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CHARACTERIZATIONS AND DECOMPOSITIONS OF ALMOST
STRICTLY POSITIVE MATRICES∗

M. GASCA† AND J. M. PEÑA†

Abstract. A nonsingular matrix is called almost strictly totally positive when all its minors
are nonnegative, and furthermore these minors are positive if and only if their diagonal entries are
positive. In this paper we give a characterization of these matrices in terms of the positivity of
a very reduced number of their minors (which are called boundary minors), improving previous
characterizations that have appeared in the literature. We show the role of boundary minors in
accurate computations with almost strictly totally positive matrices. Moreover, we analyze the QR
factorization of these matrices, showing the differences and analogies with that of totally positive
matrices.
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1. Introduction and basic notation. Matrices with all minors nonnegative (in
particular, all positive) have attracted much interest in several branches of mathemat-
ics and their applications, including computer aided geometric design, combinatorics,
and economics. Unfortunately there is not an agreement to use a unified terminology
for them. On one hand, the American school, following Schoenberg and especially
Karlin and his book [16] Total Positivity, used to call totally positive matrices those
matrices with all minors nonnegative and strictly totally positive matrices the ones
with all minors positive. Many authors, including Ando, de Boor, and Pinkus, have
followed these names in the second half of the last century, and so have we in our
papers on this subject. On the other hand, the German school used the terms “totally
nonnegative” and “totally positive” matrices instead of the above ones, respectively.
These last terms have become more accepted in the recent literature. Due to all of
this, the term “totally positive matrix” has become ambiguous because it is used in
two slightly (but significantly) different senses.

As we have said above, in the last decade we have used Karlin’s terminology in
our papers, and so it would be even more confusing to change to the other termi-
nology in the present paper because, as we explain below, it improves some of our
previous results and we make frequent references to these results. Consequently, in
this paper, we continue calling totally positive (TP) matrices those matrices with all
minors nonnegative and strictly totally positive (STP) matrices those with all minors
positive and hope this will cause no confusion to the reader. In any case, it would be
good to unify terminology in the future.

For some important applications, for example, B-splines [2], interpolation [4],
Hurwitz matrices [7, 17], or interval mathematics [8], the most important class of
TP matrices is that which we called in [9] almost strictly totally positive matrices
(referred to as ASTP matrices in the rest of this paper). This class is formed by TP
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matrices whose minors are positive if and only if they do not contain a zero element
in the diagonal. This class is intermediate between TP and STP matrices. The most
interesting ASTP matrices are the nonsingular ones, and therefore, in the rest of
the paper, we deal with these matrices. They have been called in [15] inner totally
positive matrices. Matrices called in some papers [1] Δ-STP matrices are examples of
triangular ASTP matrices.

From the beginning of the study of TP matrices it has been known that it is
not necessary to check the sign of all minors of a matrix to decide whether or not it
is totally positive and analogously for strict total positivity. Some of our efforts in
the last decade have been devoted to getting criteria which decrease the number of
minors to be checked and other characterizations in terms of bidiagonal factorizations
[10, 11, 12, 14]. So we did this with ASTP matrices too. The nonzero pattern of these
matrices [9, 13, 15] always has a staircase form. Roughly speaking (it will be explained
more precisely in section 2) we proved [13, Theorem 3.1] that for a nonnegative matrix
to be nonsingular ASTP we have to check only that minors formed with consecutive
rows and columns, with the first row or column of the minor being the first row or
column of a stair (of the nonzero pattern), are nonnegative and that they are positive
if and only if the diagonal entries of the minor are all positive. These minors form a
subclass of those called in [15, Theorem 2.1] inner minors with consecutive rows and
columns, which are the minors to be checked in that paper. See also Theorem 3.1
of [9].

In this paper we improve our characterization of nonsingular ASTP matrices
of [13] in the sense that the number of minors to be checked can be decreased. We
introduce in section 2 the concept of boundary minor, which has special interest in
matrices with staircase nonzero pattern, and prove that only these minors should be
checked. Since they are a subclass of the ones used in [13], we decrease considerably
the number with respect to [9, 15]. Moreover, we show how boundary minors can
play a role in accurate computations with nonsingular ASTP matrices.

In the process of proving these results we have realized that in Theorem 3.1 of [13]
the assumption of nonnegativity of the matrix can be suppressed: it is a consequence
of any of the two equivalent properties of the theorem. So we have taken into account
this fact in Theorem 2.4 of section 2 which is the new, improved version of that
theorem.

