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Abstract

Multivariate polynomial interpolation is a basic and fundamental subject in Approximation Theory and Numerical
Analysis, which has received and continues receiving not deep but constant attention. In this short survey, we review its
development in the �rst 75 years of this century, including a pioneering paper by Kronecker in the 19th century. c© 2000
Elsevier Science B.V. All rights reserved.

1. Introduction

Interpolation, by polynomials or other functions, is a rather old method in applied mathemat-
ics. This is already indicated by the fact that, apparently, the word “interpolation” itself has been
introduced by J. Wallis as early as 1655 as it is claimed in [13]. Compared to this, polynomial
interpolation in several variables is a relatively new topic and probably only started in the second-half
of the last century with work in [6,22]. If one considers, for example, the Encyklop�adie der Mathe-
matischen Wissenschaften [13] (Encyclopedia of Math. Sciences), originated by the Preu�ische
Akademie der Wissenschaften (Prussian Academy of Sciences) to sum up the “state of art” of
mathematics at its time, then the part on interpolation, written by J. Bauschinger (Bd. I, Teil 2),
mentions only one type of multivariate interpolation, namely (tensor) products of sine and co-
sine functions in two variables, however, without being very speci�c. The French counterpart, the
Encyclop�edie de Sciences Mathematiques [14], also contains a section on interpolation (Tome I,
vol. 4), where Andoyer translated and extended Bauschinger’s exposition. Andoyer is even more
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explicit with his opinion on multivariate polynomial interpolation, by making the following statement
which we think that time has contradicted:

Il est manifeste que l’interpolation des fonctions de plusiers variables ne demande aucun principe
nouveau, car dans tout ce qui pr�ec�ede le fait que la variable ind�ependante �etait unique n’a
souvent jou�e aucun rôle. 1

Nevertheless, despite of Andoyer’s negative assessment, multivariate polynomial interpolation has
received not deep but constant attention from one part of the mathematical community and is to-
day a basic subject in Approximation Theory and Numerical Analysis with applications to many
mathematical problems. Of course, this �eld has de�nitely been inuenced by the availability of
computational facilities, and this is one of the reasons that more papers have been published about
this subject in the last 25 years than in the preceding 75 ones.
To our knowledge, there is not any paper before the present one surveying the early papers and

books on multivariate polynomial interpolation. Our aim is a �rst, modest attempt to cover this
gap. We do not claim to be exhaustive and, in particular, recognize our limitations with respect
to the Russian literature. Moreover, it has to be mentioned that the early results on multivariate
interpolation usually appear in the context of many di�erent subjects. For example, papers on cubature
formulas frequently have some part devoted to it. Another connection is Algebraic Geometry, since
the solvability of a multivariate interpolation problem relies on the fact that the interpolation points
do not lie on an algebraic surface of a certain type. So it is di�cult to verify precisely if and
when a result appeared somewhere for the �rst time or if it had already appeared, probably even
in an implicit way, in a di�erent context. We remark that another paper in this volume [25] deals,
complementarily, with recent results in the subject, see also [16].
Along the present paper we denote by �d

k the space of d-variate polynomials of total degree not
greater than k.

2. Kronecker, Jacobi and multivariate interpolation

Bivariate interpolation by the tensor product of univariate interpolation functions, that is when
the variables are treated separately, is the classical approach to multivariate interpolation. However,
when the set of interpolation points is not a Cartesian product grid, it is impossible to use that idea.
Today, given any set of interpolation points, there exist many methods 2 to construct an adequate
polynomial space which guarantees unisolvence of the interpolation problem. Surprisingly, this idea
of constructing an appropriate interpolation space was already pursued by Kronecker [22] in a
widely unknown paper from 1865, which seems to be the �rst treatment of multivariate polynomial
interpolation with respect to fairly arbitrary point con�gurations. Besides the mathematical elegance
of this approach, we think it is worthwhile to devote some detailed attention to this paper and to
resolve its main ideas in today’s terminology, in particular, as it uses the “modern” approach of
connecting polynomial interpolation to the theory of polynomial ideals.

1 It is clear that the interpolation of functions of several variables does not demand any new principles because in the
above exposition the fact that the variable was unique has not played frequently any role.

