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Abstract. Interpolation problems on sets of points in the plane
satisfying Chung and Yao’s geometric characterization give rise to La-
grange interpolation formulae in the space of polynomials of degree
not greater than n. A conjecture on these sets states that there exists
a line containing n + 1 nodes. It has only been proved for degree
≤ 4. In this paper, we analyze some consequences of assuming the va-
lidity of the conjecture up to a certain degree, which lead to a better
knowledge of Chung and Yao’s geometric characterization. One of the
main results of this paper is the equivalence of the above mentioned
conjecture with the existence of at least 3 lines containing n+1 nodes.

§1. Introduction

In multivariate polynomial interpolation the existence and unique-
ness of solution of a Lagrange problem always depend on the geometrical
distribution of the interpolation points [7]. Identification of simple distri-
butions of points giving rise to unisolvent problems in a given polynomial
space is a subject of permanent interest.

For the space Πn(IR2) of bivariate polynomials of degree not greater
than n, a well-known unisolvent distribution is that of

(
n+2

2

)
points satis-

fying the geometric characterization (GC) introduced by Chung and Yao
[5]. However, a description of all configurations of

(
n+2

2

)
points satisfying

this characterization is yet to be done. It has been conjectured [6] that
each of these sets has n+1 collinear points, but this has been only proved
for n ≤ 4 [1,3]. If the conjecture is true, GC sets would be a particular
case of another well-known distribution of points which gives rise to uni-
solvent interpolation problems in Πn(IR2) [6]: there exist lines L0, . . . , Ln

such that Li \ (L0 ∪ · · · ∪ Li−1) contains exactly n + 1− i nodes.
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In Section 2 we remark the special role of lines containing n+1 points
of a GC set X of

(
n+2

2

)
points. Then in Section 3 some properties of these

lines with a maximal number of nodes are derived. Finally, in Section
4, we prove that if for all n ≤ ν each GC set X with

(
n+2

2

)
points has

n + 1 collinear points, then for each of those sets X there exist 3 lines
containing n + 1 points of X. Some new properties which can lead to a
better knowledge of the geometric characterization are also obtained.

§2. A Conjecture on the Geometric Characterization

In the bivariate case, the GC condition can be stated as follows.

Definition 2.1. Let X ⊆ IR2, |X| = (n+2)(n+1)/2. The set X satisfies
the geometric characterization GCn if for each x ∈ X, there exist lines
Lx

1 , . . . , Lx
n such that

X \ (Lx
1 ∪ · · · ∪ Lx

n) = {x}.
We say that Γx,X := {Lx

1 , . . . , Lx
n} is the set of lines used by the node x.

The set of lines used by some node is ΓX :=
⋃

x∈X Γx,X . Observe that
Γx,X is uniquely determined due to the unisolvence of the problem.

The geometric characterization is neither constructive nor descriptive.
In fact, there exist many different GC sets with different combinatorial
features, for instance, natural and principal lattices (see [5]). In order to
describe all the sets of points satisfying the GCn condition, it is essential
to derive further collinearity properties of the nodes. A key for reducing
the problem to simpler considerations is the existence of lines containing
n + 1 nodes. These lines contain the maximal number of nodes because,
by Proposition 2.1 (iv) of [2], no line contains more than n + 1 nodes.

By Proposition 2.1 (viii) of [2] the number of lines containing n + 1
nodes cannot be greater than n + 2. In [2], the defect (called default
in that paper) of a GCn set was introduced in order to classify the GC
configurations.

Definition 2.2. Let X ⊆ IR2 be a set satisfying the GCn condition. We
say that X has defect d if the number of lines containing n + 1 nodes is
n + 2− d, that is,

d = n + 2− |{K | K is a line, |K ∩X| = n + 1}|.
Observe that the defect of a GCn set satisfies 0 ≤ d ≤ n+2. We shall

say that X is a GCn,d set to indicate that X is a set of nodes satisfying
the geometric characterization for degree n and defect d.

Proposition 2.3 shows how some properties of a GCn set of nodes with
n+1 collinear nodes can be related to the properties of GC configurations
of strictly lower degree. Part of these results were obtained in Proposition
3 (a) of [3] but we need to review them in order to offer a complete proof.