After getting some results on the LU factorization of TP matrices we studied their
QR factorization in [11]. In [13] we provided a bidiagonal factorization of nonsingular
ASTP matrices and also the result that a nonsingular matrix A is ASTP if and only
if it can be factorized LU with L and U ASTP matrices. It seems natural to study
now the QR factorization of ASTP matrices to know if it has some peculiarities with
respect to the general class of TP matrices. In section 3 we show the differences and
analogies of the QR factorization of nonsingular ASTP matrices with respect to that
of nonsingular TP and STP matrices. Boundary minors play again a crucial role in
the proofs of that section.

2. Boundary submatrices of ASTP matrices. For k, n positive integers,
1 ≤ k ≤ n, Qk,n will denote the set of all increasing sequences of k natural numbers
less than or equal to n. For α = (α1, α2, . . . , αk), β = (β1, β2, . . . , βk) ∈ Qk,n, and A
an n× n real matrix, we denote by A[α|β] the k × k submatrix of A containing rows
α1, . . . , αk and columns β1, . . . , βk of A. Q0

k,n will denote the set of sequences of k
consecutive natural numbers less than or equal to n.

By the shadow lemma (see [3, Lemma A]), a nonsingular ASTP matrix A =
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(aij)1≤i,j≤n satisfies

aij = 0, i > j ⇒ ahk = 0 ∀h ≥ i, k ≤ j,

aij = 0, i < j ⇒ ahk = 0 ∀h ≤ i, k ≥ j.
(2.1)

Moreover, it cannot have zero diagonal entries due to its nonsingularity (cf. [1, Corol-
lary 3.8]):

aii �= 0, i = 1, . . . , n.(2.2)

Properties (2.1) and (2.2) produce a staircase form for the zero pattern of A, which
will be made precise in the following notation, as in [13].

For an n× n matrix A let us denote

i0 = 1, j0 = 1;

for t = 1, . . . , l :

it = max{i|ai,jt−1 �= 0} + 1 (≤ n + 1),

jt = max{j|ait,j = 0} + 1 (≤ n + 1),

where l is given in this recurrent definition by il = n + 1. Analogously we denote

ĵ0 = 1, î0 = 1;

for t = 1, . . . , r :

ĵt = max{j|aît−1,j
�= 0} + 1,

ît = max{i|ai,ĵt = 0} + 1,

where ĵr = n + 1. In other words, the entries below the places (i1 − 1, j) with
j0 ≤ j < j1, (i2 − 1, j) with j1 ≤ j < j2, . . . , (il−1 − 1, j) with jl−2 ≤ j < jl−1 are
zero. So are the entries to the right of the places (i, ĵ1 − 1) with î0 ≤ i < î1, (i, ĵ2 − 1)
with î1 ≤ i < î2, . . . , (i, ĵr−1 − 1) with îr−2 ≤ i < îr−1.

When the matrix A is nonsingular ASTP, by (2.1), the remaining elements of A
are nonzero. We shall express this by saying that the matrix A has a zero pattern given
by I = {i0, i1, . . . , il}, J = {j0, j1, . . . , jl}, Î = {̂i0, î1, . . . , îr}, and Ĵ = {ĵ0, ĵ1, . . . , ĵr}.
Only matrices with these patterns of zeros and all the other entries positive can be
nonsingular ASTP.

Observe that, for a nonsingular ASTP matrix, by (2.2) we have necessarily

it ≥ jt, t = 1, . . . , l − 1,

ĵt ≥ ît, t = 1, . . . , r − 1.
(2.3)

In formula (3.2) of [13], the previous inequalities appeared strict, but in fact the
equalities can also appear.

Remark 2.1. Given any matrix A = (aij)1≤i,j≤n, it is easy to deduce that the
following properties are equivalent:

(i) A satisfies (2.1) and (2.2).
(ii) A has a zero pattern given by I, J, Î, Ĵ as above satisfying (2.3).
The submatrices introduced in the following definition are relevant in the context

of matrices with a staircase zero pattern and will play a key role in this paper.
Definition 2.2. Given an n×n matrix A, let B := A[α|β] with α, β ∈ Q0

k,n and
aα1,β1

· · · aαk,βk
�= 0. Then B is a column boundary submatrix if either β1 = 1 or
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β1 > 1 and A[α|β1 − 1] = 0. Analogously, B is a row boundary submatrix if either
α1 = 1 or α1 > 1 and A[α1 − 1|β] = 0.