2 See [16,25] for exposition and references.
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Kronecker’s method to construct an interpolating polynomial assumes that the disjoint nodes
z1; : : : ; zN ∈ Cd are given in implicit form, i.e., they are (all) the common simple zeros of d poly-
nomials f1; : : : ; fd ∈ C[z] = C[�1; : : : ; �d]. Note that the nonlinear system of equations

fj(�1; : : : ; �d) = 0; j = 1; : : : ; d; (1)

is a square one, that is, the number of equations and the number of variables coincide. We are
interested in the �nite variety V of solutions of (1) which is given as

V :={z1; : : : ; zN}= {z ∈ Cd :f1(z) = · · ·= fd(z) = 0}: (2)

The primary decomposition according to the variety V allows us to write the ideal I(V )={p :p(z)=
0; z ∈ V} as

I(V ) =
N⋂
k=1

〈�1 − �k;1; : : : ; �d − �k;d〉;

where zk = (�k;1; : : : ; �k;d). In other words, since fk ∈ I(V ), k = 1; : : : ; d, any of the polynomials
f1; : : : ; fd can be written, for k = 1; : : : ; N , as

fj =
d∑
i=1

gki; j(·)(�i − �k; i); (3)

where gki; j are appropriate polynomials. Now consider the d× d square matrices of polynomials
Gk = [gki; j : i; j = 1; : : : ; d]; k = 1; : : : ; N

and note that, due to (3), and the assumption that fj(zk) = 0; j = 1; : : : ; d; k = 1; : : : ; N , we have

0 =



f1(Zj)
...

fd(zj)


= Gk(zj)



(�j;1 − �k;1)

...
(�j;d − �k;d)


 ; k = 1; : : : ; N: (4)

Since the interpolation nodes are assumed to be disjoint, this means that for all j 6= k the matrix
Gk(zj) is singular, hence the determinant of Gk(zj) has to be zero. Moreover, the assumption that
z1; : : : ; zN are simple zeros guarantees that detGk(zk) 6= 0. Then, Kronecker’s interpolant takes, for
any f :Cd → C, the form

Kf =
N∑
j=1

f(zj)
detGk(·)
detGk(zk)

: (5)

Hence,

P= span
{
detGk(·)
detGk(zk)

: k = 1; : : : ; N
}

is an interpolation space for the interpolation nodes z1; : : : ; zN . Note that this method does not give
only one interpolation polynomial but in general several di�erent interpolation spaces, depending on
how the representation in (3) is chosen. In any way, note that for each polynomial f∈C[z] the
di�erence

f −
N∑
j=1

f(zj)
detGk(z)
detGk(zk)
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belongs to the ideal 〈f1; : : : ; fd〉, hence there exist polynomials q1; : : : ; qd such that

f −
N∑
j=1

f(zj)
detGk(z)
detGk(zk)

=
d∑
j=1

qjfj: (6)

Moreover, as Kronecker points out, the “magic” polynomials gki; j can be chosen such that their leading
homogeneous terms, say Gki; j, coincide with the leading homogeneous terms of (1=degfj)@fj=@�i. If
we denote by Fj the leading homogeneous term of fj, j = 1; : : : ; d, then this means that

Gki; j =
1

degFj

@Fj
@�i
; i; j = 1; : : : ; d; k = 1; : : : ; N: (7)

But this implies that the homogeneous leading term of the “fundamental” polynomials detGk coin-
cides, after this particular choice of gki; j, with

g=
1

degf1 · · · degfd det
[
@Fj
@�i
: i; j = 1; : : : ; d

]
;

which is independent of k now; in other words, there exist polynomials ĝk ; k = 1; : : : ; N , such that
deg ĝk ¡ deg g and detGk = g + ĝk . Moreover, g is a homogeneous polynomial of degree at most
degf1 + · · ·+ degfd − d. Now, let p be any polynomial, then

Kp=
N∑
j=1

p(zj)
detGj(·)
detGj(zj)

= g
N∑
j=1

p(zj)
detGj(zj)

+
N∑
j=1

p(zj)
detGj(zj)

ĝj: (8)

