On Chung and Yao's geometric characterization for bivariate polynomial interpolation

J. M. Carnicer and M. Gasca

Abstract

Interpolation problems on sets of points in the plane satisfying Chung and Yao's geometric characterization give rise to Lagrange interpolation formulae in the space of polynomials of degree not greater than n. A conjecture on these sets states that there exists a line containing $n+1$ nodes. It has only been proved for degree ≤ 4. In this paper, we analyze some consequences of assuming the validity of the conjecture up to a certain degree, which lead to a better knowledge of Chung and Yao's geometric characterization. One of the main results of this paper is the equivalence of the above mentioned conjecture with the existence of at least 3 lines containing $n+1$ nodes.

§1. Introduction

In multivariate polynomial interpolation the existence and uniqueness of solution of a Lagrange problem always depend on the geometrical distribution of the interpolation points [7]. Identification of simple distributions of points giving rise to unisolvent problems in a given polynomial space is a subject of permanent interest.

For the space $\Pi_{n}\left(\mathbb{R}^{2}\right)$ of bivariate polynomials of degree not greater than n, a well-known unisolvent distribution is that of $\binom{n+2}{2}$ points satisfying the geometric characterization (GC) introduced by Chung and Yao [5]. However, a description of all configurations of $\binom{n+2}{2}$ points satisfying this characterization is yet to be done. It has been conjectured [6] that each of these sets has $n+1$ collinear points, but this has been only proved for $n \leq 4[1,3]$. If the conjecture is true, GC sets would be a particular case of another well-known distribution of points which gives rise to unisolvent interpolation problems in $\Pi_{n}\left(\mathbb{R}^{2}\right)[6]$: there exist lines L_{0}, \ldots, L_{n} such that $L_{i} \backslash\left(L_{0} \cup \cdots \cup L_{i-1}\right)$ contains exactly $n+1-i$ nodes.

In Section 2 we remark the special role of lines containing $n+1$ points of a GC set X of $\binom{n+2}{2}$ points. Then in Section 3 some properties of these lines with a maximal number of nodes are derived. Finally, in Section 4, we prove that if for all $n \leq \nu$ each GC set X with $\binom{n+2}{2}$ points has $n+1$ collinear points, then for each of those sets X there exist 3 lines containing $n+1$ points of X. Some new properties which can lead to a better knowledge of the geometric characterization are also obtained.

§2. A Conjecture on the Geometric Characterization

In the bivariate case, the GC condition can be stated as follows.
Definition 2.1. Let $X \subseteq \mathbb{R}^{2},|X|=(n+2)(n+1) / 2$. The set X satisfies the geometric characterization GC_{n} if for each $x \in X$, there exist lines $L_{1}^{x}, \ldots, L_{n}^{x}$ such that

$$
X \backslash\left(L_{1}^{x} \cup \cdots \cup L_{n}^{x}\right)=\{x\}
$$

We say that $\Gamma_{x, X}:=\left\{L_{1}^{x}, \ldots, L_{n}^{x}\right\}$ is the set of lines used by the node x. The set of lines used by some node is $\Gamma_{X}:=\bigcup_{x \in X} \Gamma_{x, X}$. Observe that $\Gamma_{x, X}$ is uniquely determined due to the unisolvence of the problem.

The geometric characterization is neither constructive nor descriptive. In fact, there exist many different GC sets with different combinatorial features, for instance, natural and principal lattices (see [5]). In order to describe all the sets of points satisfying the GC_{n} condition, it is essential to derive further collinearity properties of the nodes. A key for reducing the problem to simpler considerations is the existence of lines containing $n+1$ nodes. These lines contain the maximal number of nodes because, by Proposition 2.1 (iv) of [2], no line contains more than $n+1$ nodes.

By Proposition 2.1 (viii) of [2] the number of lines containing $n+1$ nodes cannot be greater than $n+2$. In [2], the defect (called default in that paper) of a GC_{n} set was introduced in order to classify the GC configurations.
Definition 2.2. Let $X \subseteq \mathbb{R}^{2}$ be a set satisfying the $G C_{n}$ condition. We say that X has defect d if the number of lines containing $n+1$ nodes is $n+2-d$, that is,

$$
d=n+2-\mid\{K \mid K \text { is a line, }|K \cap X|=n+1\} \mid .
$$

Observe that the defect of a GC_{n} set satisfies $0 \leq d \leq n+2$. We shall say that X is a $\mathrm{GC}_{n, d}$ set to indicate that X is a set of nodes satisfying the geometric characterization for degree n and defect d.