Minors corresponding to column or row boundary submatrices are called, respec-
tively, column or row boundary minors.

Remark 2.3. Using staircase notation, we can easily identify the boundary subma-
trices for matrices satisfying the zero pattern described above. Let A = (aij)1≤i,j≤n be

an n×n matrix with a zero pattern given by I, J, Î, Ĵ satisfying (2.3). Let B := A[α|β]
with α, β ∈ Q0

k,n and aα1,β1 · · · aαk,βk
�= 0. Then B is a column boundary submatrix

if there exists k ≥ 1 such that β1 = jk and α1 ≥ ik. B is a row boundary submatrix
if there exists k ≥ 1 such that α1 = ĵk and β1 ≥ îk. The leading principal minors of
A are column and row boundary minors of it.

Let us consider an example of a 5 × 5 matrix A with l = 2, r = 1, {i0, i1, i2} =
{1, 4, 6}, {j0, j1, j2} = {1, 3, 6}, {ĵ0, ĵ1} = {1, 6}, and {̂i0, î1} = {1, 6}. Entries repre-
sented by the symbol * are nonzero. The row boundary minors of the matrix

A =

⎛
⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎠

(2.4)

are the minors using initial consecutive rows and consecutive columns. The column
boundary minors of A are its leading principal minors, the entries a21, a31, a43, a53,
the minors

detA[2, 3|1, 2], detA[4, 5|3, 4],(2.5)

and the following minors which can be obtained from the previous ones: the minor
detA[2, 3, 4|1, 2, 3] (which is equal to a43 detA[2, 3|1, 2]) and detA[2, 3, 4, 5|1, 2, 3, 4]
(which coincides with detA[2, 3|1, 2] detA[4, 5|3, 4]).

Now we shall prove that, for a matrix A, being nonsingular ASTP depends only on
the sign of the boundary minors, improving the characterization of Theorem 3.1 of [13].
In addition, as said in section 1, we point out that the hypothesis of nonnegativity of
A used in that theorem is not necessary because it is a consequence of any of the two
equivalent properties of the theorem.

Theorem 2.4. Let A = (aij)1≤i,j≤n be a real matrix satisfying (2.1) and (2.2).
Then the following properties are equivalent:

(i) A is a nonsingular ASTP matrix.
(ii) All boundary minors of A are positive.
Proof. By definition of nonsingular ASTP matrices, (i) implies (ii). For the

converse, take into account that, by definition, A is a (trivial) boundary submatrix
of itself, and consequently it is nonsingular. Now, the arguments of the proof of the
converse part of Theorem 3.1 of [13] can be applied. Let us sketch the main points
of that proof. It consists of showing that the Neville elimination of A and AT can be
performed without row or column exchanges and with nonnegative pivots which are
zero if and only if they lie in the zero pattern of A, which by Remark 2.1 is given by
I, J, Î, Ĵ as above. If we take a column j with jt−1 ≤ j < jt, the crucial point of the
proof of Theorem 3.1 of [13] is to show the positivity of the quotients

detA[i− j + jk, . . . , i− 1, i|jk, . . . , j − 1, j]

detA[i− j + jk, . . . , i− 1|jk, . . . , j − 1]
, i = j, j + 1, . . . , it − 1,(2.6)
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where

jk = max{js ≤ j|0 ≤ s ≤ t− 1, j − js ≤ i− is}.(2.7)

In fact, in that proof it is shown that the numerator and denominator of (2.6) are
positive. Observe that for j = jt−1 and i = it−1, . . . , it − 1 we have jk = jt−1, and
the quotient above becomes simply aij . Let us also point out that, by (2.3), in (2.6)
one has it ≥ jt.

Coming back to our present theorem, the same arguments lead us to consider the
quotients (2.6). Now, taking into account that, by (2.7), j − jk ≤ i− ik, we have

i− j + jk = i− (j − jk) ≥ i− (i− ik) = ik.

So, the submatrices of the numerator and denominator of (2.6) are of the form A[α|β]
with α, β ∈ Q0

k,n, β1 = jk, and α1 ≥ ik, and, consequently, they are column boundary
submatrices by Remark 2.3. Then (ii) implies that these minors are positive and the
arguments of Theorem 3.1 of [13] to prove their positivity are not needed.

Since similar reasoning can be applied to AT , the positivity of the row boundary
minors is also involved.

