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Abstract

In this survey, we will show some connections between several mathematical problems such as extrapolation, linear
systems, totally positive matrices and computer-aided geometric design, with elimination techniques as the common tool
to deal with all of them. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Matrix elimination techniques are basic tools in many mathematical problems. In this paper we
will show their crucial role in some results that various authors with us have obtained in two
problems apparently distant: extrapolation and computer-aided geometric design (CAGD). A brief
overview of how things were developed over time will show that, once again, two results which
are apparently far from each other, even obtained by di�erent groups in di�erent countries, are the
natural consequence of a sequence of intermediate results.
Newton’s interpolation formula is a classical tool for constructing an interpolating polynomial

by recurrence, by using divided di�erences. In the 1930s, Aitken [1] and Neville [52] derived
independently of each other algorithms to compute the interpolating polynomial from the solutions
of two simpler interpolation problems, avoiding the explicit use of divided di�erences. Some papers,
[38,46] among others, extended both approaches at the beginning of the 1970s, to the more general
setting of Chebyshev systems. Almost simultaneously, extrapolation methods were being studied and
extended by several authors, as Schneider [54], Brezinski [4,5,7], H�avie [31–33], M�uhlbach [39
–42,48] and Gasca and L�opez-Carmona [19]. For a historical overview of extrapolation methods
confer Brezinski’s contribution [6] to this volume and the book [8]. It must be remarked that the
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techniques used by these authors were di�erent, and that frequently the results obtained using one
of these techniques induced some progress in the other ones, in a very cooperative form.
However, it is clear that the basic role in all these papers was played by elimination techniques. In

[21] we studied general elimination strategies, where one strategy which we called Neville elimination
proved to be well suited to work with some special classes of matrices, in particular totally positive
matrices (that are matrices with all subdeterminants nonnegative).
This was the origin of a series of papers [24–27] where the properties of Neville elimination were

carefully studied and its application to totally positive matrices allowed a much better knowledge
of these matrices. Since one of the applications of totally positive matrices is CAGD, the results
obtained for them have given rise in the last years to several other papers as [28,11,12]. In [11,12]
Carnicer and Peña proved the optimality in their respective spaces of some well-known function bases
as Bernstein polynomials and B-splines in the context of shape preserving representations. Neville
elimination has appeared, once again, as a way to construct other bases with similar properties.

2. Extrapolation and Schur complement

A k-tuple L= (‘1; : : : ; ‘k) of natural numbers, with ‘1¡ · · ·¡‘k , will be called an index list of
length k over N. For I = (i1; : : : ; im) and J = (j1; : : : ; jn) two index lists over N, we write I ⊂ J i�
every element of I is an element of J . Generally, we shall use for index lists the same notations as
for sets emphasizing that I \ J; I ∩ J; I ∪ J : : : always have to be ordered as above.
Let A=(aji ) be a real matrix and I=(i1; : : : ; im) and J=(j1; : : : ; jn) index lists contained, repectively,

in the index lists of rows and columns of A. By

A
(
J
I

)
= A

(
j1; : : : ; jn
i1; : : : ; im

)
= (aj�i�)

�=1; :::; n
�=1; :::;m ∈Rm×n;

we denote the submatrix of A with list of rows I and list of columns J .
If I ◦; I ◦′ and J ◦; J ◦′ are partitions of I and J , respectively, i.e., I ◦ ∪ I ◦′= I; I ◦ ∩ I ◦′= ∅; J ◦ ∪ J ◦′=

J; J ◦ ∩ J ◦′ = ∅, we represent A( JI ) in a corresponding partition

A
(
J
I

)
=



A
(
J

◦

I
◦

)
A
(
J

◦′

I
◦

)

A
(
J

◦

I
◦′

)
A
(
J

◦′

I
◦′

)


 : (1)

If m= n, then by

A
∣∣∣∣ JI

∣∣∣∣ := det A
(
J
I

)
= A

∣∣∣∣ j1; : : : ; jmi1; : : : ; im

∣∣∣∣ ;
we denote the determinant of A( JI ) which is called a subdeterminant of A. Throughout we set
A|∅∅ | := 1.
Let N ∈N; I := (1; 2; : : : ; N+1) and I ◦ := (1; 2; : : : ; N ). By a prime we denote ordered complements

with respect to I . Given elements f1; : : : ; fN and f=:fN+1 of a linear space E over R, elements
L1; : : : ; LN and L=:LN+1 of its dual E∗, consider the problem of �nding

