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Abstract. Bivariate Hermite-Birkhoff interpolation problems with an
asymptotic condition on some straight lines are studied, using a New-
ton approach. The existence and uniqueness of solution in an adequate
polynomial space is proved. Special attention is paid to the case of vanish-
ing asymptotic conditions, which allows us to describe by a characteristic
property the interpolation space when there is no asymptotic condition.

§1. Introduction

Let f be a function IR → IR such that there exist a positive integer M
and a real number AM satisfying

f(x) = AMxM + o(|x|M ), |x| → ∞. (1)

If we want to approximate f(x) by a polynomial, one of the possibilities
which can be considered natural is to choose as approximant a polynomial of
the form

p(x) = AMxM + p̂(x) (2)

with p̂ a polynomial of degree not greater than M − 1. The polynomial p can
be determined, for example, by M interpolation conditions. More precisely,
let us consider a Hermite-Birkhoff (or Birkhoff) interpolation problem with
M data of the type f (i)(xj) which is poised in ΠM−1 (space of polynomials
of degree not greater than M − 1), i.e. there exists a unique solution of the
problem in ΠM−1 for any f. The problem of finding p of the form (2) such
that

p(i)(xj) = f (i)(xj) ∀i, j, (3)

has, obviously, a unique solution (2), with p̂ satisfying

p̂(i)(xj) = g(i)(xj) ∀i, j,

for g(x) = f(x)−AMxM .
Since (1) and (2) mean that

lim
x→∞

p(x)
xM

= lim
x→∞

f(x)
xM

, (4)
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we can call (4) an asymptotic condition for p with respect to f. If we denote
by f∗M the value

f∗M = lim
x→∞

f(x)
xM

for a function f when this limit is finite, as for example for f ∈ ΠM , then p
can be considered as an interpolation polynomial of degree not greater than
M which matches the function f at the data f (i)(xj) and f∗M , i.e.

p(i)(xj) = f (i)(xj), ∀i, j,
p∗M = f∗M .

We can say that p is the solution of an interpolation problem with an asymp-
totic condition. As we have explained above, this problem is immediately
reducible to an ordinary Hermite-Birkhoff problem with one degree less.

Similarly we may consider bivariate functions satisfying

f(x, y) = f∗M (x, y) + o
(
|(x, y)|M

)
, |(x, y)| → ∞, (5)

where |(x, y)| denotes the euclidean norm of (x, y) and f∗M (x, y) is a homoge-
nous polynomial of degree M . If we know f∗M , the problem of approximating
f by polynomials

p(x, y) = f∗M (x, y) + p̂(x, y),

with p̂ ∈ ΠM−1(x, y), can be reduced to an ordinary interpolation problem as
in the univariate case.

The problem becomes more interesting for functions such that (5) holds
when we do not know explicitly f∗M , but the asymptotic values of f along
some given directions. In this case the problem is not so easily reducible to a
simpler one.

Some years ago, Gasca and Maeztu [4] introduced a Newton approach to
deal with bivariate Hermite-Birkhoff interpolation problems, by considering
the data distributed along a set of straight lines. The aim of this paper is
twofold: on one hand, we want to study bivariate interpolation problems
with asymptotic conditions along some straight lines, using the techniques of
[4]. On the other hand, we want to show that some interpolation problems
considered by Dyn and Ron in [3] and by Bojanov, Hakopian and Sahakian in
[1] and [6], can be stated in the present framework in a simpler form. Those
authors provided a Lagrange formula and a compact characterization of the
interpolation space, while our technique provides a Newton formula and a
description of the space as the space generated by the Newton basis.

In the next section we state the problem and prove the existence and
uniqueness of the solution, showing that the matrix of the linear system as-
sociated to the problem is lower triangular and nonsingular. In Section 3 we
take advantage of the triangularity of the matrix to construct the coefficients
of the polynomial which solves the problem by a recurrence formula. That is
, we find a Newton formula for this problem. In the last section we show the
connections of [3] with the results of the precedent sections and we give some
examples.
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§2. Statement of the problem

Let r(x, y) = ax+by+c, (a, b) 6= (0, 0) be a bivariate polynomial of exact
degree one. Then the set of points {(x, y) ∈ IR2 | ax+ by+c = 0} is a straight
line whose equation is r = 0. Conversely, given any line of the plane there
exists a polynomial of degree one r(x, y) = ax+by+c, (a, b) 6= (0, 0), such that
r = 0 is the equation of that line. Since the polynomial r is defined only up to a
constant factor, we may choose r such that, for example (a, b) = (cos θ, sin θ),
for some θ ∈ (−π/2, π/2] or any other suitable choice. Once the polynomial
r has been chosen, it will remain unchanged. In the rest of the paper r
will indistinctly denote the polynomial of degree one and also, by abuse of
notation, the straight line whose equation is r = 0.