In summary, the proof of Theorem 3.1 of [13] has been simplified, pointing out
that the positivity of all boundary minors of A implies that A is a nonsingular ASTP
matrix.

If we apply the previous theorem to the matrix A of (2.4) in order to know
if it is nonsingular ASTP, we have to check the positivity of the minors using ini-
tial consecutive rows and consecutive columns (row boundary minors), the elements
a21, a31, a43, a53, and the two minors given by (2.5). If we apply Theorem 3.1 of [13],
we should also check, in addition to all the above minors, the positivity of the entries
a13, a23, a33 and of the following four minors:

detA[2, 3|3, 4], detA[3, 4], detA[2, 3, 4|3, 4, 5], detA[3, 4, 5].

Finally, if we apply the characterization given in [15, Theorem 2.1] and [9], we
should check the positivity of the remaining nonzero entries of A and of the fol-
lowing six minors, in addition to all of the previous ones: detA[2, 3], detA[2, 3, 4],
detA[2, 3, 4, 5|2, 3, 4, 5], detA[2, 3|4, 5], detA[3, 4|4, 5], detA[4, 5]. In larger matrices,
the differences in the number of minors to be checked easily increase.

Given an algebraic expression defined by additions, subtractions, multiplications,
and divisions and assuming that each initial real datum is known to high relative
accuracy (see p. 52 of [5]), then it is well known that the algebraic expression can be
computed accurately if it is defined by sums of numbers of the same sign, products,
and quotients. In other words, the only “forbidden” operation is true subtraction, due
to possible cancellation in leading digits. From now on, we will use the word accurately
to mean to high relative accuracy. Let us recall that a nonsingular TP matrix admits
a unique factorization as a product of nonnegative bidiagonal, unit diagonal matrices
and a diagonal matrix (see [12] or [14]). This factorization has been called recently in
[6] and [18] bidiagonal decomposition of A and is denoted by BD(A). Moreover, the
property of A being nonsingular ASTP or not can be decided by BD(A) as can be
seen in Theorem 4.1 of [13].

In [18] it is shown that an accurate bidiagonal decomposition of a nonsingular
TP matrix A allows us to determine its eigenvalues and singular value decomposition
to high relative accuracy. The following result proves that the accurate computation
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of the boundary minors of A guarantees an accurate bidiagonal decomposition of a
nonsingular ASTP matrix A. For the sake of brevity, we refer to [12] and [14] instead
of introducing all notation related to Neville elimination.

Proposition 2.5. Let A be a nonsingular ASTP matrix. If we are able to com-
pute all boundary minors of A accurately, then we can compute an accurate BD(A).

Proof. As can be seen in [12] or in section 2 of [14], the diagonal entries of the
diagonal factor of BD(A) are the diagonal pivots of the Neville elimination of A. The
nonzero off-diagonal entries of the bidiagonal factors of BD(A) are the multipliers of
the Neville elimination of A or of AT (see p. 116 of [14]) and, by formula (2.7) of [12],
they are quotients of pivots of the Neville elimination of A or AT . Since the pivots of
the Neville elimination of A are given by (2.6) (see (2.3) of [12]), they are quotients of
column boundary minors of A, and, analogously, the pivots of the Neville elimination
of AT are quotients of row boundary minors of A. Then we conclude that all pivots
and multipliers can be computed accurately and the result follows.

3. QR factorization of nonsingular ASTP matrices. In [11], nonsingular
TP matrices and STP matrices were characterized in terms of their QR factorization.
Now we are going to study that factorization for nonsingular ASTP matrices and
show its peculiarity with respect to the other classes.

In this section, L (resp., U) represents a lower (upper) triangular, unit diagonal
matrix, and D represents a diagonal matrix. Let us recall that, by Corollary 4.2 of [13],
a nonsingular matrix A is ASTP if and only if it can be factorized as A = LDU with
L,U ASTP matrices and D a diagonal matrix with positive diagonal entries. Now we
define a new class of matrices containing ASTP matrices.

Definition 3.1. A nonsingular matrix A is said to be lowerly ASTP if it can be
decomposed in the form A = LDU and LD is ASTP.

The following proposition characterizes lowerly ASTP matrices.

Proposition 3.2. An n × n matrix A is lowerly ASTP if and only if all its
column boundary minors are positive.