Combining (8) with (6) then yields the existence of polynomials q1; : : : ; qd such that

p= g
N∑
j=1

p(zj)
detGj(zj)

+
N∑
j=1

p(zj)
detGj(zj)

ĝj +
d∑
j=1

qjfj

and comparing homogeneous terms of degree deg g Kronecker realized that either, for any p such
that degp¡ deg g,

N∑
j=1

p(zj)
detGj(zj)

= 0 (9)

or there exist homogeneous polynomials h1; : : : ; hd such that

g=
d∑
j=1

hj det Fj: (10)

The latter case, Eq. (10), says (in algebraic terminology) that there is a syzygy among the leading
terms of the polynomials Fj; j = 1; : : : ; d, and is equivalent to the fact that N ¡ degf1 · · · degfd,
while (9) describes and even characterizes the complete intersection case that N = degf1 · · · degfd.
In his paper, Kronecker also mentions that the condition (10) has been overlooked in [21]. Jacobi
dealt there with the common zeros of two bivariate polynomials and derived explicit representations
for the functional

[z1; : : : ; zN ]f:=
N∑
j=1

f(zj)
detGj(zj)

; (11)
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which behaves very much like a divided di�erence, since it is a combination of point evaluations
which, provided that (9) hold true, annihilates �d

deg g−1.
In addition, Kronecker refers to a paper [6] which he says treats the case of symmetric functions,

probably elementary symmetric polynomials. Unfortunately, this paper is unavailable to us so far.

3. Bivariate tables, the natural approach

Only very few research papers on multivariate polynomial interpolation were published during the
�rst part of this century. In the classical book Interpolation [45], where one section (Section 19) is
devoted to this topic, the author only refers to two related papers, recent at that time (1927), namely
[27,28]. The latter one [28], turned out to be inaccessible to us, unfortunately, but it is not di�cult
to guess that it might have pursued a tensor product approach, because this is the unique point of
view of [45] (see also [31]).
The formulas given in [27] are Newton formulas for tensor product interpolation in two variables,

and the author, Narumi, claims (correctly) that they can be extended to “many variables”. Since it is
a tensor product approach, the interpolation points are of the form (xi; yj), 06i6m; 06j6n, with
xi; yj arbitrarily distributed on the axes OX and OY , respectively. Bivariate divided di�erences for
these sets of points are obtained in [27], by recurrence, separately for each variable. With the usual
notations, the interpolation formula from [27] reads as

p(x; y) =
m∑
i=0

n∑
j=0

f[x0; : : : ; xi;y0; : : : ; yj]
i−1∏
h=0

(x − xh)
j−1∏
k=0

(y − xk); (12)

where empty products have the value 1. Remainder formulas based on the mean value theorem are
also derived recursively from the corresponding univariate error formulas in [27]. For f su�ciently
smooth there exist values �; �′; �; �′ such that

R(x; y) =
@m+1f(�; y)
@xm+1

∏m
h=0(x − xh)
(m+ 1)!

+
@n+1f(x; �)
@yn+1

∏n
k=0(y − yk)
(n+ 1)!

−@
m+n+2f(�′; �′)
@xm+1@yn+1

∏m
h=0(x − xh)
(m+ 1)!

∏n
k=0(y − yk)
(n+ 1)!

: (13)

The special case of equidistant points on both axes is particularly considered in [27], and since
the most popular formulas at that time were based on �nite di�erences with equally spaced argu-
ments, Narumi shows how to extend Gauss, Bessel and Stirling univariate interpolation formulas for
equidistant points to the bivariate case by tensor product. He also applies the formulas he obtained
to approximate the values of bivariate functions, but he also mentions that some of his formulas had
been already used in [49].
In [45], the Newton formula (12) is obtained in the same way, with the corresponding remainder

formula (13). Moreover, Ste�ensen considers a more general case, namely when for each i; 06i6m,
the interpolation points are of the form y0; : : : ; yni , with 06ni6n. Now with a similar argument the
interpolating polynomial becomes

p(x; y) =
m∑
i=0

ni∑
j=0

f[x0; : : : ; xi;y0; : : : ; yj]
i−1∏
h=0

(x − xh)
j−1∏
k=0

(y − xk) (14)
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with a slightly more complicated remainder formula. The most interesting particular cases occur
when ni = n, which is the Cartesian product considered above, and when ni =m− i. This triangular
case (triangular not because of the geometrical distribution of the interpolation points, but of the
indices (i; j)), gives rise to the interpolating polynomial