A general interpolation problem can be understood as the problem of
finding a function of a certain linear space satisfying a set of linear conditions.
In bivariate problems the set of conditions and the elements of a basis of the
space can be indexed taking into account the relative position of the data
points. For this reason we shall introduce a set of indices I with a special
structure:

I = {(i, j)|i = 0, 1, . . . ,m; j = 0, 1, . . . ,m(i)}, (6)

where m(0), . . . ,m(n) are nonnegative integers. We shall use the lexicograph-
ical order

(i, j) < (k, l) ⇐⇒ i < k or (i = k and j < l). (7)

The interpolation space will be a subspace of dimension #I of the space of
bivariate polynomials. The degree of all polynomials of the space will be less
than or equal to

M := max{i + j | (i, j) ∈ I}. (8)

Usually the set of indices is rearranged in order to have m(0) ≥ · · · ≥ m(n)
to keep the maximal degree of the interpolating functions as low as possible.

Each element Lij , (i, j) ∈ I of the data set is supported on a single point
uij , unless an asymptotic condition is introduced. We shall use a set of flags
wij indicating which kind of condition is introduced. If wij = 1 then Lijf is
the value of f or some derivative of f at uij , whereas if wij = 0 we associate to
the index (i, j) an asymptotic condition. Generally this association of indices
and points in the plane will be helpful, as suggested by [4], only if we are able
to arrange the points in some structure. A first requirement is that all points
{uij | j = 0, . . . ,m(i)} are collinear, belonging to the same line ri. In order
to mark the position of the different points uij , j = 0, . . . ,m(i), on the line ri

we shall use a set of transversal (that is, neither parallel nor coincident) lines
rij such that ri ∩ rij = uij .

Extending some ideas introduced in [4] [5] among other papers, we define
an interpolation system as a set of triples

S = {(ri, rij , wij) | (i, j) ∈ I)}, (9)

satisfying the following conditions:
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Condition 1. I is a set of the form (6) and wij = 1 for all (i, j) ∈ I with
i + j < M , where M is given by (8).

Condition 2. For each (i, j) ∈ I such that wij = 1 ,the lines ri, rij intersect
at exactly one point uij .

Condition 3. If wi,M−i = 0 for some i with (i, M − i) ∈ I, then ri is
transversal to rh for all h < i.

Let us remark that parallel or coincident lines are allowed in S, the only
lines which have to be transversal are ri and rij for all (i, j) ∈ I with wij = 1.

If wij = 1 for all (i, j), the interpolation system will give rise to a Hermite–
Birkhoff interpolation problem of the type considered in [4]. Else we will
have a Hermite–Birkhoff interpolation problem with additional asymptotic
conditions along some lines.

As usual, for any vector v = (a, b) we denote by

Dvf(x, y) = a
∂f

∂x
+ b

∂f

∂y

the directional derivative along v. For a given interpolation system S we
define the Newton basis, B(S), as the set of polynomials

φij =
i−1∏
h=0

rh

j−1∏
k=0

rik, (i, j) ∈ I, (10)

where the empty products (when i = 0 or j = 0) equal 1 by convention. We
shall see later that these polynomials are linearly independent and why we
may call this set a Newton basis.

The interpolation space V (S) of our problem is the space spanned by the
polynomials φij of B(S). Consequently, it will be a subspace of ΠM , the space
of bivariate polynomials of total degree not greater than M .

We associate to each (i, j) ∈ I with wij = 1 the numbers si and tij . The
number of lines rh, h < i, which are coincident with ri will be denoted by si

and the number of lines r0, r1, . . . , ri−1, ri0, ri1, . . . , ri,j−1, which contain uij

but are not coincident with ri will be denoted by tij .
Let us now consider the space VM of bivariate functions f satisfying (5).