〈L; pN1 (f)〉; (2)
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where p= pN1 (f) = c1 · f1 + · · ·+ cN · fN satis�es the interpolation conditions
〈Li; p〉= 〈Li; f〉 i∈ I ◦: (3)

Here 〈·; ·〉 means duality between E∗ and E. If we write

A
(
j
i

)
:= 〈Li; fj〉 for i; j∈ I; (i; j) 6= (N + 1; N + 1);

and c is the vector of components ci, this problem is equivalent to solving the bordered system (cf.
[16])

B · x= y where B=




A
(
I
◦

I
◦

)
0

A
(

I
◦

N + 1

)
1


 ; x=

(
c
�

)
; y=



A
(
N + 1
I
◦

)

A
(
N + 1
N + 1

)


 : (4)

Assuming A( I
◦

I◦ ) nonsingular this can be solved by eliminating the components of c in the last
equation by adding a suitable linear combination of the �rst N equations of (4) to the last one,
yielding one equation for one unknown, namely �:

�= A
(
N + 1
N + 1

)
− A

(
I
◦

N + 1

)
· A

(
I
◦

I
◦

)−1
A
(
N + 1
I
◦

)
: (5)

Considering the e�ect of this block elimination step on the matrix

A=




A
(
I
◦

I
◦

)
A
(
N + 1
I
◦

)

A
(

I
◦

N + 1

)
A
(
N + 1
N + 1

)


 ; (6)

we �nd it transformed to

Ã=


A

(
I
◦

I
◦

)
A
(
N + 1
I
◦

)

�


 :

If we take

A
(
N + 1
N + 1

)
:= 0; (7)

then we have

�=−〈L; pN1 (f)〉: (8)

On the other hand, if instead of (7) we take

A
(
N + 1
N + 1

)
:= 〈LN+1; fN+1〉; (9)

then, in this frame, we get

�= 〈L; rN1 (f)〉; (10)



40 M. Gasca, G. M�uhlbach / Journal of Computational and Applied Mathematics 122 (2000) 37–50

where

rN1 (f) :=f − pN1 (f)
is the interpolation remainder.
If the systems (f1; : : : ; fN ) and (L1; : : : ; LN ) are independent of f and L then these problems are

called general linear extrapolation problems, and if one or both do depend on f=fN+1 or L=LN+1
they are called problems of quasilinear extrapolation.
Observe, that with regard to determinants the block elimination step above is an elementary

operation leaving the value of det A unchanged. Hence

�=
det A

(
I
I

)

det A
(
I
◦

I
◦

) ;

which is known as the Schur complement of A( I
◦

I◦ ) in A(
I
I ). This concept, introduced in [34,35] has

found many applications in Linear Algebra and Statistics [13,53]. It may be generalized in di�erent
ways, see, for example, [21,22,44] where we used the concept of general elimination strategy which
is explained in the next section.

3. Elimination strategies

In this section and the next two let k; m; n∈N such that k + m = n and I = (1; : : : ; n). Given a
square matrix A=A( II ) over R, how can we simplify det A by elementary operations, not altering the
value of det A, producing zeros in prescribed columns, e.g. in columns 1 to k?. Take a permutation
of all rows, M = (m1; : : : ; mn) say, then look for a linear combination of k rows from (m1; : : : ; mn−1)
which, when added to row mn, will produce zeros in columns 1 to k. Then add to row mn−1 a linear
combination of k of its predecessors in M , to produce zeros in columns 1 to k, etc. Finally, add
to row mk+1 a suitable linear combination of rows m1; : : : ; mk to produce zeros in columns 1 to k.
Necessarily,

A
∣∣∣∣ 1; : : : ; kjr1; : : : ; j

r
k

∣∣∣∣ 6= 0
is assumed when a linear combination of rows jr1; : : : ; j

r
k is added to row mr (r = n; n− 1; : : : ; k + 1)

to generate zeros in columns 1 to k, and jrq ¡mr (q= 1; : : : ; k; r = n; n− 1; : : : ; k + 1) in order that
in each step an elementary operation will be performed.
Let us give a formal description of this general procedure. Suppose that (Is; I

◦
s ) (s= 1; : : : ; m) are

pairs of ordered index lists of length k+1 and k, respectively, over a basic index list M with I ◦s ⊂ Is.
Then the family