p(x; y) =
m∑
i=0

m−i∑
j=0

f[x0; : : : ; xi;y0; : : : ; yj]
i−1∏
h=0

(x − xh)
j−1∏
k=0

(y − xk); (15)

that is

p(x; y) =
∑

06i+j6m

f[x0; : : : ; xi;y0; : : : ; yj]
i−1∏
h=0

(x − xh)
j−1∏
k=0

(y − xk): (16)

Ste�ensen refers for this formula to Biermann’s lecture notes [4] from 1905, and actually it seems
that Biermann has been the �rst who considered polynomial interpolation on the triangular grid in
a paper [3] from 1903 (cf. [44]) in the context of cubature.
Since the triangular case corresponds to looking at the “lower triangle” of the tensor product

situation only, this case can be resolved by tensor product methods. In particular, the respective
error formula can be written as

R(x; y) =
m+1∑
i=0

@m+1f(�i; �i)
@xi@ym+1−i

∏i−1
h=0(x − xh)
i!

∏m−i
k=0 (y − yk)
(m− i + 1)! : (17)

In the case of Cartesian product Ste�ensen also provides the Lagrange formula for (12), which
can be obviously obtained by tensor product of univariate formulas.
Remainder formulas based on intermediate points (�i; �i) can be written in many di�erent forms.

For them we refer to Stancu’s paper [44] which also contains a brief historical introduction where the
author refers, among others, to [3,15,27,40,41]. Multivariate remainder formulas with Peano (spline)
kernel representation, however, have not been derived until very recently in [42] and, in particular,
in [43] which treats the triangular situation.

4. Salzer’s papers: from bivariate tables to general sets

In 1944, Salzer [33] considered the interpolation problem at points of the form (x1 + s1h1; : : : ; xn+
snhn) where

(i) (x1; : : : ; xn) is a given point in Rn,
(ii) h1; : : : ; hn are given real numbers,
(iii) s1; : : : ; sn are nonnegative integers summing up to m.

This is the multivariate extension of the triangular case (16) for equally spaced arguments, where
�nite di�erences can be used. Often, di�erent names are used for the classical Newton interpolation
formula in the case of equally spaced arguments using forward di�erences: Newton–Gregory, Harriot–
Briggs, also known by Mercator and Leibnitz, etc. See [18] for a nice discussion of this issue. In
[33], Salzer takes the natural multivariate extension of this formula considering the polynomial
q(t1; : : : ; tn) :=p(x1 + t1h1; : : : ; xn + tnhn) of total degree not greater than m in the variables t1; : : : ; tn,
which interpolates a function f(x1+t1h1; : : : ; xn+tnhn) at the points corresponding to ti=si, i=1; : : : ; n,
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where the si are all nonnegative integers such that 06s1 + · · ·+ sn6m. The formula, which is called
in [33] a multiple Gregory–Newton formula, is rewritten there in terms of the values of the function
f at the interpolation points, i.e., in the form

q(t1; : : : ; tn) =
∑

s1+···+sn6m

(
t1
s1

)
· · ·

(
tn
sn

)(
m− t1 − · · · − tn
m− s1 − · · · − sn

)
f(x1 + s1h1; : : : ; xn + snhn): (18)

Note that (18) is the Lagrange formula for this interpolation problem. Indeed, each function(
t1
s1

)
· · ·

(
tn
sn

)(
m− t1 − · · · − tn
m− s1 − · · · − sn

)
(19)

is a polynomial in t1; : : : ; tn of total degree m which vanishes at all points (t1; : : : ; tn) with ti non-
negative integers 06t1 + · · ·+ tn6m, except at the point (s1; : : : ; sn), where it takes the value 1. In
particular, for n= 1 we get the well-known univariate Lagrange polynomials

