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Abstract. The geometric condition (GC) for multivariate interpolation
is equivalent to the existence of a Lagrange formula whose terms are prod-
ucts of linear factors. In 1982, Gasca and Maeztu conjectured that any set
of (n + 2)(n + 1)/2 points in the plane satisfying the GC condition must
contain n + 1 collinear points. The conjecture has only been proved for
degrees n ≤ 4. In this paper we classify some configurations of points in
the plane satisfying the GC condition.

§1. Introduction and Auxiliary Results

Let Πn(IRk) be the space of all polynomials in k variables of degree less than
or equal to n, whose dimension is

(n+k
k

)

. For any finite set X ⊆ IRk we may
pose the

Lagrange interpolation problem. Given X ⊆ IRk and f ∈ IRX , find p ∈
Πn(IRk) such that

p(x) = f(x), ∀x ∈ X. (1.1)

Every polynomial p of degree not greater than n can be written in the
form p(x) =

∑

|α|≤n cαxα, and the interpolation conditions give rise to the

system of |X| equations and
(n+k

k

)

unknowns

∑

|α|≤n

cαxα = f(x), x ∈ X. (1.2)

An interesting problem in multivariate interpolation is to infer the exis-
tence and uniqueness of the solution of the Lagrange interpolation problem
from the distribution of the points in X. This leads to the following
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Definition 1.1. We say that a set X ⊆ IRk is unisolvent in Πn(IRk) if the
Lagrange interpolation problem for X has a unique solution for any f ∈ IRX .

Equation (1.2) confirms that a necessary condition for a set X to be uni-
solvent in Πn(IRk) is that |X| =

(n+k
k

)

. If |X| =
(n+k

k

)

, the linear system (1.2)
has the same number of equations and unknowns. Then any set X of

(n+k
k

)

points, X is unisolvent in Πn(IRk) if and only if there exists no p ∈ Πn(IRk)
vanishing at all the points of X. This condition can be geometrically expressed
by saying that not all points of X lie on the same algebraic hypersurface of de-
gree less than or equal to n. The question of easily recognizing and generating
unisolvent sets for posing Lagrange interpolation problems can be analyzed
from several points of view. The Newton approach consists of finding a basis
of functions of Πn(IRk) vanishing on bigger and bigger subsets of X (see [3]).
The Lagrange approach analyzes the existence and construction of certain
functions called Lagrange polynomials.

Definition 1.2. For a set X ⊆ IRk, we say that l ∈ Πn(IRk) is a Lagrange
polynomial associated to x ∈ X if l(x) = 1 and l(y) = 0, for all y ∈ X \ {x}.

In view of this definition we can deduce the following proposition as a
direct consequence of well-known results of Linear Algebra.

Proposition 1.3. Let X ⊆ IRk. Then the following properties are equivalent:
(i) X is unisolvent in Πn(IRk).
(ii) For each x ∈ X there exists a unique Lagrange polynomial lx ∈ Πn(IRk).
(iii) |X| =

(n+k
k

)

and there exists a Lagrange polynomial lx ∈ Πn(IRk) for all
x ∈ X.

Furthermore, the solution p of the Lagrange interpolation problem (1.1) can
be expressed by the Lagrange formula

p =
∑

x∈X

f(x)lx. (1.3)

The following properties of Lagrange polynomials will be useful through-
out this paper:

Proposition 1.4. Let X ⊆ IRk be unisolvent in Πn(IRk), and let lx be the
Lagrange polynomial associated with x ∈ X. Then
(i) deg lx = n.
(ii) The factorization of lx into irreducibles cannot have multiple factors.
(iii) For any polynomial g with deg g = r, one has |{x ∈ X | g(x) = 0}| ≤

(n+k
k

)

−
(n−r+k

k

)

.

Proof: (i) Let h be a polynomial of degree 1 vanishing on x ∈ X. If deg lx < n,
then hlx is a polynomial of degree less than or equal to n vanishing on X,
contradicting the fact that X is unisolvent. (ii) If the factorization of lx into
irreducibles has repeated factors, then removing all the repeated factors we
would be able to construct a Lagrange polynomial of degree less than n which
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Fig. 1. A natural lattice (left) and a principal lattice (right).

is impossible by (i). (iii) Let Y := {x ∈ X | g(x) 6= 0}, and assume that
|Y | ≤

(n−r+k
k

)

. Then there exists a polynomial f ∈ Πn−r(IRk) vanishing on
Y . Now fg ∈ Πn(IRk) vanishes on X, contradicting the unisolvence of X.

In the case of polynomials of 1 variable, the Lagrange polynomials have a
simple expression as a product of linear factors: lx(ξ) = Πy∈X\{x}

ξ−y
x−y . This

formula does not have a simple extension to several variables, unless the points
of X are structured in a special way.