Proposition 2.3 shows how some properties of a GC_{n} set of nodes with $n+1$ collinear nodes can be related to the properties of GC configurations of strictly lower degree. Part of these results were obtained in Proposition 3 (a) of [3] but we need to review them in order to offer a complete proof.

Proposition 2.3. Let X be a $\mathrm{GC}_{n, d}$ set and L be a line containing $n+1$ nodes (hence, $d \leq n+1$). Then $Y:=X \backslash L$ is a $\mathrm{GC}_{n-1, d^{\prime}}$ set with $d^{\prime} \leq d$ and $\Gamma_{y, Y}=\Gamma_{y, X} \backslash\{L\}$, for each $y \in Y$.

Proof: Let $Y:=X \backslash L$. Since X is $\mathrm{GC}_{n, d}$, then we have for any $y \in Y$ a set of n lines $\Gamma_{y, X}$ containing all points of X except y. By Proposition 2.1 (v) of $[2], L \in \Gamma_{y, X}$ and we can write $\Gamma_{y, X}=\left\{L_{1}, \ldots, L_{n-1}, L\right\}$. Since $\left(L \cup \bigcup_{i=1}^{n-1} L_{i}\right) \cap X=X \backslash\{y\}$, we deduce that $\bigcup_{i=1}^{n-1} L_{i} \cap Y=Y \backslash\{y\}$. So, Y satisfies GC_{n-1} and $\Gamma_{y, Y}=\Gamma_{y, X} \backslash\{L\}$ for each $y \in Y$.

Let \mathcal{K} be the set of lines containing $n+1$ nodes of X and \mathcal{K}^{\prime} be the set of lines containing n nodes of Y

$$
\mathcal{K}:=\left\{K \in \Gamma_{X}:|K \cap X|=n+1\right\}, \quad \mathcal{K}^{\prime}:=\left\{K \in \Gamma_{Y}:|K \cap Y|=n\right\} .
$$

Since X is $\mathrm{GC}_{n, d}$ and Y is $\mathrm{GC}_{n-1, d^{\prime}}$, we have $|\mathcal{K}|=n+2-d,\left|\mathcal{K}^{\prime}\right|=$ $n+1-d^{\prime}$. By Proposition 2.1 (vi) of [2], each of the lines in $\mathcal{K} \backslash\{L\}$ intersects L at a node. Then each line of the set $\mathcal{K} \backslash\{L\}$ contains n nodes of $Y=X \backslash L$. Therefore, $\mathcal{K} \backslash\{L\} \subseteq \mathcal{K}^{\prime}$ and then

$$
n+1-d^{\prime}=\left|\mathcal{K}^{\prime}\right| \geq|\mathcal{K} \backslash\{L\}|=|\mathcal{K}|-1=n+1-d
$$

So, we have $d^{\prime} \leq d$.
In all particular instances of GC_{n} sets described until now, the existence of lines containing $n+1$ nodes has always been confirmed. In [6], the following conjecture was launched.

Conjecture 2.4. Given a GC_{n} set, there exists at least one line containing $n+1$ nodes.

The conjecture has only been proved for all GC_{n} sets with $n=$ $1,2,3,4$ (see $[1,3]$). As shown in Proposition 2.3, the verification of the conjecture simplifies the problem of describing all possible GC sets. In fact, in [4] a complete classification of all GC configurations up to degree 4 has been obtained. However, for degrees higher than 4, the conjecture remains unsolved. In [6], it is also mentioned that if the conjecture held for arbitrary degree then all GC sets would consist of a line L_{1} with $n+1$ nodes, another line L_{2} containing n nodes not in L_{1}, a third line L_{3} containing $n-1$ nodes not in $L_{1} \cup L_{2}$, and so on. The interpolation problem on these sets of nodes is unisolvent in $\Pi_{n}\left(\mathbb{R}^{2}\right)$ and the solution can be expressed by a simple Newton formula (see [6]).

