x_{i j}=K_{i} \cap K_{j}, 1 \leq i<j \leq 3$. Take one point on each K_{i} different from the intersections with the other two lines and denote it by $x_{i, i+3}, 1 \leq i \leq 3$. Let M_{1} be the straight line joining x_{25}, x_{36}, M_{2} the line joining x_{14}, x_{36} and M_{3} the line joining x_{14}, x_{25}. Take now any three points $x_{56} \in M_{1}, x_{46} \in M_{2}$ and $x_{45} \in M_{3}$, none of them on the lines $K_{j}, 1 \leq j \leq 3$. Finally let L_{1} be the line joining x_{45}, x_{46}, L_{2} the line joining x_{45}, x_{56}, and L_{3} the line joining x_{46}, x_{56}. If no line $L_{i}, 1 \leq i \leq 3$, is parallel to any $K_{j}, j \neq i$, and $K_{j} \cap L_{i} \notin\left\{x_{12}, x_{13}, x_{23}\right\}, j \neq i$, then the intersections $x_{j, i+3}=K_{j} \cap L_{i}$, $j \neq i$, are the 6 remaining nodes of the $G C_{4}$ set with defect 3 .

References

1. J. R. Busch, A note on Lagrange interpolation in \mathbb{R}^{2}, Revista de la Unión Matemática Argentina, 36 (1990), 33-38.
2. J. M. Carnicer and M. Gasca, Planar Configurations with Simple Lagrange Formula, in: Mathematical Methods in CAGD: Oslo 2000, eds. Tom Lyche and Larry L. Schumaker (Vanderbilt University Press, Nashville, TN, 2000) pp. 5562.
3. J. M. Carnicer and M. Gasca, A conjecture on multivariate polynomial interpolation, Revista de la Real Academia de Ciencias. Serie A. Matemáticas. 95 (2001) 145-153.
4. K. C. Chung and T. H. Yao, On lattices admitting unique lagrange interpolation, SIAM J. Numer. Anal. 14 (1977), 735-743.
5. M. Gasca and J. I. Maeztu, On Lagrange and Hermite interpolation in \mathbb{R}^{n}, Numer. Math. 39 (1982), 1-14.
6. M. Gasca and T. Sauer, Polynomial interpolation in several variables, Adv. Comp. Math., 12 (2000), 377-410.
7. S. L. Lee and G. M. Phillips, Construction of lattices for Lagrange interpolation in projective space, Constr. Approx. 7 (1991), 283-297.

[^0]: * Research partially supported by the Spanish Research Grant BFM2000-1253