Chung and Yao’s geometric characterization 3

Proposition 2.3. Let X be a GCn,d set and L be a line containing n+1
nodes (hence, d ≤ n + 1). Then Y := X \ L is a GCn−1,d′ set with d′ ≤ d
and Γy,Y = Γy,X \ {L}, for each y ∈ Y .

Proof: Let Y := X \ L. Since X is GCn,d, then we have for any y ∈ Y
a set of n lines Γy,X containing all points of X except y. By Proposition
2.1 (v) of [2], L ∈ Γy,X and we can write Γy,X = {L1, . . . , Ln−1, L}. Since
(L∪⋃n−1

i=1 Li)∩X = X \ {y}, we deduce that
⋃n−1

i=1 Li ∩Y = Y \ {y}. So,
Y satisfies GCn−1 and Γy,Y = Γy,X \ {L} for each y ∈ Y .

Let K be the set of lines containing n + 1 nodes of X and K′ be the
set of lines containing n nodes of Y

K := {K ∈ ΓX : |K ∩X| = n + 1}, K′ := {K ∈ ΓY : |K ∩ Y | = n}.

Since X is GCn,d and Y is GCn−1,d′ , we have |K| = n + 2 − d, |K′| =
n + 1 − d′. By Proposition 2.1 (vi) of [2], each of the lines in K \ {L}
intersects L at a node. Then each line of the set K\{L} contains n nodes
of Y = X \ L. Therefore, K \ {L} ⊆ K′ and then

n + 1− d′ = |K′| ≥ |K \ {L}| = |K| − 1 = n + 1− d.

So, we have d′ ≤ d.

In all particular instances of GCn sets described until now, the exis-
tence of lines containing n + 1 nodes has always been confirmed. In [6],
the following conjecture was launched.

Conjecture 2.4. Given a GCn set, there exists at least one line contain-
ing n + 1 nodes.

The conjecture has only been proved for all GCn sets with n =
1, 2, 3, 4 (see [1,3]). As shown in Proposition 2.3, the verification of the
conjecture simplifies the problem of describing all possible GC sets. In
fact, in [4] a complete classification of all GC configurations up to degree
4 has been obtained. However, for degrees higher than 4, the conjecture
remains unsolved. In [6], it is also mentioned that if the conjecture held
for arbitrary degree then all GC sets would consist of a line L1 with n+1
nodes, another line L2 containing n nodes not in L1, a third line L3 con-
taining n− 1 nodes not in L1 ∪L2, and so on. The interpolation problem
on these sets of nodes is unisolvent in Πn(IR2) and the solution can be
expressed by a simple Newton formula (see [6]).

§3. Some Properties of the Lines in a GC Configuration

Let us start with an auxiliary result
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Lemma 3.1. Let L1, L2, L3 be three lines in the plane intersecting k lines
M1, . . . , Mk in 3k distinct points

xij := Li ∩Mj , i ∈ {1, 2, 3}, j ∈ {1, 2, . . . , k},
X :=

{
xij | i ∈ {1, 2, 3}, j ∈ {1, 2, . . . , k}}, |X| = 3k.

Then each polynomial of total degree less than or equal to k vanishing on
3k − 1 points of X must also vanish at the remaining point of X.

Proof: Without loss of generality we may assume that p ∈ Πk(IR2) van-
ishes on X \ {x3k}. Let Mk+1 be a line such that x1,k+1 := L1 ∩ Mk+1

is a point in L1 \ X. For h = 4, . . . , k + 1, let Lh be a line inter-
secting M1, . . . , Mk+2−h at k + 2 − h distinct points, different from xij ,
1 ≤ i ≤ h−1, 1 ≤ j ≤ k+2−i and define xhj := Lh∩Mj , j = 1, . . . , k−2.
Then

ri = Li+1, rij = Mj+1, j = 0, . . . , k − i, i = 0, . . . , k,

defines a system of order k + 1 in the sense of [6], leading to a set

X̃ := {xij | 2 ≤ i + j ≤ k + 2}

unisolvent in Πk(IR2) by [6]. Moreover X̃ ⊇ X \ {x3k}. Let `ij be the La-
grange polynomial associated to the point xij , that is, `ij(xi′j′) = δii′δjj′ .
We may use the Lagrange formula to write

p(x) =
∑

2≤i+j≤k+2

p(xij)`ij(x),

for each p ∈ Πn(IR2). If p is a polynomial vanishing on X \ {x3k}, then
the above formula reduces to

p(x) = p(x1,k+1)`1,k+1(x) +
∑

i≥4,i+j≤k+2

p(xij)`ij(x). (3.1)

Clearly `1,k+1(x) =
∏k

i=1(Mi(x)/Mi(x1,k+1)) and, by Bézout’s Theorem,
L1(x)L2(x)L3(x) divides `ij , i ≥ 4. Therefore each of the terms in (3.1)
vanishes not only on X \ {x3k} but also in x3k.