§3. Some Properties of the Lines in a GC Configuration

Let us start with an auxiliary result

Lemma 3.1. Let L_{1}, L_{2}, L_{3} be three lines in the plane intersecting k lines M_{1}, \ldots, M_{k} in $3 k$ distinct points

$$
\begin{gathered}
x_{i j}:=L_{i} \cap M_{j}, \quad i \in\{1,2,3\}, \quad j \in\{1,2, \ldots, k\} \\
X:=\left\{x_{i j} \mid i \in\{1,2,3\}, \quad j \in\{1,2, \ldots, k\}\right\}, \quad|X|=3 k .
\end{gathered}
$$

Then each polynomial of total degree less than or equal to k vanishing on $3 k-1$ points of X must also vanish at the remaining point of X.
Proof: Without loss of generality we may assume that $p \in \Pi_{k}\left(\mathbb{R}^{2}\right)$ vanishes on $X \backslash\left\{x_{3 k}\right\}$. Let M_{k+1} be a line such that $x_{1, k+1}:=L_{1} \cap M_{k+1}$ is a point in $L_{1} \backslash X$. For $h=4, \ldots, k+1$, let L_{h} be a line intersecting M_{1}, \ldots, M_{k+2-h} at $k+2-h$ distinct points, different from $x_{i j}$, $1 \leq i \leq h-1,1 \leq j \leq k+2-i$ and define $x_{h j}:=L_{h} \cap M_{j}, j=1, \ldots, k-2$. Then

$$
r_{i}=L_{i+1}, \quad r_{i j}=M_{j+1}, \quad j=0, \ldots, k-i, \quad i=0, \ldots, k
$$

defines a system of order $k+1$ in the sense of [6], leading to a set

$$
\tilde{X}:=\left\{x_{i j} \mid 2 \leq i+j \leq k+2\right\}
$$

unisolvent in $\Pi_{k}\left(\mathbb{R}^{2}\right)$ by [6]. Moreover $\tilde{X} \supseteq X \backslash\left\{x_{3 k}\right\}$. Let $\ell_{i j}$ be the Lagrange polynomial associated to the point $x_{i j}$, that is, $\ell_{i j}\left(x_{i^{\prime} j^{\prime}}\right)=\delta_{i i^{\prime}} \delta_{j j^{\prime}}$. We may use the Lagrange formula to write

$$
p(x)=\sum_{2 \leq i+j \leq k+2} p\left(x_{i j}\right) \ell_{i j}(x)
$$

for each $p \in \Pi_{n}\left(\mathbb{R}^{2}\right)$. If p is a polynomial vanishing on $X \backslash\left\{x_{3 k}\right\}$, then the above formula reduces to

$$
\begin{equation*}
p(x)=p\left(x_{1, k+1}\right) \ell_{1, k+1}(x)+\sum_{i \geq 4, i+j \leq k+2} p\left(x_{i j}\right) \ell_{i j}(x) . \tag{3.1}
\end{equation*}
$$

Clearly $\ell_{1, k+1}(x)=\prod_{i=1}^{k}\left(M_{i}(x) / M_{i}\left(x_{1, k+1}\right)\right)$ and, by Bézout's Theorem, $L_{1}(x) L_{2}(x) L_{3}(x)$ divides $\ell_{i j}, i \geq 4$. Therefore each of the terms in (3.1) vanishes not only on $X \backslash\left\{x_{3 k}\right\}$ but also in $x_{3 k}$.

Lemma 3.2. Let X be a GC_{n} set and let L be a line with $n+1$ nodes. Let us assume that M_{1}, M_{2} are lines with n nodes of $X \backslash L$ such that $L \cap M_{1} \cap X=L \cap M_{2} \cap X=\emptyset$, that is, M_{1} and M_{2} do not contain nodes of $L \cap X$. For each $x \in L \cap X$, let $\alpha(x)$ be the node in $L \cap X$ which is the intersection of L with the line in $\Gamma_{x, X}$ containing $M_{1} \cap M_{2} \in X$. Then $\alpha: L \cap X \rightarrow L \cap X$ is an involution with no fixed points, that is

$$
\begin{equation*}
\alpha(x) \neq x, \quad \alpha(\alpha(x))=x, \quad \forall x \in L \cap X \tag{3.2}
\end{equation*}
$$

Fig. 2. Definition of $\alpha(x)$.
Proof: Let us see first that $M_{1} \cap M_{2} \in X$. By Proposition 2.3, $X \backslash L$ satisfies GC_{n-1} and then M_{1} and M_{2} are lines containing n nodes of $X \backslash L$. By Proposition 2.1 (vi) of [2], $M_{1} \cap M_{2}$ is a point in $X \backslash L$.