� := ((Is; I
◦
s ))s=1; :::;m

will be called a (k; m)-elimination strategy over I := I1 ∪ · · · ∪ Im provided that for s= 2; : : : ; m
(i) card(I1 ∪ · · · ∪ Is) = k + s,
(ii) I ◦s ⊂ Is ∩ (I1 ∪ · · · ∪ Is−1):



M. Gasca, G. M�uhlbach / Journal of Computational and Applied Mathematics 122 (2000) 37–50 41

By E(k; m; I) we denote the set of all (k; m)-elimination strategies over I . I ◦ := I ◦1 is called the
basic index list of the strategy �. For each s, the zeros in the row ��(s) := Is \ I ◦s are produced with
the rows of I ◦s . For shortness, we shall abbreviate the phrase “elimination strategy” by e.s. Notice
that, when elimination is actually performed, it is done in the reverse ordering: �rst in row ��(m),
then in row ��(m− 1), etc.
The simplest example of e.s. over I = (1; : : : ; m+ k), is Gauss elimination:

� = ((Gs; G
◦
s ))s=1; :::;m; G

◦
= G

◦
s = {1; : : : ; k}; Gs = G

◦ ∪ {k + s}: (11)

For this strategy it is irrelevant in which order elimination is performed. This does not hold for
another useful strategy over I :

N= ((Ns; N
◦
s ))s=1; :::;m (12)

with N ◦
s = (s; : : : ; s+ k − 1); Ns = (s; : : : ; s+ k); s= 1; : : : ; m, which we called [21,43,44] the Neville

(k; m)–e.s. Using this strategy elimination must be performed from bottom to top. The reason for
the name Neville is their relationship with Neville interpolation algorithm, based on consecutivity,
see [43,23].

4. Generalized Schur complements

Suppose that � = ((Is; I
◦
s ))s=1; :::;m ∈E(k; m; I) and that K◦ ⊂ I is a �xed index list of length k.

We assume that the submatrices A(K
◦

I◦s
) of a given matrix A = A( II )∈Rn×n are nonsingular for

s = 1; : : : ; m. Then the elimination strategy transforms A into the matrix Ã which, partitioned with
respect to I ◦ ∪ I ◦′ = I;K◦ ∪K

◦′ = I , can be written as

Ã=



Ã
(
K

◦

I
◦

)
Ã
(
K

◦′

I
◦

)

0 Ã
(
K

◦′

I
◦′

)




with

Ã
(
K

◦

I
◦

)
= A

(
K

◦

I
◦

)
; Ã

(
K

◦′

I
◦

)
= A

(
K

◦′

I
◦

)
:

The submatrix S̃ := Ã(K
◦′

I◦′ ) of Ã is called the Schur complement of A(
K

◦

I◦ ) in A with respect to the
e.s. � and the column list K◦, and is also denoted by

S̃ =
[
A
(
I
I

)/
A
(
K

◦

I
◦

)]
�

:

When �= � as in (11) and K
◦ = {1; : : : ; k}, then S̃ is the classical Schur complement, which can

also be written as

Ã
(
K

◦′

I
◦′

)
= A

(
K

◦′

I
◦′

)
− A

(
K

◦

I
◦′

)
A
(
K

◦

I
◦

)−1
A
(
K

◦′

I
◦

)
:
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When � =N is the Neville (k; m)–e.s. (12) and K
◦ = {1; : : : ; k}, then the rows of the Schur

complement S̃ = Ã(K
◦′

I◦′ ) are

Ã
(

K
◦′

k + s

)
=A

(
K

◦′

k + s

)
−A

(
K

◦

k + s

)
A
(

K
◦

s; : : : ; s+ k − 1
)−1
A
(

K
◦′

s; : : : ; s+ k − 1
)
s=1; : : : ; m:

Whereas, the Schur complement of a submatrix depends essentially on the elimination strategies used,
its determinant does not! There holds the following generalization of Schur’s classical determinantal
identity [21,22,44]:

det A
(
I
I

)
= (−1)� det A

(
K

◦

I
◦

)
det

[
A
(
I
I

)/
A
(
K

◦

I
◦

)]
�

for all e.s. �∈E(k; m; I), where � is an integer depending only on � and K
◦.