Lemma 3.2. Let X be a GCn set and let L be a line with n + 1 nodes.
Let us assume that M1, M2 are lines with n nodes of X \ L such that
L∩M1 ∩X = L∩M2 ∩X = ∅, that is, M1 and M2 do not contain nodes
of L∩X. For each x ∈ L∩X, let α(x) be the node in L∩X which is the
intersection of L with the line in Γx,X containing M1 ∩ M2 ∈ X. Then
α : L ∩X → L ∩X is an involution with no fixed points, that is

α(x) 6= x, α(α(x)) = x, ∀x ∈ L ∩X. (3.2)



Chung and Yao’s geometric characterization 5

M M

L
x (x)α

1 2

M1 M 2

U

Fig. 2. Definition of α(x).

Proof: Let us see first that M1 ∩ M2 ∈ X. By Proposition 2.3, X \ L
satisfies GCn−1 and then M1 and M2 are lines containing n nodes of X \L.
By Proposition 2.1 (vi) of [2], M1 ∩M2 is a point in X \ L.

Let x be a point in L∩X. Each line of Γx,X must contain a point of
L ∩X \ {x}. Since L ∩M1 ∩X = L ∩M2 ∩X = ∅, then M1,M2 /∈ Γx,X .
Taking into account that L \ {x},M1 and M2 contain n nodes in X \ {x}
and that they are lines not in Γx,X , we deduce that each line in Γx,X

passes through a node in L \ {x}, a node in M1 and a node in M2. One
of the lines in Γx,X passes through M1 ∩M2 and intersects L at a node
α(x) 6= x. Let N1, . . . , Nn−1 be the lines in Γx,X not passing through
M1 ∩ M2 and let Nn be the line joining M1 ∩ M2 and α(x). The lines
N1, . . . , Nn−1 intersect M1,M2, L in 3n− 3 nodes

(N1 ∪ · · · ∪Nn−1) ∩ (M1 ∪M2 ∪ L) =
(M1 ∪M2 ∪ L) ∩X \ {M1 ∩M2, x, α(x)}. (3.3)

Now, let K1, . . . , Kn−1 be the lines in Γα(x),X not passing through M1∩M2

and let Kn be the line joining M1 ∩ M2 and α(α(x)). The polynomial
K1(x) · · ·Kn−1(x) vanishes on the 3n− 3 nodes of the set

(K1 ∪ · · · ∪Kn−1) ∩ (M1 ∪M2 ∪ L) =
(M1 ∪M2 ∪ L) ∩X \ {M1 ∩M2, α(x), α(α(x))}.

Among these 3n − 3 nodes, at least 3n − 4 belong to the set (3.3). If
α(α(x)) 6= x, then K1(x) · · ·Kn−1(x) vanishes on 3n−4 points in (3.3) but
not on the remaining one, contradicting Lemma 3.1. Therefore α(α(x)) =
x.

Lemma 3.3. Let X be a GCn set, let L be a line with n+1 nodes of the
set X and M1,M2 two lines containing at least n nodes of X \ L each. If
n is even, then M1 or M2 contain n + 1 nodes of X.

Proof: By assumption, M1 and M2 do not contain nodes of L ∩ X.
By Lemma 3.2, the mapping α : L ∩ X → L ∩ X is an involution. If
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|L∩X| = n+1 is odd, α must have a fixed point, but α(x) = x contradicts
the definition of α. Then at least one of the lines Mi contains a node of
L ∩X, and so, that line Mi contains n + 1 nodes.

Theorem 3.4. Let X be a GCn set and let L be a line with n + 1 nodes
of the set X. Let M1,M2,M3 be lines containing at least n nodes of the
set X \ L each. Then, at least two of the lines M1,M2, M3 intersect L at
a node and contain n + 1 nodes.