Let x be a point in $L \cap X$. Each line of $\Gamma_{x, X}$ must contain a point of $L \cap X \backslash\{x\}$. Since $L \cap M_{1} \cap X=L \cap M_{2} \cap X=\emptyset$, then $M_{1}, M_{2} \notin \Gamma_{x, X}$. Taking into account that $L \backslash\{x\}, M_{1}$ and M_{2} contain n nodes in $X \backslash\{x\}$ and that they are lines not in $\Gamma_{x, X}$, we deduce that each line in $\Gamma_{x, X}$ passes through a node in $L \backslash\{x\}$, a node in M_{1} and a node in M_{2}. One of the lines in $\Gamma_{x, X}$ passes through $M_{1} \cap M_{2}$ and intersects L at a node $\alpha(x) \neq x$. Let N_{1}, \ldots, N_{n-1} be the lines in $\Gamma_{x, X}$ not passing through $M_{1} \cap M_{2}$ and let N_{n} be the line joining $M_{1} \cap M_{2}$ and $\alpha(x)$. The lines N_{1}, \ldots, N_{n-1} intersect M_{1}, M_{2}, L in $3 n-3$ nodes

$$
\begin{align*}
& \left(N_{1} \cup \cdots \cup N_{n-1}\right) \cap\left(M_{1} \cup M_{2} \cup L\right)= \\
& \quad\left(M_{1} \cup M_{2} \cup L\right) \cap X \backslash\left\{M_{1} \cap M_{2}, x, \alpha(x)\right\} . \tag{3.3}
\end{align*}
$$

Now, let K_{1}, \ldots, K_{n-1} be the lines in $\Gamma_{\alpha(x), X}$ not passing through $M_{1} \cap M_{2}$ and let K_{n} be the line joining $M_{1} \cap M_{2}$ and $\alpha(\alpha(x))$. The polynomial $K_{1}(x) \cdots K_{n-1}(x)$ vanishes on the $3 n-3$ nodes of the set

$$
\begin{aligned}
& \left(K_{1} \cup \cdots \cup K_{n-1}\right) \cap\left(M_{1} \cup M_{2} \cup L\right)= \\
& \quad\left(M_{1} \cup M_{2} \cup L\right) \cap X \backslash\left\{M_{1} \cap M_{2}, \alpha(x), \alpha(\alpha(x))\right\} .
\end{aligned}
$$

Among these $3 n-3$ nodes, at least $3 n-4$ belong to the set (3.3). If $\alpha(\alpha(x)) \neq x$, then $K_{1}(x) \cdots K_{n-1}(x)$ vanishes on $3 n-4$ points in (3.3) but not on the remaining one, contradicting Lemma 3.1. Therefore $\alpha(\alpha(x))=$ x.

Lemma 3.3. Let X be a GC_{n} set, let L be a line with $n+1$ nodes of the set X and M_{1}, M_{2} two lines containing at least n nodes of $X \backslash L$ each. If n is even, then M_{1} or M_{2} contain $n+1$ nodes of X.

Proof: By assumption, M_{1} and M_{2} do not contain nodes of $L \cap X$. By Lemma 3.2, the mapping $\alpha: L \cap X \rightarrow L \cap X$ is an involution. If
$|L \cap X|=n+1$ is odd, α must have a fixed point, but $\alpha(x)=x$ contradicts the definition of α. Then at least one of the lines M_{i} contains a node of $L \cap X$, and so, that line M_{i} contains $n+1$ nodes.

Theorem 3.4. Let X be a GC_{n} set and let L be a line with $n+1$ nodes of the set X. Let M_{1}, M_{2}, M_{3} be lines containing at least n nodes of the set $X \backslash L$ each. Then, at least two of the lines M_{1}, M_{2}, M_{3} intersect L at a node and contain $n+1$ nodes.

Proof: If n is even, we may apply Lemma 3.3 to the pair of lines M_{1}, M_{2}, then to M_{2}, M_{3} and finally to M_{1}, M_{3}.