Also, Sylvester’s classical determinantal identity [55,56] has a corresponding generalization, see
[18,21,22,43,44] for details. In the case of Gauss elimination we get Sylvester’s classical identity
[9,10,55,56]

det
(
A
∣∣∣∣ 1; : : : ; k; k + t1; : : : ; k; k + s

∣∣∣∣
)t=1; :::;m
s=1;:::;m

= det A
(
A
∣∣∣∣ 1; : : : ; k1; : : : ; k

∣∣∣∣
)m−1

:

In the case of Neville elimination one has

det
(
A
∣∣∣∣ 1; : : : ; k; k + t
s; : : : ; s+ k − 1; s+ k

∣∣∣∣
)t=1; :::;m
s=1;:::;m

= det A
m∏
s=2

A
∣∣∣∣ 1; : : : ; k
s; : : : ; s+ k − 1

∣∣∣∣ :
Another identity of Sylvester’s type has been derived in [3]. Also some applications to the E-algorithm
[5] are given there.
As we have seen, the technique of e.s. has led us in particular to general determinantal identities

of Sylvester’s type. It can also be used to extend determinantal identities in the sense of Muir [51],
see [47].

5. Application to quasilinear extrapolation problems

Suppose we are given elements f1; : : : ; fN of a linear space E and elements L1; : : : ; LN of its dual
E∗. Consider furthermore elements f=:fN+1 of E and L=:LN+1 of E∗. Setting I = (1; : : : ; N + 1),
by A we denote the generalized Vandermonde matrix

A= A
(
I
I

)
= V

(
f1; : : : ; fN ; fN+1
L1; : : : ; LN ; LN+1

)
:=

(〈Li; fj〉)j=1; :::;N+1i=1;:::;N+1 : (13)

Assume now that k; m∈N; m6N + 1− k and that
�= ((Is; I

◦
s ))s=1; :::;m (14)

is a (k − 1; m)–e.s. over ⋃m
s=1 Is⊂(1; : : : ; N ): Let G := (1; : : : ; k): If the submatrices

A
(
G
Is

)
are nonsingular for s= 1; : : : ; m; (15)
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then for s= 1; : : : ; m the interpolants

pks (f) :=
k∑
j=1

cks; j(f) · fj; (16)

satisfying the interpolation conditions

〈Li; pks (f)〉= 〈Li; f〉 for i∈ Is
are well de�ned as well as

�ks (f) := 〈L; pks (f)〉:
Clearly, in case of general linear extrapolation the mapping

E 3 f pks→pks (f)

is a linear projection onto span{f1; : : : ; fN} and

E 3 f cks; j→ cks; j(f)

is a linear functional. In case of quasilinear extrapolation we assume that, as a function of f∈E; pks
remains idempotent. Then, as a function of f∈E, in general the coe�cients cks; j(f) are not linear.
We assume that, as functions of f∈ span{f1; : : : ; fN}; cks; j(f) remain linear.
The task is

(i) to �nd conditions, such that pN1 (f); �
N
1 (f) are well de�ned, and

(ii) to �nd methods to compute these quantities from pks (f); �
k
s (f)(s= 1; : : : ; m), respectively.

When translated into pure terms of Linear Algebra these questions mean: Consider matrix (13) and
assume (15),
(i) under which conditions can we ensure that A( 1;:::;N1;:::;N ) is nonsingular?

The coe�cient problem reads:
(ii′) Suppose that we do know the solutions

cks (f) = (c
k
s; j(f))j=1; :::; k

of the linear systems

A
(
G
Is

)
· cks (f) = A

(
N + 1
Is

)
; s= 1; : : : ; m:

How to get from these the solution cN1 (f) = (c
N
1; j(f))j=1; :::;N of

A
(
1; : : : ; N
1; : : : ; N

)
· cN1 (f) = A

(
N + 1
1; : : : ; N

)
?

The value problem reads:
(iii) Suppose that we do know the values

�ks (f) = 〈L; pks (f)〉; s= 1; : : : ; m:

How to get from these the value �N1 (f) = 〈L; pN1 (f)〉?
A dual coe�cient problem can be also considered interchanging the roles of the spaces E and E∗.
These problems were considered and solved in [20,7,19,31,40–42,45,48,50].