Obviously, the space VM contains the space ΠM .
For f ∈ VM , a given vector v different from zero and a point u0 ∈ IR2,

f(u0 + τv) is a function of the parameter τ ∈ IR, which gives the values of f
at the points of the line passing by u0 with the direction of v. Then we have

f∗M (v) = lim
|τ |→∞

f(u0 + τv)
τM

. (11)

We observe that the value of f∗M (v) is independent of the choice of u0.
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Let us define now the set of interpolation data associated to the system
S:

Lijf :=

{
Dsi

ρij
Dtij

ρi
f(uij), if wij = 1,

f∗M (ρi), if wij = 0,
∀(i, j) ∈ I, (12)

where ρi, ρij is a suitable choice of the directional vectors of the lines ri, rij ,
respectively. We denote by P (S) the interpolation problem defined by the
linear forms Lij , (i, j) ∈ I on the space V (S) generated by the polynomials
φij , (i, j) ∈ I.

Let us see an example including all these notations.

Example 1. Take

r0(x, y) = x, r1(x, y) = y, r2(x, y) = y, r3(x, y) = x− y,

r00(x, y) = r01(x, y) = y, r02(x, y) = r03(x, y) = r04(x, y) = y − 1,
r10(x, y) = x,
r20(x, y) = x, r21(x, y) = x− 1,
r30(x, y) = r31(x, y) = x− 1.

Then we have

u00 = u01 = (0, 0), u02 = u03 = u04 = (0, 1),
u10 = u20 = (0, 0), u21 = (1, 0), u30 = u31 = (1, 1),

and our choice for the directional vectors is

ρ0 = ρ10 = ρ20 = ρ21 = ρ30 = ρ31 = (0, 1),
ρ1 = ρ2 = ρ00 = ρ01 = ρ02 = ρ03 = ρ04 = (1, 0),
ρ3 = (1, 1).

The Newton basis B(S) is

{1, y, y2, y2(y − 1), y2(y − 1)2, x, xy, x2y, xy2, xy2(x− 1)}.

Here the maximal degree is M = 4, and the corresponding multiplicities of
the derivatives are:

s0 = s1 = 0, s2 = 1, s3 = 0,

t00 = 0, t01 = 1, t02 = 0,

t10 = t20 = t21 = 1, t30 = 0, t31 = 1.

According to condition 2, wij must be 1 except for (i, j) ∈ {(0, 4), (3, 1)},
where we can take the value 1 or 0.

The interpolation space V (S) is spanned by B(S) and consequently is a
subspace of Π4. It can be easily shown that V (S) can also be generated by
the monomial basis

{1, x, y, xy, y2, x2y, xy2, y3, x2y2, y4},
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but this is not a Newton basis as B(S) is.
The linear forms Lij are, for i + j ≤ 4,

L00f = f(0, 0), L01f =
∂f

∂y
(0, 0), L02f = f(0, 1), L03f =

∂f

∂y
(0, 1),

L10f =
∂f

∂x
(0, 0),

L20f =
∂2f

∂x∂y
(0, 0), L21f =

∂f

∂y
(1, 0),

L30f = f(1, 1),

and the linear forms L04 and L31 are

L04f =


∂2f

∂y2
(0, 1), if w04 = 1,

lim
|τ |→∞

f(0, τ)
τ4

, if w04 = 0,

L31f =


∂f

∂x
(1, 1) +

∂f

∂y
(1, 1), if w31 = 1,

lim
|τ |→∞

f(τ, τ)
τ4

, if w31 = 0.

Let us now analyse the existence of solutions of our interpolation problem
P (S).

Theorem 1. Let S be an interpolation system satisfying conditions 1,2,3.
Let P (S) be the interpolation problem defined by the linear forms Lij of (12)
and the space V (S) spanned by the polynomials φij of (10). For each set of
real numbers zij , (i, j) ∈ I, there exists a unique polynomial p ∈ V (S) such
that

Lijp = zij , for all (i, j) ∈ I.

Moreover the matrix

(Lijφhk)(i,j),(h,k)∈I (13)

is lower triangular, for the row indices (i, j) and column indices (h, k) ordered
by (7).

Proof: Any polynomial p ∈ V (S) can be written in the form

p =
∑

(h,k)∈I

ahkφhk (14)

with φij given by (9). Then the existence and uniqueness of solution of P (S)
is equivalent to the nonsingularity of the matrix (13). In order to show that
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this matrix is non-singular, we shall prove that it is lower triangular with
nonzero diagonal elements:

Lijφhk = 0 for all (i, j) < (h, k), Lijφij 6= 0 for all (i, j) ∈ I. (15)

If wij = 1 for all (i, j) ∈ I then the problem P (S) is identical to the one
considered in [4]. In fact, in Theorem 1 of [4] it was shown that (15) holds in
that case. The same arguments allows to prove (15) in the general case, for
any (i, j) with wij = 1. In order to complete the proof we only need to verify
that it holds too for all (i, j) ∈ I with wij = 0. By conditions 2, 3 we must
have that j = M − i.