Let us now analyze the case where n is odd and assume that M_{i} do not contain points of $L \cap X, i=1,2,3$. According to Lemma 3.2, $M_{1} \cap M_{2}$ is a node. For each $x \in L \cap X$, let N_{x} be the line in $\Gamma_{x, X}$ through $M_{1} \cap M_{2}$ and $\alpha(x):=N_{x} \cap L, \beta(x):=N_{x} \cap M_{3}$. Since $L \notin \Gamma_{x, X}$, each line of $\Gamma_{x, X}$ contains one node of $L \cap X \backslash\{x\}$ and then $M_{3} \notin \Gamma_{x, X}$ because $M_{3} \cap L \cap X=\emptyset$. Taking into account that L and M_{3} contain n points of $X \backslash\{x\}$ and that $L, M_{3} \notin \Gamma_{x, X}$, we see that $\alpha(x), \beta(x) \in X$. By Lemma $3.2, \alpha$ is an involution and so, it is a bijection from $L \cap X$ onto $L \cap X$. This means that different points $x \in L \cap X$ correspond different lines N_{x}. Since $M_{1} \cap M_{2}, \alpha(x), \beta(x)$ are collinear we see that $\beta: L \cap X \rightarrow M_{3} \cap X$ is injective. Therefore $\left|M_{3} \cap X\right| \geq|L \cap X|=n+1$, contradicting the fact that M_{1}, M_{2}, M_{3} do not contain points of $L \cap X$.

Therefore, at least one of the lines M_{1}, M_{2}, M_{3} contain $n+1$ nodes. Without loss of generality we may assume that it is M_{3}. Then $X \backslash M_{3}$ is a GC_{n-1} set with $n-1$ even and M_{1}, M_{2} contain $n-1$ nodes of $X \backslash M_{3}$. By Lemma 3.3, M_{i} intersects L at a node for some $i \in\{1,2\}$, that is, M_{i} has n nodes of the set $X \backslash M_{3}$. Since $M_{i} \cap M_{3} \in X$, we conclude that M_{i} contains $n+1$ nodes of X.

Corollary 3.5. Let X be a GC_{n} set and let L be a line with $n+1$ nodes of the set X. Let $M_{1}, \ldots, M_{k}, k \geq 3$, be lines containing at least n nodes of the set $X \backslash L$ each. Then, at most one of the lines M_{i} does not contain a node of $L \cap X$ and all the other lines M_{j} intersect L at a node and contain $n+1$ nodes.

Proof: Consider all possible sets of 3 lines and apply Theorem 3.4.
Remark 3.6. In Proposition 2.3, we have proved that if X is a $\mathrm{GC}_{n, d}$ set, $d<n+1$, and L is a line with $|L \cap X|=n+1$, then $Y:=X \backslash L$ is a $\mathrm{GC}_{n-1, d^{\prime}}$ set with $d^{\prime} \leq d$. If there exist more than two lines containing n nodes of Y, then, by Corollary 3.5 , we deduce that at most one line containing n nodes of Y does not intersect L at a node and all the rest contain $n+1$ nodes of X. This can be stated in the form: if $d^{\prime} \leq n-2$, then $d \leq d^{\prime}+1$.

§4. Some Consequences of the Verification of the Conjecture

In this section, we derive some properties of GC_{n} sets with the assumption that Conjecture 2.4 holds for degrees $1,2, \ldots, \nu$ using some inductive arguments. First we state a direct consequence of Theorem 3.4.

Theorem 4.1. Assume that Conjecture 2.4 holds for all degrees up to ν. Then for any given GC_{n} set, $n \leq \nu$, there exist at least 3 lines containing $n+1$ nodes.

Proof: We use induction on n. The case $n=1$ is trivial. Assume that any GC_{n-1} set contains 3 lines with n nodes and that $n \leq \nu$. Let X be a GC_{n} set. Since $n \leq \nu$, Conjecture 2.4 holds and there exists a line L containing $n+1$ nodes of X. Moreover $X \backslash L$ is GC_{n-1} and, by hypothesis of induction, there exist 3 lines M_{1}, M_{2}, M_{3} containing n nodes of $X \backslash L$. By Theorem 3.4, two lines among M_{1}, M_{2}, M_{3} contain $n+1$ nodes.

It has been shown in $[1,3]$ that Conjecture 2.4 holds for degrees $n \leq 4$, that is the hypothesis of Theorem 4.1 holds for $\nu=4$. So, as a consequence of Theorem 4.1, we deduce that, for any GC_{n} set $n \leq 4$, there exist 3 lines containing $n+1$ nodes. This fact was derived independently in [4].