‘s(t) =
(
t
s

)(
m− t
m− s

)
=

∏
06i6m;
i 6=s

t − i
s− i

for s= 0; : : : ; m.
Salzer used these results in [34] to compute tables for the polynomials (18) and, some years later

in [35], he studied in a similar form how to get the Lagrange formula for the more general case of
formula (16), even starting with this formula. He obtained the multivariate Lagrange polynomials
by a rather complicated expression involving the univariate ones.
It should be noted that several books related to computations and numerical methods published

around this time include parts on multivariate interpolation to some extent, surprisingly, more than
most of the recent textbooks in Numerical Analysis. We have already mentioned Ste�ensen’s book
[45], but we should also mention Whittaker and Robinson [51, pp. 371–374], Mikeladze [26, Chapter
XVII] and especially Kunz [23, pp. 248–274], but also Isaacson and Keller [20, pp. 294–299] and
Berezin and Zhidkov [2, pp. 156–194], although in any of them not really much more than in [45]
is told.
In [36,37], Salzer introduced a concept of bivariate divided di�erences abandoning the idea of

iteration for each variable x and y taken separately. Apparently, this was the �rst time (in spite
of the similarity with (11)), that bivariate divided di�erences were explicitly de�ned for irregularly
distributed sets of points. Divided di�erences with repeated arguments are also considered in [37] by
coalescence of the ones with di�erent arguments. Since [36] was just a �rst attempt of [37], we only
explain the latter one. Salzer considers the set of monomials {xiyj}, with i; j nonnegative integers,
ordered in a graded lexical term order, that is,

(i; j)¡ (h; k)⇔ i + j¡h+ k or i + j = h+ k; i¿h: (20)

Hence, the monomials are listed as

{1; x; y; x2; xy; y2; x3; : : :}: (21)

For any set of n+ 1 points (xi; yi), Salzer de�nes the associated divided di�erence

[01 : : : n]f:=
n∑
k=0

Akf(xk ; yk); (22)
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choosing the coe�cients Ak in such a form that (22) vanishes when f is any of the �rst n monomials
of list (21) and takes the value 1 when f is the (n+1)st monomial of that list. In other words, the
coe�cients Ak are the solution of the linear system

n∑
k=0

Akxiky
j
k = 0; xiyj any of the �rst n monomials of (21);

n∑
k=0

Akxiky
j
k = 1; xiyj the (n+ 1)th monomial of (21): (23)

These generalized divided di�erences share some of the properties of the univariate ones but not
all. Moreover, they have some limitations, for example, they exist only if the determinant of the
coe�cients in (23) is di�erent from zero, and one has no control of that property in advance. On
the other hand, observe that for example the simple divided di�erence with two arguments (x0; y0)
and (x; y), which is

f(x; y)− f(x0; y0)
x − x0 ;

gives, when applied to f(x; y) = xy, the rational function

xy − x0y0
x − x0

and not a polynomial of lower degree. In fact, Salzer’s divided di�erences did not have great success.
Several other de�nitions of multivariate divided di�erences had appeared since then, trying to keep
as many as possible of the good properties of univariate divided di�erences, cf. [16].

5. Reduction of a problem to other simpler ones

Around the 1950s an important change of paradigm happened in multivariate polynomial inter-
polation, as several people began to investigate more general distributions of points, and not only
(special) subsets of Cartesian products. So, when studying cubature formulae [32], Radon observed
the following in 1948: if a bivariate interpolation problem with respect to a set T ⊂R2 of ( k+22 )
interpolation points is unisolvent in �2

k , and U is a set of k + 2 points on an arbitrary straight
line ‘⊂R2 such that ‘ ∩ T = ∅, then the interpolation problem with respect to T ∪ U is unisolvent
in �2

k+1. Radon made use of this observation to build up point sets which give rise to unisolvent
interpolation problems for �m recursively by degree. Clearly, these interpolation points immediately
yield interpolatory cubature formulae.
The well-known B�ezout theorem, cf. [50], states that two planar algebraic curves of degree m and

n, with no common component, intersect each other at exactly mn points in an algebraic closure
of the underlying �eld, counting multiplicities. This theorem has many interesting consequences
for bivariate interpolation problems, extensible to higher dimensions. For example, no unisolvent
interpolation problem in �2