Take now i ∈ {0, . . . , n} such that wi,M−i = 0. Observe that for a poly-
nomial φ ∈ ΠM , Li,M−iφ = φ∗M (ρi) is precisely the value of the homogeneous
part of degree M of φ evaluated at the vector ρi.

If (i,M − i) < (h, k) then, by (10), h > i and ri is a factor of φhk. Since

φ∗Mhk =
h−1∏
µ=0

r∗1µ

k−1∏
ν=0

r∗1hν , (16)

and r∗1i (ρi) = 0, we have that Li,M−iφh,k = 0.
Finally, let us check that Li,M−iφi,M−i 6= 0. Clearly

φ∗Mi,M−i =
i−1∏
µ=0

r∗1µ

M−i−1∏
ν=0

r∗1iν . (17)

By Condition 3, the direction ρi of ri is not the same as the direction of the
lines rµ with µ < i and so r∗1µ (ρi) = Dρi

rµ 6= 0 for all µ > i. By Condition 1,
we also have that the direction ρi of ri is not the same as the direction of the
lines riν , ν = 0, . . . ,M− i−1, and, analogously, we have r∗1iν (ρi) = Dρiriν 6= 0
for all ν < M − i. Therefore

Li,M−iφi,M−i =
i−1∏
µ=0

r∗1µ (ρi)
M−i−1∏

ν=0

r∗1iν (ρi) 6= 0,

and so we have proved that (15) holds.

Remark 1. Observe that, for any (i,m(i)) with wi,m(i) = 1, the role of rim(i)

is only to indicate the point uim(i) used in Lim(i), but rim(i) does not appear
as a factor in any of the polynomials φhk. When wi,m(i) = 0, rim(i) is neither
used for the construction of the functional Lim(i) nor for the construction of
the basis B(S) and can be taken arbitrarily.
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§3. Construction of the solution

As a consequence of Theorem 1, we derive that the solution p written
in the form (14) of the interpolation problem P (S) can be constructed by
recurrence. The fact that the matrix (13) is lower triangular implies that

Lijp =
∑

(h,k)<(i,j)

ahkLijφhk (18)

and, therefore, the coefficients ahk can be computed using the following re-
currence relations:

a00 :=
z00

L00φ00
,

aij :=
zij −

∑
(h,k)<(i,j) ahkLijφhk

Lijφij
.

(19)

The similarity between this recurrence relation and the one for defining uni-
variate divided differencies justifies the name Newton basis which we give
to B(S). Analogously formula (14) can be called Newton formula and the
coefficients aij of (14) defined by the recursion (19) can be seen as divided
differences associated to the problem P (S), playing a similar role to that of
univariate divided differences.

Usually the numbers zij are the values of Lijf for a given function f and
we say that p interpolates f . In our case, this means that p matches f at
some points, some of the derivatives of p match the corresponding ones of f
and that the asympotic behaviour along certain prescribed directions of f is
reproduced by p. Then we can rewrite (19) as

a00 :=
L00f

L00φ00
,

aij :=
Lijf −

∑
(h,k)<(i,j) ahkLijφhk

Lijφij
.

(20)

Observe that if wi,M−i = 0 for some i then Li,M−iφhk = 0 for all
(h, k) with h + k < M . Therefore the row indexed with (i, M − i), namely
(Li,M−iφhk)(h,k)∈I has zeros on all columns indexed by (h, k) with h+k < M
and also on all columns with (h, k) > (i, j). So, we can write

ai,M−i :=
Lijf −

∑
h<i;(h,M−h)∈I ah,M−hLi,M−iφh,M−h

Li,M−iφi,M−i
. (21)

Note that the sum includes only terms with h < i satisfying (h, M − h) ∈ I.
In particular if

wh,M−h = 0, for all h such that (h, M − h) ∈ I, (22)
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then the coefficients ah,M−h (corresponding to the terms of highest degree of
the polynomial p) can be computed independently of the other ones. More
precisely, if i0 < · · · < ik are just the numbers such that (il,M − il) ∈ I,
l = 0, 1, . . . , k, we may compute (21) in the form

ai0,M−i0 =
Li0,M−i0f

Li0,M−i0φi0,M−i0

,

ail,M−il
=

Lil,M−il
f −

∑l−1
h=0 aih,M−ih

Lil,M−il
φih,M−ih

Lil,M−il
φil,M−il

, l = 1, . . . , k.