Now, we use Theorem 4.1 to know how many nodes use a given line in a GC_{n} set. If L is a line of the plane, then we denote by

$$
\begin{equation*}
X_{L}:=\left\{x \in X \mid L \in \Gamma_{x, X}\right\} \tag{3.1}
\end{equation*}
$$

the set of nodes using the line L. Observe that $L \in \Gamma_{X}$ if and only if X_{L} is nonempty.

By Proposition 2.1 (v) of [2], if a line $M \in \Gamma_{X}$ contains exactly $n+1$ nodes, then $\left|X_{L}\right|=\binom{n+1}{2}$. The following proposition states that if a line $M \in \Gamma_{X}$ contains exactly 2 nodes $|M \cap X|=2$, then $\left|X_{M}\right|=1$.

Proposition 4.2. Let X be a GC_{n} set and $M \in \Gamma_{X}$. If $\left|X_{M}\right| \geq 2$, then the line M contains at least 3 nodes, $|M \cap X| \geq 3$.
Proof: By hypothesis, at least two points x_{1}, x_{2} use the line M, that is $x_{1}, x_{2} \in X_{M}$. This means that $M \in \Gamma_{x_{i}, X}$ for $i \in\{1,2\}$. By Proposition 2.1 (i) of [2], $|M \cap X| \geq 2$. Let us assume that the line M contains exactly two nodes, $M \cap X=\left\{y_{1}, y_{2}\right\}$, and denote by $N_{i j}$ the line joining x_{i} and $y_{j}, i, j \in\{1,2\}$. The union U of the lines in $\Gamma_{x_{i}, X} \backslash\{M\}$ contains all nodes of $X \backslash\left\{x_{i}, y_{1}, y_{2}\right\}$. By Proposition 2.1 (iv) of [2], U cannot contain more than $\binom{n+2}{2}-3$ nodes and so $U \cap X=X \backslash\left\{x_{i}, y_{1}, y_{2}\right\}$. In particular, no line among $N_{11}, N_{12}, N_{21}, N_{22}$ is in the set of lines $\Gamma_{x_{i}, X} \backslash\{M\}$. On the other hand, the set of n lines $\Gamma_{x_{i}, X} \backslash\{M\} \cup\left\{N_{i 2}\right\}$ contains all nodes in $X \backslash\left\{y_{1}\right\}$ and so $\Gamma_{y_{1}, X}=\Gamma_{x_{i}, X} \backslash\{M\} \cup\left\{N_{i 2}\right\}, i \in\{1,2\}$. Analogously, $\Gamma_{y_{2}, X}=\Gamma_{x_{i}, X} \backslash\{M\} \cup\left\{N_{i 1}\right\}, i \in\{1,2\}$. Hence

$$
\begin{aligned}
& \Gamma_{x_{1}, X} \backslash\{M\} \cup\left\{N_{12}\right\}=\Gamma_{y_{1}, X}=\Gamma_{x_{2}, X} \backslash\{M\} \cup\left\{N_{22}\right\}, \\
& \Gamma_{x_{1}, X} \backslash\{M\} \cup\left\{N_{11}\right\}=\Gamma_{y_{2}, X}=\Gamma_{x_{2}, X} \backslash\{M\} \cup\left\{N_{21}\right\} .
\end{aligned}
$$

So we have seen that $N_{1 j}=N_{2 j}$, that is the points x_{1}, x_{2}, y_{j} are collinear, $j \in\{1,2\}$. Then $M=N_{1}=N_{2}$ contains the four nodes $x_{1}, x_{2}, y_{1}, y_{2}$, which is a contradiction.

For typical GC sets such as natural lattices or principal lattices, a line $M \in \Gamma_{X}$ containing k nodes is used by exactly $\binom{k}{2}$ nodes. However this is not true for a general GC set, as shown in the following example.
Example 4.3. Let X be the set of points in the plane:

$$
\begin{gathered}
X=\{(-2,0),(-1,1),(0,-2),(0,0),(0,1),(0,2),(0,4),(2 / 3,8 / 3) \\
(1,0),(1,3),(3 / 2,1),(2,0),(2,2),(3,1),(4,0)\}
\end{gathered}
$$

It is a GC_{4} set and the lines in Γ_{X} are depicted in Figure 4. The line $y=4-2 x$ contains four nodes. However only 3 nodes $(-2,0),(-1,1)$, $(1,0)$ use this line. Observe that all nodes using $y=4-2 x$ also use the lines $x=0$ and $y=4-x$ and these three lines pass through the node $(0,4)$.