Definition 1.5. Let X ⊆ IRk with |X| =
(n+k

k

)

. The set X satisfies the
geometric condition (GCn) if for all x ∈ X, there exist affine functions hx

i ,
i = 1, . . . , r, r ≤ n, such that the union of all hyperplanes hx

i = 0 contains all
points of X \ {x}, but not the point x. We say that {hx

i = 0 | i = 1, . . . , r} is
the set of hyperplanes associated with the point x. The set of all hyperplanes
associated with some point x ∈ X is denoted by ΓX .

The GC condition, introduced by Chung and Yao [2], is equivalent to
the existence of Lagrange polynomials which are a product of linear factors:
lx = Πn

i=1h
x
i (we may assume hx

i normalized to have hx
i (x) = 1). Therefore,

if X satisfies the GCn condition, then X must be unisolvent in Πn(IRk). By
Proposition 1.3, the set of hyperplanes associated with a point must be unique,
and by Proposition 1.4 (i), (ii), it must have exactly n elements.

An interesting question is how to construct sets of points X satisfying
the GC condition. Some important examples have been given in [2], such as
natural lattices and principal lattices. Natural lattices are the set of intersection
points of n + 2 lines which are in general position, that is, no two of them are
parallel and no three of them are concurrent. Principal lattices can be described
as the intersection points of three families of n+1 parallel lines such that each
point is the intersection of three lines, one of each family.

A generalization of principal lattices (also satisfying the GC condition)
was provided in [4]. A pencil of lines is a set of lines intersecting at one point
(the center of the pencil) or parallel lines (the center is at the infinity line). A
3-pencil lattice of order n is defined as a set of

(n+2
2

)

points generated by three
pencils of n + 1 lines each, in such a form that every point is the intersection
of exactly one line of each pencil.
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Fig. 2. A 3-pencil lattice.

The distributions of points satisfying the GC condition have not been
completely described even in the two-dimensional case. The combinatorics of
the GC condition are so difficult to study that it still has not been possible
to solve the conjecture on the GCn condition on the plane made in [3]:

Conjecture 1.6. Let X ⊆ IR2 satisfy the GCn condition. Then, there exists
a line in ΓX containing n + 1 points of X.

Based on the work of Bush [1], we know that the conjecture has been
verified for degrees less than or equal to 4. The purpose of this paper is
to offer a classification of some configurations of points satisfying the GC
condition in the plane. This analysis could be a starting point for dealing
with more complicated cases.

§2. Natural Lattices and Default

Let us summarize some properties of the GC configurations.

Proposition 2.1. Let X ⊆ IR2 satisfy the GCn condition. Then
(i) Each line in ΓX has at least 2 points of X.
(ii) For each point x ∈ X, there exist at least two lines in ΓX containing x,

associated with different points y, z ∈ X (n ≥ 1).
(iii) ΓX contains at least n + 2 lines.
(iv) A set of r lines cannot contain more than r(2n+3− r)/2 points of X. In

particular, no line contains more than n + 1 points of X.
(v) A line containing n + 1 points of X must be in ΓX , and it is associated

with every point not lying on it (n ≥ 1).
(vi) Two lines, each containing n + 1 points of X, cannot be parallel, and

meet at a point x ∈ X.
(vii) Three lines, each containing n + 1 points of X, cannot be concurrent.
(viii) There are at most n + 2 lines containing n + 1 points of X.

Proof: (i) Let H ≡ hy
j = 0 be a line in ΓX associated with y ∈ X. Assume

that {x} = H ∩X and let g be an affine function such that g = 0 is the line
passing through x and y. Then gΠi 6=jh

y
i is a polynomial of degree n vanishing

on X, contradicting the fact that X is unisolvent. (ii) Take any y 6= x ∈ X.
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Clearly, there exist H in the set of lines associated with y such that x lies in
H. By (i), H ∩ X must contain a second point z. There must exist a line
associated with z passing through x, which will be different from H. (iii) If we
take x ∈ X, then there are n lines in ΓX associated with x. By (ii), there are
also 2 lines in ΓX passing through x. (iv) follows directly from Proposition 1.4
(iii). (v) Let K be a line with |K ∩X| = n + 1. Since n ≥ 1, there must be at
least one point x ∈ X \K. Let H1, . . . , Hn be the lines associated with x, then
K ∩X =

⋃n
i=1(K ∩Hi). Since |K ∩X| = n+1, at least one of the sets K ∩Hi

has more than one point, and so K = Hi is associated with x. (vi) If two lines
containing n + 1 points are parallel or they meet at a point not in the set X,
then this set of two lines contains 2n + 2 points of X, a contradiction with
(iv). (vii) If there were three concurrent lines, each of them with n + 1 points
of X, then this set of three lines would contain 3n + 1 points of X, which
contradicts (iv). (viii) Let m be the number of lines with n + 1 points of X.
These lines cannot be either parallel or concurrent, and X must contain all
pairs of intersections of lines. Therefore

(m
2

)

≤ |X| =
(n+2

2

)

, and m ≤ n + 2.