(23)
Once we have computed the coefficients ail,M−il

of the polynomials φil,M−il

of the highest degree we may define

pM :=
k∑

l=0

ail,M−il
φil,M−il

.

Now we may regard the polynomial p̂ := p−pM of degree less than or equal to
M − 1 as the solution of an ordinary Hermite–Birkhoff interpolation problem
(in the sense of [4]) interpolating the function f −pM instead of f at the data
Li,j corresponding to (i, j) ∈ I with i + j < M .

Remark 2. The recurrence relation (23) holds even if (22) does not hold be-
cause wh,M−h = 1 for some h, provided that the corresponding Li,M−iφh,M−h

(h < i) vanishes. This happens if and only if at least one of the lines
rh0, . . . , rh,M−h−1 has the direction of ri. Recall that Condition 3 implies
that no line rj with j < i can have the direction of ri.

Another consequence of Theorem 1 is that the polynomials φij of B(S)
are linearly independent. Furthermore, if

n = M, m(i) = M − i, i = 0, . . . ,M, (24)

or equivalently if I = {(i, j) | i + j ≤ M}, then one has #I =
(
M+2

2

)
,

which is exactly the dimension of ΠM . Hence, in this case, V (S) = ΠM .
Conversely, it is straightforward to see that the unique choice of I which
produces V (S) = ΠM in our approach is (24). So, if we have an interpolation
problem P (S) such that (23) holds and wi,M−i = 0, i = 0, . . . ,M , then we
know the asymptotic behaviour of p along M + 1 different directions. From
this information we can compute by (23)

pM =
M∑
i=0

ai,M−iφi,M−i

and then solve an ordinary interpolation problem in ΠM−1 for f − pM .



10 J. M. Carnicer and M. Gasca

§4. Interpolation spaces and vanishing asymptotic conditions.

Let S be an interpolation system (9) indexed by a set I. Let I∗ :=
{(i, j) ∈ I | wij = 0} and define Î := I \ I∗ and

V̂ (S) := {p ∈ V (S) | Lijp = 0, ∀(i, j) ∈ I∗}. (25)

From Theorem 1, we know that P (S) has always a unique solution. In par-
ticular there exists a unique p ∈ V (S) such that

Lijp = zij , ∀(i, j) ∈ Î ,

Lijp = 0, ∀(i, j) ∈ I∗.

This is equivalent to saying that the problem P̂ (S) of finding a function p ∈
V̂ (S) such that Lijp = Lijf , for all (i, j) ∈ Î has always a unique solution.

Let us now consider a problem P (S) determined by an interpolation
system with m(i) = M − i for all i, that is, with ΠM as interpolation space.
In this case, one has

V̂ (S) = {p ∈ ΠM | p∗M (ρi) = 0 for all i with wi,M−i = 0}. (26)

Taking into account that p∗M (ρi) is the coefficient of τM in p(u0 + τρi), we
see that V̂ (S) can be described as the subspace of polynomials of degree not
greater than M such that the restriction of the polynomial to any line parallel
to ri, with (i,M − i) ∈ I∗, has degree less than or equal to M − 1. Using
the simple fact that p∗M (ρ) = DM

ρ p/M ! for any polynomial p in ΠM , we may
write

V̂ (S) = {p ∈ ΠM | DM
ρi

p = 0 for all i with wi,M−i = 0}.

Let us try to derive a Newton formula (14) for the problem P̂ (S) with
coefficients computable by a recurrence similar to (20). Since V̂ (S) ⊆ V (S)
(in our case V (S) = ΠM ), we may write any polynomial of V̂ (S) as a linear
combination of the polynomials φij , (i, j) ∈ I. However we observe that if
(i, j) ∈ I∗, then

Lijφij = φ∗Mij (ρij) 6= 0,

i.e. φij , (i, j) ∈ I∗, has degree M along the line ri and therefore φij /∈ V̂ (S). A
natural approach is to discard the basic functions corresponding to asymptotic
conditions and try to write a polynomial in V̂ (S) as

p =
∑

(i,j)∈Î

aijφij , (27)

hoping that {φij | (i, j) ∈ Î} generates V̂ (S). However there might be still
indices (i, j) ∈ Î with i + j = M and so we can find functions φij , (i, j) ∈ Î
having the maximal degree M and we cannot conclude that φij has less degree
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along the prescribed directions rh, (h, M−h) ∈ I∗. In other words, the vector
space

W (S) = span{φij | (i, j) ∈ Î}

can be different from the space V̂ (S), although both are subspaces of V (S)
with the same dimension #Î. So, in the general case (27) will not represent
a polynomial in V̂ (S).