Proof: If n is even, we may apply Lemma 3.3 to the pair of lines M1,M2,
then to M2,M3 and finally to M1, M3.

Let us now analyze the case where n is odd and assume that Mi

do not contain points of L ∩ X, i = 1, 2, 3. According to Lemma 3.2,
M1∩M2 is a node. For each x ∈ L∩X, let Nx be the line in Γx,X through
M1∩M2 and α(x) := Nx∩L, β(x) := Nx∩M3. Since L /∈ Γx,X , each line
of Γx,X contains one node of L ∩ X \ {x} and then M3 /∈ Γx,X because
M3 ∩ L ∩X = ∅. Taking into account that L and M3 contain n points of
X \ {x} and that L, M3 /∈ Γx,X , we see that α(x), β(x) ∈ X. By Lemma
3.2, α is an involution and so, it is a bijection from L ∩ X onto L ∩ X.
This means that different points x ∈ L∩X correspond different lines Nx.
Since M1 ∩M2, α(x), β(x) are collinear we see that β : L ∩X → M3 ∩X
is injective. Therefore |M3 ∩X| ≥ |L ∩X| = n + 1, contradicting the fact
that M1,M2,M3 do not contain points of L ∩X.

Therefore, at least one of the lines M1,M2,M3 contain n + 1 nodes.
Without loss of generality we may assume that it is M3. Then X \M3 is
a GCn−1 set with n− 1 even and M1,M2 contain n− 1 nodes of X \M3.
By Lemma 3.3, Mi intersects L at a node for some i ∈ {1, 2}, that is, Mi

has n nodes of the set X \M3. Since Mi ∩M3 ∈ X, we conclude that Mi

contains n + 1 nodes of X.

Corollary 3.5. Let X be a GCn set and let L be a line with n +1 nodes
of the set X. Let M1, . . . , Mk, k ≥ 3, be lines containing at least n nodes
of the set X \L each. Then, at most one of the lines Mi does not contain a
node of L∩X and all the other lines Mj intersect L at a node and contain
n + 1 nodes.

Proof: Consider all possible sets of 3 lines and apply Theorem 3.4.

Remark 3.6. In Proposition 2.3, we have proved that if X is a GCn,d

set, d < n + 1, and L is a line with |L ∩X| = n + 1, then Y := X \ L is
a GCn−1,d′ set with d′ ≤ d. If there exist more than two lines containing
n nodes of Y , then, by Corollary 3.5, we deduce that at most one line
containing n nodes of Y does not intersect L at a node and all the rest
contain n + 1 nodes of X. This can be stated in the form: if d′ ≤ n − 2,
then d ≤ d′ + 1.
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§4. Some Consequences of the Verification of the Conjecture

In this section, we derive some properties of GCn sets with the assump-
tion that Conjecture 2.4 holds for degrees 1, 2, . . . , ν using some inductive
arguments. First we state a direct consequence of Theorem 3.4.

Theorem 4.1. Assume that Conjecture 2.4 holds for all degrees up to ν.
Then for any given GCn set, n ≤ ν, there exist at least 3 lines containing
n + 1 nodes.

Proof: We use induction on n. The case n = 1 is trivial. Assume that
any GCn−1 set contains 3 lines with n nodes and that n ≤ ν. Let X be
a GCn set. Since n ≤ ν, Conjecture 2.4 holds and there exists a line L
containing n+1 nodes of X. Moreover X \L is GCn−1 and, by hypothesis
of induction, there exist 3 lines M1,M2,M3 containing n nodes of X \ L.
By Theorem 3.4, two lines among M1, M2,M3 contain n + 1 nodes.

It has been shown in [1, 3] that Conjecture 2.4 holds for degrees n ≤ 4,
that is the hypothesis of Theorem 4.1 holds for ν = 4. So, as a consequence
of Theorem 4.1, we deduce that, for any GCn set n ≤ 4, there exist 3 lines
containing n + 1 nodes. This fact was derived independently in [4].