In the sequel, the
(n+2

2

)

points of a set X satisfying the GCn condition
will be denoted by xij :

X =
{

xij ∈ IR2|i < j ∈ {1, . . . , n + 2}
}

. (2.1)

As we have seen in Proposition 2.1, an important subset of ΓX is the set
of lines K1, . . . , Km containing n + 1 points of X. From Proposition 2.1 (vi-
viii) we deduce that these lines are in general position and their number allows
us to establish a classification of sets satisfyng the GCn condition.

Definition 2.2. Let X ⊆ IR2 be a set satisfying the GCn condition. We say
that X has default d or that X is a d-lattice if the number of lines in ΓX with
n + 1 points is just n + 2− d.

Let m = n + 2 − d and let K1, . . . , Km be the lines with n + 1 points of
a set X with default d. From Proposition 2.1, all the intersection points of
these lines are points of X. Then we can assume without loss of generality in
formula (2.1) that

xij ∈ Kl ⇐⇒ l ∈ {i, j}, (2.2)

which means that

xij = Ki ∩Kj , i < j ≤ m; xij ∈ Ki, i ≤ m < j; xij /∈
m
⋃

r=1

Kr, m < i < j.

By Proposition 2.1 (viii), m ≤ n + 2. Conjecture 1.6 means that m ≥ 1.
In fact, this number is at least 3 in all known examples. Principal lattices
and 3-pencil lattices have exactly three lines with n + 1 points of X. In other
words, Conjecture 1.6 means that the default d of a set X satisfies d ≤ n + 1.
We even conjecture that it is less than or equal to n − 1. In the rest of the
paper we completely describe sets with default 0,1 and 2.



6 J. M. Carnicer and M. Gasca

Proposition 2.3. Let X be a set satisfying the GCn condition. Then the
following properties are equivalent:
(i) X is a natural lattice.
(ii) X is a 0-lattice.
(iii) The lines associated with each x ∈ X are the set of all lines of ΓX not

containing the point x.
(iv) |ΓX | = n + 2.

Proof: (i) =⇒ (iv) and (iii) follows from Proposition 2.1 (iii,v). (iii) =⇒ (iv):
Let n + 2 + k be the number of lines of ΓX . By Proposition 2.1 (iii), k ≥ 0.
From (iii) we see that for each x ∈ X, there exist exactly n lines in ΓX not
vanishing at x and k+2 vanishing on it. Taking into account the intersections
of the lines in ΓX , we obtain that

(k+2
2

)(n+2
2

)

≤
(n+2+k

2

)

which means that
k ≤ 0, and so, k = 0. (iv) =⇒ (ii): Let ΓX = {K1, . . . , Kn+2} and denote
ri := |Ki∩X|. By Proposition 2.1 (iv), ri ≤ n+1, for all i and by Proposition
2.1 (ii), r1 + · · · + rn+2 ≥ 2|X| = (n + 2)(n + 1). So ri = n + 1 for all i. (ii)
=⇒ (i): By Proposition 2.1 (vi)–(vii), the n + 2 lines with n + 1 points are in
general position and X is formed by the

(n+2
2

)

intersection points.
Now we describe all 1-lattices.

Proposition 2.4. A set X given by (2.1) with n > 1 is a 1-lattice if and only
if the following properties simultaneously hold:
(i) There exist lines K1, . . . , Kn+1 in general position such that (2.2) holds,

that is,

xij = Ki ∩Kj , i < j ∈ {1, . . . , n + 1}; xi,n+2 ∈ Ki, i < n + 2.

(ii) Not all points xi,n+2, i = 1, . . . , n + 1, lie on the same line.

Proof: Assume that a set (2.1) satisfies (2.2). Clearly, each Ki has n + 1
points. Let Kij be the line containing xi,n+2 and xj,n+2. Then we have that
the set of lines associated with xij , i < j < n + 2, consists of the line Kij

and all the lines Kr, r 6= i, j. The set of lines associated with xi,n+2 is Kr,
r 6= i. Therefore the GCn condition holds, and ΓX consists of the lines Ki and
Kij . Since not all points xi,n+2, i = 1, . . . , n + 1 lie on the same line, no line
Kij can contain n + 1 points and then X is a 1-lattice. For the converse, if
K1, . . . , Kn+1 are the lines with n + 1 points, then the set X must contain all
intersections Ki ∩Kj , and each line Ki must have an additional point. So, X
satisfies (2.1)-(2.2). Since K1, . . . ,Kn+1 must be the lines with n + 1 points,
not all points xi,n+2 may lie on the same line.