n can have more than n + 1 collinear points. Radon’s method in [32] is
a consequence of this type of observations, and some other more recent results of di�erent authors
can also be deduced in a similar form, as we shall see later.
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Another example of a result which shows the more general point of view taken in multivariate
interpolation at that time is due to Thacher Jr. and Milne [47] (see also [48]). Consider two uni-
variate interpolation problems in �1

n−1, with T1; T2 as respective sets of interpolation points, both of
cardinality n. Assume that T1∩T2 has cardinality n− 1, hence T =T1∪T2 has cardinality n+1. The
univariate Aitken–Neville interpolation formula combines the solutions of the two smaller problems
based on T1 and T2 to obtain the solution in �1

n of the interpolation problem with T as the under-
lying set of interpolation points. The main idea is to �nd a partition of unity, in this case a�ne
polynomials ‘1; ‘2, i.e., ‘1 + ‘2 = 1, such that

‘1(T2\T1) = ‘2(T1\T2) = 0
and then combine the solutions p1; p2 with respect to T1; T2, into the solution ‘1 p1 + ‘2p2 with
respect to T . This method was developed in the 1930s independently by Aitken and Neville with
the goal to avoid the explicit use of divided di�erences in the computation of univariate Lagrange
polynomial interpolants.
It was exactly this idea which Thatcher and Milne extended to the multivariate case in [47].

Let us sketch their approach in the bivariate case. For example, consider an interpolation problem
with 10 interpolation points, namely, the set T = {(i; j) : 06i + j63}, where i; j are nonnegative
integers, and the interpolation space �2

3. The solution pT of this problem is obtained in [47] from
the solutions pTk ∈ �2

2; k = 1; 2; 3, of the 3 interpolation problems with respect to the six-point sets
Tk ⊂T , k = 1; 2; 3, where

T1 = {(i; j) : 06i + j62};

T2 = {(i; j) : (i; j) ∈ T; i¿ 0};

T3 = {(i; j) : (i; j) ∈ T; j¿ 0}:
Then,

pT = ‘1pT1 + ‘2pT2 + ‘3pT3 ;

where ‘k ; k =1; 2; 3 are appropriate polynomials of degree 1. In fact, in this case these polynomials
are the barycentric coordinates relative to the simplex (0, 0), (3, 0), (0, 3) and thus a partition
of unity. In [47] the problem is studied in d variables and in that case d + 1 “small” problems,
with respective interpolation sets Tk; k = 1; : : : ; d, with a simplicial structure (the analogue of the
triangular grid), are used to obtain the solution of the full problem with T = T1 ∩ · · · ∩ Td+1 as
interpolation points.
In 1970, Guenter and Roetman [19], among other observations, made a very interesting remark,

which connects to the Radon=B�ezout context and deserves to be explained here. Let us consider a set
T of (m+dd ) points in R

d, where exactly (m+d−1d−1 ) of these points lie on a hyperplane H . Then T \H
consists of (m−1+dd ) points. Let us denote by �m

d;H the space of polynomials of �
m
d with the variables

restricted to H , which is isomorphic to �m
d−1. If the interpolation problems de�ned by the sets T \H

and T ∩H are unisolvent in the spaces �m−1
d and �m

d;H , respectively, then the interpolation problem
de�ned by T is unisolvent in �m

d . In other words, the idea is to decompose, whenever possible, a
problem of degree m and d variables into two simpler problems, one of degree m and d−1 variables
and the other one with degree m− 1 and d variables.
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6. The �nite element approach

In 1943, Courant [11] suggested a �nite di�erence method applicable to boundary value problems
arising from variational problems. It is considered one of the motivations of the �nite element
method, which emerged from the engineering literature along the 1950s. It is a variational method
of approximation which makes use of the Rayleigh–Ritz–Galerkin technique. The method became
very successful, with hundreds of technical papers published (see, e.g., the monograph [52]), even
before its mathematical basis was completely understood at the end of the 1960s.
Involved in the process of the �nite element method there are local polynomial interpolation