Let us denote by i0 < · · · < ik the indices such that I∗ = {(i0,M −
i0), . . . , (ik,M − ik)} and additionally assume, as in Remark 2,

Lil,M−il
φh,M−h = 0, ∀h < il, l = 0, 1, . . . , k, (28)

so that (23) holds. Recall that the precedent assumption is equivalent to
saying that some of the lines rh0, . . . , rh,M−h−1, have the same direction as
ril

. In this case, if the asymptotic data are all zero, then (23) implies that

ail,M−il
= 0, l = 1, . . . , k.

Therefore (27) holds, we have W (S) = V̂ (S) and the problem P̂ (S) can be
solved by a Newton formula, simply by removing the terms aijφij , (i, j) ∈ I∗

from the Newton formula (20) of the problem P (S). Summarizing , under con-
dition (28), the interpolation problem P̂ (S) can be seen as the interpolation
problem associated with the reduced system

Ŝ := {(ri, rij , wij) | (i, j) ∈ Î},

that is P (Ŝ) = P̂ (S).
The spaces of polynomials whose degree diminishes along some prescribed

directions have been used by Dyn and Ron [3] in connection to the problem of
obtaining Lagrange formulae similar to those obtained by Chung and Yao [2].
Dyn and Ron consider configurations of points which are the intersections of
a given set of lines, where parallel or coincident lines are allowed. If the lines
are coincident then we have Hermite data instead of Lagrange data. If the
lines are parallel the effect is a change of the interpolation space, allowing only
polynomials whose degree is less than the maximal degree along the direction
of those parallel lines.

Similar problems were also considered by Bojanov, Hakopian and Sa-
hakian in [1], [6]. Their idea can be explained as follows: each polynomial,
when restricted to an affine submanifold of IRs (a trace of a polynomial), can
be interpreted as a polynomial in less than s variables. If we consider improper
submanifolds as intersection of proper affine submanifolds when they tend to
be parallel, a limiting polynomial trace also arises in this case. For example,
the homogeneous part of highest degree of a polynomial can be seen as its
trace, when restricted to the improper (ideal) hyperplane. The traces on lin-
ear manifolds are an algebraic counterpart of the asymptotic data introduced
here. In some sense, Bojanov, Hakopian and Sahakian extend the problems
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analyzed in [3] allowing asymptotic conditions. However their approach is
algebraic in contrast with our analytic (and simpler) approach.

In this paper the existence and uniqueness of solution of the problem
has been derived, as in [4], from the triangularity of the linear system. As a
natural consequence a Newton formula has been obtained, but it is difficult to
describe the interpolation space in a compact form, except for some particular
cases, for example when V (S) = ΠM . So both approaches are complementary
and we think that this framework is specially well suited to deal with these
problems, due to its simplicity and to the fact that Newton formula (contrarily
to Lagrange formula) is valid also for Hermite cases with straightforward
changes.

Let us recall some of the results of [3] on Lagrange and Hermite interpo-
lation problems in IRs. Since our paper is devoted to the bivariate case we
shall only discuss the case s = 2.

Dyn and Ron start with a set of lines

Γ = {r0, . . . , rM+1} (29)

and U is the set of points in the plane obtained as intersection of any two
transversal lines in Γ.

If more than two lines meet at the same point u ∈ U , the interpolation
problem will be of Hermite type. Following the terminology of [3] the set Γ is
called simple if no more than two lines meet at the same point. The simple
case corresponds to a Lagrange interpolation problem. Let us remark that
in this case, coincident lines in Γ are not allowed. We shall analyse only the
simple case.

For each point in U we may define

lu =

∏
r∈Γ;r(u) 6=0 r∏

r∈Γ;r(u) 6=0 r(u)
, (30)

and then we may express the solution of the Lagrange interpolation problem

p(u) = f(u), u ∈ U, (31)

by the Lagrange formula

p(x) =
∑
u∈U

f(u)lu. (32)

In [3] it is proved, using techniques involving exponential box-splines,
that the interpolation space span{lu | u ∈ U} can be alternatively described
by

H = span
{ ∏

j∈J

r∗1j | J ⊂ {0, . . . ,M + 1} such that span{ρj | j /∈ J} = IR2

}
.

(33)
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The same space H is also used in that paper for the Hermite problem,
when considering the nonsimple case.