Fig. 4. Only three nodes use a line containing four nodes.
The following lemma relates the set X_{M} of nodes in a GC_{n} set X using a given line M with similar sets Y_{M} obtained from GC_{n-1} subsets Y of X.

Lemma 4.4. Let X be a GC_{n} set, L be a line containing $n+1$ nodes and $Y:=X \backslash L$, which is a GC_{n-1} set.
(i) If $\Gamma_{x, X}$ does not contain three concurrent lines for each $x \in X$, then $\Gamma_{y, Y}$ does not contain three concurrent lines for each $y \in Y$.
(ii) For any line $M \neq L, Y_{M}=X_{M} \backslash L$. If L does not intersect M at a node, then $Y_{M}=X_{M}$.

Proof: By Proposition 2.3, Y is a GC_{n-1} set and the lines associated to y are $\Gamma_{y, Y}=\Gamma_{y, X} \backslash\{L\}$. Then (i) trivially follows. We also deduce that
$Y_{M}=X_{M} \cap Y=X_{M} \backslash L$. If $L \cap M \cap X=\emptyset$, then no node lying on the line L uses the line M, that is, $X_{M} \cap L=\emptyset$ and so, $X_{M}=Y_{M}$.

Theorem 4.5. Assume that Conjecture 2.4 holds for all degrees up to ν. Let X be a GC_{n} set, $n \leq \nu$ and $M \in \Gamma_{X}$ be a line containing $k:=|M \cap X|$ nodes. Then
(i) X_{M} contains at most $k-1$ collinear nodes,
(ii) $\left|X_{M}\right| \leq\binom{ k}{2}$.
(iii) If for each $x \in X, \Gamma_{x, X}$ does not contain more than two lines intersecting at the same node, then we have $\left|X_{M}\right|=\binom{k}{2}$.
Proof: We shall use induction on the degree n. The result is trivial for GC_{1} sets. Assume now that X is a GC_{n} configuration, $2 \leq n \leq \nu$ and that (i), (ii) and (iii) have been proved for all GC configurations of degree less than n.

If there exists $L \in \Gamma_{X},|L \cap X|=n+1$ with $L \cap M \cap X=\emptyset$, then, by Lemma 4.4 (ii), $Y:=X \backslash L$ is a GC_{n-1} set and $Y_{M}=X_{M}$. By Lemma 4.4 (i), the hypotesis of (iii) is inherited by Y. Taking into account that $|M \cap Y|=k$, (i), (ii) and (iii) follow from the induction hypothesis.

If there exist $L_{1}, L_{2} \in \Gamma_{X},\left|L_{i} \cap X\right|=n+1, L_{i} \neq M, i=1,2$, with $L_{1} \cap L_{2} \cap M \cap X \neq \emptyset$, then $X_{M} \cap L_{1}=\emptyset$. By Lemma 4.4 (ii), $Y_{1}:=X \backslash L_{1}$ is a GC ${ }_{n-1}$ set and $\left(Y_{1}\right)_{M}=X_{M} \backslash L_{1}=X_{M}$. So, $M \in \Gamma_{Y_{1}},\left|M \cap Y_{1}\right|=k-1$ and, by the induction hypothesis, $X_{M}=\left(Y_{1}\right)_{M}$ contains at most $k-2$ collinear nodes and

$$
\left|X_{M}\right|=\left|\left(Y_{1}\right)_{M}\right| \leq\binom{ k-1}{2}<\binom{k}{2}
$$

Hence (i) and (ii) hold. Observe that, in this case, equality does not hold. In fact, the hypothesis of (iii) fails, because each point of X_{M} uses three concurrent lines M, L_{1}, L_{2}.

It remains to deal with the case where M intersects each line containing $n+1$ nodes at distinct nodes. If $k=n+1$, then we deduce from Proposition 2.1 (v) of [2] that $X_{M}=X \backslash M$, which is a GC_{n-1} set and (i), (ii), (iii) follow. Otherwise, by Theorem 4.1, there exist at least three lines L_{1}, L_{2}, L_{3} containing each $n+1$ nodes. Since M intersects each line containing $n+1$ nodes at different nodes we have $L_{i} \cap M \cap X \neq \emptyset$, $i=1,2,3$.