Now, we use Theorem 4.1 to know how many nodes use a given line
in a GCn set. If L is a line of the plane, then we denote by

XL := {x ∈ X|L ∈ Γx,X} (3.1)

the set of nodes using the line L. Observe that L ∈ ΓX if and only if XL

is nonempty.
By Proposition 2.1 (v) of [2], if a line M ∈ ΓX contains exactly n + 1

nodes, then |XL| =
(
n+1

2

)
. The following proposition states that if a line

M ∈ ΓX contains exactly 2 nodes |M ∩X| = 2, then |XM | = 1.

Proposition 4.2. Let X be a GCn set and M ∈ ΓX . If |XM | ≥ 2, then
the line M contains at least 3 nodes, |M ∩X| ≥ 3.

Proof: By hypothesis, at least two points x1, x2 use the line M , that is
x1, x2 ∈ XM . This means that M ∈ Γxi,X for i ∈ {1, 2}. By Proposition
2.1 (i) of [2], |M ∩X| ≥ 2. Let us assume that the line M contains exactly
two nodes, M ∩X = {y1, y2}, and denote by Nij the line joining xi and
yj , i, j ∈ {1, 2}. The union U of the lines in Γxi,X \{M} contains all nodes
of X \ {xi, y1, y2}. By Proposition 2.1 (iv) of [2], U cannot contain more
than

(
n+2

2

) − 3 nodes and so U ∩X = X \ {xi, y1, y2}. In particular, no
line among N11, N12, N21, N22 is in the set of lines Γxi,X \ {M}. On the
other hand, the set of n lines Γxi,X \ {M} ∪ {Ni2} contains all nodes in
X \ {y1} and so Γy1,X = Γxi,X \ {M} ∪ {Ni2}, i ∈ {1, 2}. Analogously,
Γy2,X = Γxi,X \ {M} ∪ {Ni1}, i ∈ {1, 2}. Hence

Γx1,X \ {M} ∪ {N12} = Γy1,X = Γx2,X \ {M} ∪ {N22},
Γx1,X \ {M} ∪ {N11} = Γy2,X = Γx2,X \ {M} ∪ {N21}.
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So we have seen that N1j = N2j , that is the points x1, x2, yj are collinear,
j ∈ {1, 2}. Then M = N1 = N2 contains the four nodes x1, x2, y1, y2,
which is a contradiction.

For typical GC sets such as natural lattices or principal lattices, a
line M ∈ ΓX containing k nodes is used by exactly

(
k
2

)
nodes. However

this is not true for a general GC set, as shown in the following example.

Example 4.3. Let X be the set of points in the plane:

X = {(−2, 0), (−1, 1), (0,−2), (0, 0), (0, 1), (0, 2), (0, 4), (2/3, 8/3),
(1, 0), (1, 3), (3/2, 1), (2, 0), (2, 2), (3, 1), (4, 0)}.

It is a GC4 set and the lines in ΓX are depicted in Figure 4. The line
y = 4 − 2x contains four nodes. However only 3 nodes (−2, 0), (−1, 1),
(1, 0) use this line. Observe that all nodes using y = 4 − 2x also use the
lines x = 0 and y = 4 − x and these three lines pass through the node
(0, 4).

(-2,0) (4,0)(0,0) (2,0)(1,0)

(0,-2)

(-1,1)

(0,2)

(0,4)

(1,3)

(2,2)

(3,1)(3/2,1)(0,1)

(2/3,8/3)

Fig. 4. Only three nodes use a line containing four nodes.

The following lemma relates the set XM of nodes in a GCn set X
using a given line M with similar sets YM obtained from GCn−1 subsets
Y of X.

Lemma 4.4. Let X be a GCn set, L be a line containing n + 1 nodes
and Y := X \ L, which is a GCn−1 set.
(i) If Γx,X does not contain three concurrent lines for each x ∈ X, then

Γy,Y does not contain three concurrent lines for each y ∈ Y .
(ii) For any line M 6= L, YM = XM \ L. If L does not intersect M at a

node, then YM = XM .

Proof: By Proposition 2.3, Y is a GCn−1 set and the lines associated to
y are Γy,Y = Γy,X \ {L}. Then (i) trivially follows. We also deduce that
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YM = XM ∩ Y = XM \ L. If L ∩M ∩X = ∅, then no node lying on the
line L uses the line M , that is, XM ∩ L = ∅ and so, XM = YM .