44 M. Gasca, G. M�uhlbach / Journal of Computational and Applied Mathematics 122 (2000) 37–50

6. Applications to special classes of matrices

General elimination strategies, in particular the Neville e.s. and generalized Schur complements
have found other applications in matrix theory and related problems.
In [21,22,44] we have considered some classes Ln of real n× n-matrices A including the classes
(i) Cn of matrices satisfying det A(

J
J )¿ 0 for all J ⊂(1; : : : ; n); det A(KJ ) · det A( JK )¿ 0 for all

J; K ⊂(1; : : : ; n) of the same cardinality, which was considered in [36];
(ii) of symmetric positive-de�nite matrices;
(iii) of strictly totally positive matrices (STP), which are de�ned by the property that all square

submatrices have positive determinants [36];
(iv) of Minkowski matrices, de�ned by

A
(
j
i

)
¡ 0 for all i 6= j; det A

(
1; : : : ; k
1; : : : ; k

)
¿ 0 for all 16k6n:

In [21] we have proved that

A∈Ln⇒S̃ ∈Lm;

where m=n−k and S̃ denotes the classical Schur complement of A( 1;:::;k1;:::;k ) in A. For STP matrices also
generalized Schur complements with respect to the Neville e.s. are STP. Using the Neville e.s. in
[21,49] tests of algorithmic complexity O(N 4) for matrices being STP were derived for the �rst time.
Neville elimination, based on consecutivity, proved to be especially well suited for STP matrices,
because these matrices were characterized in [36] by the property of having all subdeterminants with
consecutive rows and columns positive.
Elimination by consecutive rows is not at all new in matrix theory. It has been used to prove

some properties of special classes of matrices, for example, totally positive (TP) matrices, which,
as it has already been said, are matrices with all subdeterminants nonnegative. However, motivated
by the above mentioned algorithm for testing STP matrices, Gasca and Peña [24] initiated an ex-
haustive study of Neville elimination in an algorithmic way, of the pivots and multipliers used in
the proccess to obtain new properties of totally positive matrices and to improve and simplify the
known characterizations of these matrices.
Totally positive matrices have interesting applications in many �elds, as, for example, vibrations of

mechanical systems, combinatorics, probability, spline functions, computer-aided geometric design,
etc., see [36,37]. For this reason, remarkable papers on total positivity due to specialists on these
�elds have appeared, see for example the ones collected in [29].
The important survey [2] presents a complete list of references on totally positive matrices before

1987. One of the main points in the recent study of this class of matrices has been that of charac-
terizing them in practical terms, by factorizations or by the nonnegativity of some minors (instead
of all of them, as claimed in the de�nition).
In [24] for example, it was proved that a matrix is STP if and only if all subdeterminants with lists

of consecutive rows and consecutive columns, starting at least one of these lists by 1, are positive.
Necessarily, one of the lists must start with 1. Observe, that the new characterization considerably
decreases the number of subdeterminants to be checked, compared with the classical characterization,
due to Fekete and P�olya [17], which used all subdeterminants with consecutive rows and columns.
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This result means that the set of all subdeterminants of a matrix A with consecutive rows and
columns, of the form

A
∣∣∣∣ 1; : : : ; j
i; : : : ; i + j − 1

∣∣∣∣ ; A
∣∣∣∣ i; : : : ; i + j − 11; : : : ; j

∣∣∣∣ ;
called in [24] column- and row-initial minors, play in total positivity a similar role to that of the
leading principal minors

A
∣∣∣∣ 1; : : : ; j1; : : : ; j

∣∣∣∣
in positive de�niteness of symmetric real matrices. An algorithm based on Neville elimination was
given in [24] with a complexity O(N 3) for a matrix of order N , instead of the one with O(N 4) previ-
ously obtained in [21,49]. Other similar simpli�cations were obtained in [24] for the characterization
of totally positive matrices (not strictly).
Concerning factorizations, in [26] Neville elimination was described in terms of a product by

bidiagonal unit-diagonal matrices. Some of the most well-known characterizations of TP and STP
matrices are related to their LU factorization. Cryer [14,15], in the 1970s, extended to TP matrices
what was previously known for STP matrices, thus obtaining the following result.
A square matrix A is TP (resp. STP) i� it has an LU factorization such that L and U are TP

(�STP).
Here, as usual, L (resp. U ) denotes a lower (upper) triangular matrix and �STP means triangular

nonnegative matrices with all the nontrivial subdeterminants of any order strictly positive.
Also Cryer pointed out that the matrix A is STP i� it can be written in the form

A=
N∏
r=1

Lr
M∏
s=1

Us

where each Lr (resp. Us) is a lower (upper) �STP matrix. Observe that this result does not mention
the relation of N or M with the order n of the matrix A.
The matricial description of Neville elimination obtained in [26] produced in the same paper the

following result.
Let A be a nonsingular matrix of order n. Then A is STP i� it can be expressed in the form:

A= Fn−1 · · ·F1DG1 · · ·Gn−1;
where, for each i=1; 2; : : : ; n−1; Fi is a bidiagonal, lower triangular, unit diagonal matrix, with zeros
in positions (2; 1); : : : ; (i; i− 1) and positive entries in (i+ 1; i); : : : ; (n; n− 1); Gi has the transposed
form of Fi and D is a diagonal matrix with positive diagonal.
Similar results were obtained in [26] for TP matrices. In that paper all these new characterizations

were collected in three classes: characterizations in terms of determinants, in terms of algorithms
and in terms of factorizations.

7. Variation diminution and computer-aided geometric design

An n× n matrix A is said to be sign-regular (SR) if for each 16k6n all its minors of order k
have the same (non strict) sign (in the sense that the product of any two of them is greater than or
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equal to zero). The matrix is strictly sign-regular (SSR) if for each 16k6n all its minors of order
k are di�erent from zero and have the same sign. In [27] a test for strict sign regularity is given.
The importance of these types of matrices comes from their variation diminishing properties. By

a sign sequence of a vector x= (x1; : : : ; xn)T ∈Rn we understand any signature sequence � for which
�ixi = |xi|; i = 1; 2; : : : ; n. The number of sign changes of x associated to �, denoted by C(�), is the
number of indices i such that �i�i+1¡ 0; 16i6n− 1. The maximum (resp. minimum) variation of
signs, V+(x) (resp. V−(x)), is by de�nition the maximum (resp. minimum) of C(�) when � runs
over all sign sequences of x. Let us observe that if xi 6= 0 for all i, then V+(x) = V−(x) and this
value is usually called the exact variation of signs. The next result (see [2, Theorems 5:3 and 5:6])
characterizes sign-regular and strictly sign-regular matrices in terms of their variation diminishing
properties.
Let A be an n× n nonsingular matrix. Then:
(i) A is SR⇔V−(Ax)6V−(x) ∀x∈Rn.
(ii) A is SR⇔V+(Ax)6V+(x) ∀x∈Rn.
(iii) A is SSR⇔V+(Ax)6V−(x) ∀x∈Rn \ {0}:
The above matricial de�nitions lead to the corresponding de�nitions for systems of functions. A
system of functions (u0; : : : ; un) is sign-regular if all its collocation matrices are sign-regular of the
same kind. The system is strictly sign-regular if all its collocation matrices are strictly sign-regular
of the same kind. Here a collocation matrix is de�ned to be a matrix whose (i; j)-entry is of the
form ui(xj) with any system of strictly increasing points xj.
Sign-regular systems have important applications in CAGD. Given u0; : : : ; un, functions de�ned on

[a; b], and P0; : : : ; Pn ∈Rk , we may de�ne a curve (t) by

(t) =
n∑
i=0

ui(t)Pi:

The points P0; : : : ; Pn are called control points, because we expect to modify the shape of the curve
by changing these points adequately. The polygon with vertices P0; : : : ; Pn is called control polygon
of .
In CAGD the functions u0; : : : ; un are usually nonnegative and normalized (

∑n
i=0 ui(t)=1 ∀ t ∈ [a; b]).

In this case they are called blending functions. These requirements imply that the curve lies in the
convex hull of the control polygon (convex hull property). Clearly, (u0; : : : ; un) is a system of blend-
ing functions if and only if all the collocation matrices are stochastic (that is, they are nonnegative
matrices such that the elements of each row sum up to 1). For design purposes, it is desirable that
the curve imitates the control polygon and that the control polygon even “exaggerates” the shape of
the curve, and this holds when the system satis�es variation diminishing properties. If (u0; : : : ; un) is
a sign-regular system of blending functions then the curve  preserves many shape properties of the
control polygon, due to the variation diminishing properties of (u0; : : : ; un). For instance, any line
intersects the curve no more often than it intersects the control polygon.
A characterization of SSR matrices A by the Neville elimination of A and of some submatrices

of A is obtained in [26, Theorem 4.1].
A system of functions (u0; : : : ; un) is said to be totally positive if all its collocation matrices