Dyn and Ron also show that H contains the set of polynomials of degree
not greater than M which are of degree not greater than M − µi along all
lines with direction ρi, where µi denotes the number of lines rj , j 6= i, parallel
to ri. They also say that H coincides with that set.

Let us show that the case µi ≤ 1 for all i ∈ {0, . . . ,M +1} (no more than
two lines in ri are parallel) can be analysed with our techniques.

Let us take the lines in such an ordering that the pairs (r0, r1), . . . ,
(r2h−2, r2h−1) correspond to parallel lines and r2h, . . . , rM+1 are not parallel
to any other line in Γ. Then we have µ0 = µ1 = · · · = µ2h−1 = 1 and
µ2h = · · ·µM+1 = 0. Now, we may define a system (9) in the following form:

I = {(i, j) | i + j ≤ M}, rij = rM+1−j , wij =
{ 0 if ri, rij are parallel,

1 otherwise.
(34)

Let us recall that the interpolation space corresponding to vanishing
asymptotic conditions associated with this system, V̂ (S), can be described
by (26). Any lu of (29) belongs to V̂ (S) because there exists always a line in
Γ not containing the point u parallel to ρi, i = 0, . . . , 2h − 1. On the other
hand dim H = #U = #Î = dim V̂ (S). Therefore the space H coincides with
V̂ (S) and they have the same description, as subspaces of ΠM whose degree
is less than M − 1 along lines parallel to ri with wi,M−i = 0. Hence the
interpolation problem posed by Dyn and Ron coincides with P̂ (S).

As a consequence, the systems defined by (34) admit a Lagrange formula
(32) with the basis functions

lij(x, y) =

∏
α<i rα(x, y)

∏
β 6=j riβ(x, y)∏

α<i rα(uij)
∏

β 6=j riβ(uij)

=
∏

α6=i,M+1−j

rα(x, y)
rα(uij)

, (i, j) ∈ Î ,

where uij = ri ∩ rM+1−j .
On the other hand, it can be easily shown that the system (34) satisfies

(28), which means that the space V̂ (S) has the following Newton basis:

φij =
i−1∏
h=0

rh

j−1∏
k=0

rM+1−k, (i, j) ∈ Î

to be used in the Newton formula (27) with the recurrence relation (20).
Let us see some examples.

Example 2. This example concerns interpolation data on the intersection
points of any two transversal lines of Figure 1.
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Figure 1. An interpolation problem for cuartic polynomials.

Following [4] we can solve this problem constructing an interpolation
system (the one called Ŝ above) as follows: the index set is

Î = {(i, j) | 0 ≤ i ≤ 1, 0 ≤ j ≤ 3} ∪ {(i, j) | 2 ≤ i ≤ 3, 0 ≤ j ≤ 1},

the lines ri, 0 ≤ i ≤ 3, are those of Figure 1 and rij = r5−j , (i, j) ∈ Î. Here
wij = 1 ∀(i, j). From this system, we get the Newton formula (20) to solve
the Lagrange interpolation problem, but it is not easy to express in a compact
form which is the space generated by the Newton basis

{1, r5, r5r4, r5r4r3, r0, r0r5, r0r5r4, r0r5r4r3, r0r1, r0r1r5, r0r1r2, r0r1r2r5}.

As explained above, we can enlarge Ŝ to get the system S, with

I = {(i, j) | i + j ≤ 4},

taking the lines ri, 0 ≤ i ≤ 4 and rij = r5−j , (i, j) ∈ I, w04 = w22 =
w40 = 0 and all the other wij = 1. The interpolation space V (S) is Π4 and
has dimension 15. The interpolation data associated to S are the twelve data
of the previous system and

L04f = f∗4(ρ0), L22f = f∗4(ρ2), L40f = f∗4(ρ4).

According to our above results, the coefficients a04, a22, a40 of the Newton
formula can be obtained first (see (23)):

a04 =
L04f

L04φ04
,

a22 =
L22f − a04L22φ04

L22φ22
,

a40 =
L40f − a04L40φ04 − a22L40φ22

L22φ22
,
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and since
L22φ04 = [r∗14 (ρ2)]2[r∗12 (ρ2)]2 = 0,

L40φ04 = [r∗14 (ρ4)]2[r∗12 (ρ4)]2 = 0,

L40φ22 = [r∗10 (ρ4)]2[r∗14 (ρ4)]2 = 0,

we finally obtain

a04 =
f∗4(ρ0)

r∗13 (ρ0)r∗15 (ρ0)r∗12 (ρ0)r∗14 (ρ0)
=

f∗4(ρ0)
[r∗12 (ρ0)]2[r∗14 (ρ0)]2

,

a22 =
f∗4(ρ2)

[r∗10 (ρ2)]2[r∗14 (ρ2)]2
,

a40 =
f∗4(ρ4)

[r∗10 (ρ4)]2[r∗12 (ρ4)]2
.