Theorem 4.5. Assume that Conjecture 2.4 holds for all degrees up to ν.
Let X be a GCn set, n ≤ ν and M ∈ ΓX be a line containing k := |M ∩X|
nodes. Then
(i) XM contains at most k − 1 collinear nodes,
(ii) |XM | ≤

(
k
2

)
.

(iii) If for each x ∈ X, Γx,X does not contain more than two lines inter-

secting at the same node, then we have |XM | =
(
k
2

)
.

Proof: We shall use induction on the degree n. The result is trivial for
GC1 sets. Assume now that X is a GCn configuration, 2 ≤ n ≤ ν and
that (i), (ii) and (iii) have been proved for all GC configurations of degree
less than n.

If there exists L ∈ ΓX , |L∩X| = n+1 with L∩M ∩X = ∅, then, by
Lemma 4.4 (ii), Y := X \ L is a GCn−1 set and YM = XM . By Lemma
4.4 (i), the hypotesis of (iii) is inherited by Y . Taking into account that
|M ∩ Y | = k, (i), (ii) and (iii) follow from the induction hypothesis.

If there exist L1, L2 ∈ ΓX , |Li ∩X| = n + 1, Li 6= M , i = 1, 2, with
L1∩L2∩M∩X 6= ∅, then XM∩L1 = ∅. By Lemma 4.4 (ii), Y1 := X\L1 is
a GCn−1 set and (Y1)M = XM \L1 = XM . So, M ∈ ΓY1 , |M ∩Y1| = k−1
and, by the induction hypothesis, XM = (Y1)M contains at most k − 2
collinear nodes and

|XM | = |(Y1)M | ≤
(

k − 1
2

)
<

(
k

2

)
.

Hence (i) and (ii) hold. Observe that, in this case, equality does not hold.
In fact, the hypothesis of (iii) fails, because each point of XM uses three
concurrent lines M, L1, L2.

It remains to deal with the case where M intersects each line con-
taining n + 1 nodes at distinct nodes. If k = n + 1, then we deduce
from Proposition 2.1 (v) of [2] that XM = X \M , which is a GCn−1 set
and (i), (ii), (iii) follow. Otherwise, by Theorem 4.1, there exist at least
three lines L1, L2, L3 containing each n+1 nodes. Since M intersects each
line containing n + 1 nodes at different nodes we have Li ∩M ∩ X 6= ∅,
i = 1, 2, 3.

Let us apply Lemma 4.4, to the GCn−1 sets Yi := X \ Li, i = 1, 2, 3,
the GCn−2 sets Yij := X \ (Li ∪Lj), i < j in {1, 2, 3}, and the GCn−3 set
Y123 := X \ (L1 ∪ L2 ∪ L3).

In order to show (i), let N be any line and let us see that |XM ∩N | <
|M ∩X|. By the induction hypothesis |(Y1)M ∩N | < |M ∩X|. Taking into
account that M intersects L1 at a node, we have |M ∩ Y1|+ 1 = |M ∩X|

|XM ∩N | ≤ |(Y1)M ∩N |+ 1 < |M ∩ Y1|+ 1 = |M ∩X|.
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So (i) holds. By (i), |XM ∩ L1| ≤ k − 1,

|XM | = |XM \ L1|+ |XM ∩ L1| ≤
(

k − 1
2

)
+ k − 1 =

(
k

2

)

and (ii) follows. Finally, in order to show (iii), we remark that the hy-
pothesis of (iii) is inherited by all the sets Yi, Yij , Y123 and by the in-
duction hypothesis we have |XM \ Li| = |(Yi)M | =

(
k−1
2

)
, i ∈ {1, 2, 3},

|XM \ (Li ∪ Lj)| = |(Yij)M | =
(
k−2
2

)
, i < j in {1, 2, 3}, |XM \ (L1 ∪ L2 ∪

L3)| = |(Y123)M | =
(
k−3
2

)
and |XM | =

∑3
i=1 |XM \Li|−

∑3
i=1

∑
j>i |XM \

(Li ∪ Lj)|+ |XM \ (L1 ∪ L2 ∪ L3)| = 3
(
k−1
2

)− 3
(
k−2
2

)
+

(
k−3
2

)
=

(
k
2

)
. So,

(iii) has been proved.
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Edificio de Matemáticas, 50009 Zaragoza, Spain
carnicer@posta.unizar.es and gasca@posta.unizar.es