are totally positive. The system is normalized totally positive (NTP) if it is totally positive and∑n
i=0 ui = 1.
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Normalized totally positive systems satisfy an interesting shape-preserving property, which is very
convenient for design purposes and which we call endpoint interpolation property: the initial and
�nal endpoints of the curve and the initial and �nal endpoints (respectively) of the control poly-
gon coincide. In summary, these systems are characterized by the fact that they always generate
curves  satisfying simultaneously the convex hull, variation diminishing and endpoint interpolation
properties.
Now the following question arises. Given a system of functions used in CAGD to generate

curves, does there exist a basis of the space generated by that system with optimal shape preserving
properties? Or equivalently, is there a basis such that the generated curves  imitate better the form
of the corresponding control polygon than the form of the corresponding control polygon for any
other basis?
In the space of polynomials of degree less than or equal to n on a compact interval, the Bernstein

basis is optimal. This was conjectured by Goodman and Said in [30], and it was proved in [11].
In [12], there is also an a�rmative answer to the above questions for any space with TP basis.
Moreover, Neville elimination provides a constructive way to obtain optimal bases. In the space of
polynomial splines, B-splines form the optimal basis.
Since the product of TP matrices is a TP matrix, if (u0; : : : ; un) is a TP system of functions and A

is a TP matrix of order n+1, then the new system (u0; : : : ; un)A is again a TP system (which satis�es
a “stronger” variation diminishing property than (u0; : : : ; un)). If we obtain from a basis (u0; : : : ; un),
in this way, all the totally positive bases of the space, then (u0; : : : ; un) will be the “least variation
diminishing” basis of the space. In consequence, the control polygons with respect to (u0; : : : ; un)
will imitate the form of the curve better than the control polygons with respect to other bases of
the space. Therefore, we may reformulate the problem of �nding an optimal basis (b0; : : : ; bn) in the
following way:
Given a vector space U with a TP basis, is there a TP basis (b0; : : : ; bn) of U such that, for any

TP basis (v0; : : : ; vn) of U there exists a TP matrix K satisfying (v0; : : : ; vn) = (b0; : : : ; bn)K?.
The existence of such optimal basis (b0; : : : ; bn) was proved in [12], where it was called B-basis.

In the same paper, a method of construction, inspired by the Neville elimination process, was given.
As mentioned above, Bernstein polynomials and B-splines are examples of B-bases.
Another point of view for B-bases is closely related to corner cutting algorithms, which play an

important role in CAGD.
Given two NTP bases, (p0; : : : ; pn); (b0; : : : ; bn), let K be the nonsingular matrix such that

(p0; : : : ; pn) = (b0; : : : ; bn)K:

Since both bases are normalized, if K is a nonnegative matrix, it is clearly stochastic.
A curve  can be expressed in terms of both bases

(t) =
n∑
i=0

Bibi(t) =
n∑
i=0

Pipi(t); t ∈ [a; b];

and the matrix K gives the relationship between both control polygons

(B0; : : : ; Bn)T = K(P0; : : : ; Pn)T:
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An elementary corner cutting is a transformation which maps any polygon P0 · · ·Pn into another
polygon B0 · · ·Bn de�ned by:

Bj = Pj; j 6= i;
Bi = (1− �)Pi + �Pi+1; for one i∈{0; : : : ; n− 1} (17)

or

Bj = Pj; j 6= i;
Bi = (1− �)Pi + �Pi−1; for one i∈{1; : : : ; n}: (18)

Here �∈ (0; 1).
A corner-cutting algorithm is the algorithmic description of a corner cutting transformation, which

is any composition of elementary corner cutting transformations.
Let us assume now that the matrix K above is TP. Since it is stochastic, nonsingular and TP, it can

be factorized as a product of bidiagonal nonnegative matrices, (as we have mentioned in Section 6),
which can be interpreted as a corner cutting transformation. Such factorizations are closely related
to the Neville elimination of the matrix [28]. From the variation diminution produced by the totally
positive matrices of the process, it can be deduced that the curve  imitates better the form of the
control polygon B0 · · ·Bn than that of the control polygon P0 · · ·Pn. Therefore, we see again that an
NTP basis (b0; : : : ; bn) of a space U has optimal shape-preserving properties if for any other NTP
basis (p0; : : : ; pn) of U there exists a (stochastic) TP matrix K such that

(p0; : : : ; pn) = (b0; : : : ; bn)K: (19)

Hence, a basis has optimal shape preserving properties if and only if it is a normalized B-basis.
Neville elimination has also inspired the construction of B-bases in [11,12]. Many of these results
and other important properties and applications of totally positive matrices have been collected, as
we have already said in [28, Section 6].
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