Proof. If A is lowerly ASTP, then A can be factorized as A = LDU with LD
ASTP. Hence, all column boundary minors of LD are positive. Since U is an upper
triangular matrix with unit diagonal, it is easy to see that rows and columns involved
in the column boundary submatrices of A are the same as those of the column bound-
ary submatrices of LD and that the column boundary minors of A have the same
value as the corresponding column boundary minors of LD. So, all column boundary
minors of A are positive.

For the converse, if all column boundary minors of A are positive, in particular,
the leading principal minors of A are positive. So A can be decomposed as A = LDU .
Again the column boundary minors of LD have the same value as those of A, and
so they are positive. The row boundary minors of the lower triangular matrix LD
are principal minors of LD using consecutive rows and columns, that is, of the form
(LD)[k, k + 1, . . . , k + r] (1 ≤ k ≤ n, 0 ≤ r ≤ n − k). Using Schur complements, we
have

det(LD)[k, k + 1, . . . , k + r] =
detA[1, 2, . . . , k + r]

detA[1, 2, . . . , k]
.(3.1)

Since the numerator and the denominator of (3.1) are column boundary minors of
A, they are positive, and so the row boundary minors of LD are positive. Then, by
Theorem 2.4, LD is ASTP and A is lowerly ASTP.
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The following definition will be used in the QR decomposition of nonsingular
ASTP matrices.

Definition 3.3. A nonsingular matrix A is said to be an almost strict γ-matrix
if it is lowerly ASTP and, in the factorization A = LDU , U−1 is ASTP.

Proposition 3.4. If A and (AT )−1 are lowerly ASTP, then A is an almost
strict γ-matrix.

Proof. The proof is completely analogous to that of Proposition 4.6 of [11]. The
only difference is that, in the factorization A = LDU , in order to see that the upper
triangular matrix (UT )−1 is ASTP, we have to use the same reasoning as in the
proof of the converse of Proposition 3.2 to show the almost strict total positivity
of LD.

The following theorem characterizes ASTP matrices by means of their QR de-
compositions. This characterization is slightly different from those of nonsingular TP
matrices and STP matrices given in Theorem 4.7 of [11], as we shall explain later.

Theorem 3.5. Let A be a nonsingular matrix. Then A is ASTP if and only if
there exist two orthogonal almost strict γ-matrices Q1, Q2 and two nonsingular, upper
triangular TP matrices R1, R2, such that

A = Q1R1, AT = Q2R2.(3.2)

The proof is analogous to that of Theorem 4.7 of [11], replacing TP by ASTP
until the step when we use that the product of TP matrices ATA is also TP, because
the product of ASTP matrices is not necessarily ASTP. So, the reasoning leading to
the total positivity of R1 (R2) in the proof of Theorem 4.7 of [11] does not lead to
the almost strict total positivity of them but only to their total positivity.

In fact, the following counterexample shows that in the above theorem we cannot
replace the total positivity of R1, R2 by almost strict total positivity. The ASTP
matrix

A =

⎛
⎝

1 0 0
1 1 1
0 0 1

⎞
⎠

can be decomposed as A = Q1R1, where

Q1 =

⎛
⎝

1/
√

2 −1/
√

2 0

1/
√

2 1/
√

2 0
0 0 1

⎞
⎠ , R1 =

⎛
⎝
√

2 1/
√

2 1/
√

2

0 1/
√

2 1/
√

2
0 0 1

⎞
⎠ .

The matrix R1 is TP but not ASTP due to the minor detR1[1, 2|2, 3] = 0 in spite of the
positivity of its diagonal elements. The essential uniqueness of the QR factorization
implies that it is not possible to decompose A = QR with Q orthogonal and R ASTP.
Moreover, ATA illustrates that the property of being ASTP is not inherited under the
product of matrices. In fact, ATA is not ASTP due to the minor det(ATA)[1, 2|2, 3],
which is zero and has positive diagonal elements.

Finally, let us recall that, in the particular case of A being STP, Theorem 4.7
of [11] shows that Q1 and Q2 are strict γ-matrices and R1 and R2 are Δ-STP matrices.

In summary, a matrix A is STP or nonsingular ASTP or nonsingular TP if and
only if A and AT can be decomposed as in (3.2) with Q1, Q2 orthogonal and R1, R2
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nonsingular upper triangular, according to the following table.

A Q1, Q2 R1, R2

STP strict γ-matrices Δ-STP
nonsingular ASTP almost strict γ-matrices TP
nonsingular TP γ-matrices TP
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