problems, generally for polynomials of low degree, thus, with only few interpolation data. The
global solution obtained by solving all the local interpolation problems is a piecewise polynomial of
a certain regularity, depending on the amount and type of interpolation data in the common boundary
between pieces. Some of the interest in multivariate polynomial interpolation along the 1960=1970s
was due to this method. Among the most interesting mathematical papers of that time in Finite
Elements, we can mention [53,5], see also the book [46] by Strang and Fix, but, in our opinion, the
most relevant papers and book from the point of view of multivariate polynomial interpolation are
due to Ciarlet et al., for example [7–9].
In 1972, Nicolaides [29,30] put the classical problem of interpolation on a simplicial grid of (m+dd )

points of Rd, regularly distributed, forming what he called a principal lattice, into the �nite element
context. He actually used barycentric coordinates for the Lagrange formula, and moreover gave
the corresponding error representations, see also [7]. However, much of this material can already
be found in [3]. In general, taking into account that these results appeared under di�erent titles,
in a di�erent context and in journals not accessible everywhere, it is not so surprising any more,
how often the basic facts on the interpolation problem with respect to the simplicial grid had been
rediscovered.

7. Hermite problems

The use of partial or directional derivatives as interpolation data in the multivariate case had not
received much attention prior to the �nite element method, where they were frequently used. It
seems natural to approach partial derivatives by coalescence, as in univariate Hermite interpolation
problems. However, things are unfortunately much more complicated in several variables. As it was
already pointed out by Salzer and Kimbro [39] in 1958, the Hermite interpolation problem based on
the values of a bivariate function f(x; y) at two distinct points (x1; y1); (x2; y2) and on the values of
the partial derivatives @f=@x; @f=@x at each of these two points is not solvable in the space �2

2 for
any choice of points, although the number of interpolation conditions coincides with the dimension
of the desired interpolation space. Some years later, Ahlin [1] circumvented some of these problems
by using a tensor product approach: k2 derivatives @p+qf=@xp@yq with 06p; q6k−1 are prescribed
at the n2 points of a Cartesian product. The interpolation space is the one spanned by x�y� with
06�; �6nk − 1 and a formula for the solution is easily obtained.
We must mention that Salzer came back to bivariate interpolation problems with derivatives in [38]

studying hyperosculatory interpolation over Cartesian grids, that is, interpolation problems where
all partial derivatives of �rst and second order and the value of the function are known at the
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interpolation points. Salzer gave some special con�gurations of points which yield solvability of this
type of interpolation problem in an appropriate polynomial space and also provided the corresponding
remainder formulae.
Nowadays, Hermite and Hermite–Birkho� interpolation problems have been studied much more

systematically, see [16,25] for references.

8. Other approaches

In 1966, Coatmelec [10] studied the approximation of functions of several variables by linear
operators, including interpolation operators. At the beginning of the paper, he only considered in-
terpolation operators based on values of point evaluations of the function, but later he also used
values of derivatives. In this framework he obtained some qualitative and quantitative results on the
approximation order of polynomial interpolation. At the end of [10], Coatmelec also includes some
examples in R2 of points which are distributed irregularly along lines: n+ 1 of the points on a line
r0, n of them on another line r1, but not on r0, and so on until 1 point is chosen on a line rn but
not on r0 ∪ · · · ∪ rn−1. He then points out the unisolvence of the corresponding interpolation problem
in �2

n which is, in fact, again a consequence of B�ezout’s theorem as in [32].
In 1971, Glaeser [17] considers Lagrange interpolation in several variables from an abstract

algebraic=analytic point of view and acknowledges the inconvenience of working with particular
systems of interpolation points due to the possibility of the nonexistence of a solution, in contrast
to the univariate case. This is due to the nonexistence of polynomial spaces of dimension k ¿ 1 in
more than one variable such that the Lagrange interpolation problem has a unique solution for any
system of k interpolation points. In other words, there are no nontrivial Haar (or Chebychev) spaces
any more for two and more variables, cf. [12] or [24]. In [17], polynomial spaces with dimension
greater than the number of interpolation conditions are considered in order to overcome this problem.
Glaeser investigated these underdetermined systems which he introduced as interpolation schemes
in [17] and also studied the problem of how to particularize the a�ne space of all solutions of a
given interpolation problem in order to obtain a unique solution. This selection process is done in
such a way that it controls the variation of the solution when two systems of interpolation points
are very “close” to each other, with the goal to obtain a continuous selection process.
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