Let us apply Lemma 4.4, to the GC_{n-1} sets $Y_{i}:=X \backslash L_{i}, i=1,2,3$, the GC_{n-2} sets $Y_{i j}:=X \backslash\left(L_{i} \cup L_{j}\right), i<j$ in $\{1,2,3\}$, and the GC_{n-3} set $Y_{123}:=X \backslash\left(L_{1} \cup L_{2} \cup L_{3}\right)$.

In order to show (i), let N be any line and let us see that $\left|X_{M} \cap N\right|<$ $|M \cap X|$. By the induction hypothesis $\left|\left(Y_{1}\right)_{M} \cap N\right|<|M \cap X|$. Taking into account that M intersects L_{1} at a node, we have $\left|M \cap Y_{1}\right|+1=|M \cap X|$

$$
\left|X_{M} \cap N\right| \leq\left|\left(Y_{1}\right)_{M} \cap N\right|+1<\left|M \cap Y_{1}\right|+1=|M \cap X| .
$$

So (i) holds. By (i), $\left|X_{M} \cap L_{1}\right| \leq k-1$,

$$
\left|X_{M}\right|=\left|X_{M} \backslash L_{1}\right|+\left|X_{M} \cap L_{1}\right| \leq\binom{ k-1}{2}+k-1=\binom{k}{2}
$$

and (ii) follows. Finally, in order to show (iii), we remark that the hypothesis of (iii) is inherited by all the sets $Y_{i}, Y_{i j}, Y_{123}$ and by the induction hypothesis we have $\left|X_{M} \backslash L_{i}\right|=\left|\left(Y_{i}\right)_{M}\right|=\binom{k-1}{2}, i \in\{1,2,3\}$, $\left|X_{M} \backslash\left(L_{i} \cup L_{j}\right)\right|=\left|\left(Y_{i j}\right)_{M}\right|=\binom{k-2}{2}, i<j$ in $\{1,2,3\}, \mid X_{M} \backslash\left(L_{1} \cup L_{2} \cup\right.$ $\left.L_{3}\right)\left|=\left|\left(Y_{123}\right)_{M}\right|=\binom{k-3}{2}\right.$ and $| X_{M}\left|=\sum_{i=1}^{3}\right| X_{M} \backslash L_{i}\left|-\sum_{i=1}^{3} \sum_{j>i}\right| X_{M} \backslash$ $\left(L_{i} \cup L_{j}\right)\left|+\left|X_{M} \backslash\left(L_{1} \cup L_{2} \cup L_{3}\right)\right|=3\binom{k-1}{2}-3\binom{k-2}{2}+\binom{k-3}{2}=\binom{k}{2}\right.$. So, (iii) has been proved.

Acknowledgments. Research partially supported by the Spanish Research Grant BFM2000-1253

References

1. Busch, J. R., A note on Lagrange interpolation in \mathbb{R}^{2}, Revista de la Unión Matemática Argentina, 36 (1990), 33-38.
2. Carnicer, J. M. and Gasca, M., Planar Configurations with Simple Lagrange Formula, in Mathematical Methods in CAGD: Oslo 2000, T. Lyche and L. L. Schumaker (eds.), Vanderbilt University Press, Nashville, 2001, 55-62
3. Carnicer, J. M. and Gasca, M., A conjecture on multivariate polynomial interpolation, Revista de la Real Academia de Ciencias. Serie A. Matemáticas. 95 (2001), 145-153.
4. Carnicer, J. M. and Gasca, M., Classification of bivariate configurations with simple Lagrange interpolation formulae, Preprint.
5. Chung, K. C. and Yao, T. H., On lattices admitting unique Lagrange interpolation, SIAM J. Numer. Anal. 14 (1977), 735-743.
6. Gasca, M. and Maeztu, J. I., On Lagrange and Hermite interpolation in \mathbb{R}^{n}, Numer. Math. 39 (1982), 1-14.
7. Gasca, M. and Sauer, T., Polynomial interpolation in several variables, Adv. Comp. Math., 12 (2000), 377-410.
J. M. Carnicer and M. Gasca

University of Zaragoza
Departamento de Matemática Aplicada
Edificio de Matemáticas, 50009 Zaragoza, Spain
carnicer@posta.unizar.es and gasca@posta.unizar.es