Let us observe that 1-lattices with n = 1 do not exist because a set
satisfying GC1 is trivially a natural lattice. In Figure 3, we show a lattice
with default 1, and satisfying GC3.

Now we provide a complete description of all 2-lattices.

Proposition 2.5. A set X given by (2.1) with n > 2 is a 2-lattice if and only
if the following properties simultaneously hold:
(i) There exist lines K1, . . . , Kn in general position such that (2.2) holds.
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Fig. 3. A lattice with default 1.

(ii) There exist lines L1, L2, L3 such that xn+1,n+2 = L1 ∩ L2 ∩ L3 and
{xi,n+1, xi,n+2} ⊆ Ki ∩ (L1 ∪ L2 ∪ L3) for all i < n + 1.

(iii) No line Lr, r = 1, 2, 3, contains n + 1 points of X.

Furthermore, each of the lines Lr must have at least 3 points of X.
Proof: Let us show first that a set (2.1) with (i), (ii), (iii) satisfies the GCn

condition. For xn+1,n+2 the associated lines are K1, . . . , Kn. From (ii), there
exist indices j, k ∈ {1, 2, 3} such that

xi,n+1 = Ki ∩ Lj , xi,n+2 = Ki ∩ Lk.

Then the set of lines associated with xi,n+1 consists of Lk and Kr, r 6= i.
Analogously, the set of lines associated with xi,n+2 consists of Lj and Kr,
r 6= i. Finally, given i < j ≤ n, the three lines L1, L2, L3 contain the four
points xi,n+1, xi,n+2, xj,n+1, xj,n+2, and therefore there exists k such that Lk

contains two of them. Let H be the line connecting the other two. So Kr,
r 6= i, j, Lk and H are the lines associated with xij . We have thus checked
the GCn condition. On the other hand, X cannot be a natural or a 1-lattice.
Indeed, if there exists another line with n + 1 points, it would contain the
point xn+1,n+2 and one point of (L1 ∪ L2 ∪ L3) ∩Ki for each i. Since n > 2,
this line must be one of the L1, L2 or L3, contradicting (iii).

Conversely, let X be a 2-lattice. There exist lines K1, . . . ,Kn with n + 1
points and X contains all the points xij = Ki ∩Kj , i < j ≤ n. Each line Ki

contains two additional points xi,n+1, xi,n+2, i ≤ n. The set X must still have
a point xn+1,n+2 not belonging to any of the lines K1, . . . , Kn. So, (2.2) holds
for m = n. By Proposition 2.1 (v), all lines Kr, r 6= i, j, are associated with
xij ,i < j ≤ n. The set of lines associated with xij must contain two more lines
with the five points {xi,n+1, xi,n+2, xj,n+1, xj,n+2, xn+1,n+2}. Therefore three
of these points lie on the same line, say Hij : one is xn+1,n+2, the second one
is in {xi,n+1, xi,n+2} and the third one in {xj,n+1, xj,n+2}. Since the default
is 2, Hij cannot contain n + 1 points of X. So, for each i, j, there exists
k 6= i, j such that the lines Hij ,Hik, Hjk are different, they are concurrent at
xn+1,n+2 and xr,n+1, xr,n+2 ∈ (Hij ∪Hik∪Hjk)∩Kr, r = i, j, k. Let us define
L1 := Hij , L2 := Hik, L3 := Hjk. Now, for r 6= i, j, k one has Hir ∈ {L1, L2},
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Fig. 4. A lattice with default 2.

Hjr ∈ {L1, L3}, Hkr ∈ {L2, L3}. Two of these lines are different. That means
that xr,n+1, xr,n+2 lie in two of the three lines L1, L2, L3, and we see that (ii)
holds. Since ΓX has only n lines with n + 1 points, (iii) follows immediately.
Finally, we have also shown that L1 contains at least three points: one is
xn+1,n+2, a second one in Ki and a third one in Kj . On the other hand L1
does not intersect Kk, and so it has at most n− 1 points of X \ {xn+1,n+2}.
Analogously L2, L3 also contain at least three and at most n points of X.

For n = 2 there are no GC2 set X with default 2. Indeed, from Proposi-
tion 2.1, it is very easy to deduce that there exist at least 3 lines with 3 points.
Figure 4 shows a lattice with default 2, satisfying GC4.
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