Therefore, if we consider the problem P (S) with vanishing asymptotic
conditions (i.e. P̂ (S)), then a04 = a22 = a40 = 0, and the problem is reduced
to the precedent one P (Ŝ). Now it is clear that the interpolation space is
that of polynomials of degee not greater than 4 with degree less than 4 when
restricted to any line parallel to r0, r2 or r4. At the same time, we have got
a simple Lagrange formula for the solution of the problem:

p =
∑

(i,j)∈Î

f(uij)
∏

α6=i,5−j

rα(x, y)
rα(uij)

.

Observe that the case of one or several of these 3 couples of parallel
lines replaced, respectively, by one or several couples of coincident lines can
be considered as a limit case of the example above and the essential result
still holds. For example, if r0 = r1 (and similarly for the others, one by
one or simultaneously), the bases and spaces remained unchanged, with the
same formulas, but some of the interpolation data change from values of f
at some points to directional derivatives, according to (12). In our example,
L10, L11, L12, L13 change, respectively, to

Dρ5f(u00), Dρ4f(u01), Dρ3f(u02), Dρ2f(u03),

where u00 = r0 ∩ r5, u01 = r0 ∩ r4, u02 = r0 ∩ r3, u03 = r0 ∩ r2.
If there are more than one couple of coincident lines, the number of

data associated with directional derivatives and their order increases. For
example, if there are two couples of coincident lines then the intersection
point has “multiplicity” four. The four corresponding data are the value of
the function at that point, two first order directional derivatives, one in each
of the directions of the coincident lines and one mixed derivative of second
order in both directions. When the three pairs are coincident we have three
points of multiplicity four (see Figure 2).
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Figure 2. The limit case produces a Hermite problem.

Example 3. A simpler example arises when we choose two pairs of lines, r0

parallel to r1 and r2 parallel to r3.

Take a system Ŝ with n = 1, m(0) = m(1) = 1, rij = r3−j and wij = 1,
i, j ∈ {0, 1}. A Newton basis for the corresponding Lagrange interpolation
problem is

B(Ŝ) = {1, r3, r0, r0r3},

generating a subspace V (Ŝ) which contains Π1.
As before we can complete Ŝ to get a system S with asymptotic data on

r0 and r2. Take n = 2, m(0) = 2, m(1) = 1, m(2) = 0, rij = r3−j , i + j ≤ 2,
w02 = w20 = 0 and wij = 1, i, j ∈ {0, 1}.

In this case, the Newton basis is

B(S) = {1, r3, r3r2, r0, r0r3, r0r1},

the space generated by B(S) is Π2 and the data are

L02f = f∗2(ρ0) =
1
2
D2

ρ0
f, L20f = f∗2(ρ2) =

1
2
D2

ρ2
f,

and the values of f at the four intersection points uij = ri∩r3−j , i, j ∈ {0, 1}.
As in the previous example, we conclude that P̂ (S) = P (Ŝ) and the space

spanned by {1, r3, r0, r0r3} can be described in the form

V (Ŝ) = {p ∈ Π2 | D2
ρ0

p = D2
ρ2

p = 0}.

In order to solve this interpolation problem we can use the Newton formula
or the following Lagrange formula

p =
1∑

i=0

1∑
j=0

f(uij)lij , lij =
r1−ir2+j

r1−i(uij)r2+j(uij)
, i, j ∈ {0, 1}.
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Figure 3. Bilinear interpolation.

The lines r0, r1 are often parallel to the x-axis and r2, r3 to the y-axis

r0(x, y) = x− x0, r1(x, y) = x− x1,

r2(x, y) = y − y1, r3(x, y) = y − y0,

describing a rectangle with vertices (x0, y0), (x0, y1), (x1, y0), (x1, y1). Then
V (Ŝ) is the clasical bilinear space

V (Ŝ) = span{1, x, y, xy} =
{

p ∈ Π2 |
∂2p

∂x2
=

∂2p

∂y2
= 0

}
of functions such that for any fixed value of x the function is linear in y and
for any fixed value of y, the resulting function is linear in x.
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