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Abstract

One of the problems in bivariate polynomial interpolation is the choice
of a space of polynomials suitable for interpolating a given set of data.
Depending on the number of data, a usual space is that of polynomials
in 2 variables of total degree not greater than k. However, these spaces
are not enough to cover many interpolation problems. Here, we are inter-
ested in spaces of polynomials of total degree not greater than k whose
degree diminishes along some prescribed directions. These spaces arise
naturally in some interpolation problems and we describe them in terms
of polynomials satisfying some asymptotic interpolation conditions. This
provides a general frame to the interpolation problems studied in some of
our recent papers.
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1 Introduction

One of the first problems which arise in multivariate polynomial interpolation
is the choice of a subspace of polynomials suitable for interpolating a given
set of data. Even assuming that the dimension of the space is equal to the
number of interpolation data, the unisolvence of the problem depends on the
distribution of the data points (see [9] for more information on these problems).
Taking into account the number of data, a natural space is that of polynomials
in d variables of total degree not greater than k, Πk(Rd). Another natural
choice in some contexts is the tensor product space of the univariate spaces
Πki(R), i = 1, . . . , d, which can be denoted by Πk1,...,kd

(Rd). A generalization
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of the above mentioned spaces is the space of polynomials of total degree not
greater than k whose degree diminishes along some prescribed directions. This
kind of spaces arises naturally in many cases as shown in [7]. See also [2].

On the other hand, a Newton-like approach to bivariate interpolation prob-
lems was introduced by Gasca and Maeztu in [8]. The interpolation space
associated with a given problem is described as the space spanned by a Newton
basis. A question which arises is how to characterize these spaces in a simple
form and this was done in [8] only for a few cases. In [3, 4] we generalized
the Newton approach including asymptotic interpolation conditions among the
interpolation data.

Asymptotic conditions have a precedent in the work of Bojanov, Hakopian
and Sahakian [1], [10]. Each polynomial, when restricted to an affine submani-
fold of Rs (a trace of a polynomial), can be interpreted as a polynomial in less
than s variables. Improper submanifolds can be seen as intersections of proper
affine submanifolds when they tend to be parallel and a limiting polynomial
trace can be defined for improper manifolds.

In [3, 4], we showed that an interpolation problem with some vanishing
asymptotic interpolation data and some standard Hermite–Birkhoff interpola-
tion data on a polynomial interpolation space V can be seen as an interpolation
problem with only the standard interpolation data on the interpolation space
formed by the polynomials of V which satisfy the 0 asymptotic conditions. Then
the problem can be solved in the most convenient form of both. Several exam-
ples were given and we saw that the resulting subspace of V was usually a space
of polynomials whose degree decreases along some directions. However in [3, 4]
we did not state this property in general. The aim of this paper is to describe
which kind of vanishing asymptotic conditions, when satisfied by a polynomial
p of a certain degree, make that the (univariate) restriction of p to any line of
a given direction has lower degree. These techniques have been used in [5] to
generalize the results in [6].

In Section 2 we recall the definition of asymptotic interpolation condition and
some notations. In Section 3 we state a necessary and sufficient condition for a
polynomial of Πn(R2) to become a univariate polynomial of degree less than or
equal to n−k−1 (0 ≤ k ≤ n−1) when restricted to any line of R2 with a given
direction v. Observe that the same polynomial can have this property along
several directions with prescribed corresponding degrees. Finally, in Section 4
we provide some examples.

2 Asymptotic conditions

Let p be a d-variate polynomial of total degree not greater than n, u0 a point
of Rd and v = (v1, . . . , vd) a vector of Rd. As usual we shall denote by Dvf
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the directional derivative operator

Dvf =
d∑

i=1

vi
∂f

∂xi

and then, for a parameter λ 6= 0, we have

λnp(u0 + λ−1v) =
n∑

i=0

1
i!

Di
vp(u0)λn−i = q(λ),

where q(λ) is a univariate polynomial of degree not greater than n.
For 0 ≤ k ≤ n, we define

D̄k,n
u0,vp := Dkq(0) =

k!
(n− k)!

Dn−k
v p(u0). (2.1)

Equivalently, one has

D̄k,n
u0,vp = k! lim

µ→∞
p(u0 + µv)−∑k−1

i=0 µn−iD̄i,n
u0,vp

µn−k
,

with

D̄0,n
u0,vp = lim

µ→∞
p(u0 + µv)

µn
.

In other words, D̄k,n
u0,vp is the result of multiplying by k! the coefficient of µn−k

in the univariate polynomial p(u0 + µv). Let us observe that D̄0,n
u0,vp can be

obtained replacing x by v in pn(x), the homogeneous part of degree n of

p(x) = p0(x) + p1(x) + · · ·+ pn(x),

(pi(x) is a homogeneous polynomial of degree i), that is, D̄0,n
u0,vp = pn(v).

By prescribing the value of D̄k,n
u0,vp we say we have an asymptotic condition

for p. So we can consider the problem of determining a polynomial p in Πn(Rd)
which satisfies some usual interpolation conditions and some additional asymp-
totic conditions. Here, by usual interpolation conditions we understand values
of p and/or some of its directional derivatives at given points and by asymptotic
conditions we mean that the values of some operators of the type D̄k,n

u0,v applied
to p and/or some of its derivatives are also given. See [3, 4].

The value of p(x) along the straight line of parametric equation u1 + µv,
µ ∈ R, where u1 is a given point in Rd and v is a directional vector of the line,
is given by p(u1 + µv) and, if we write u1 = u0 + ν1w, with w a directional
vector of the line joining u0 and u1, we have p(u1 + µv) = p(u0 + ν1w + µv).
By using the Taylor expansion, we can write

p(u0 + νw + µv) =
n∑

i=0

1
i!

Di
vp(u0 + νw)µi =

∑

i+j≤n

1
i!j!

Di
vDj

wp(u0)µiνj
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and identifying the coefficients of µn−k at both sides we have

1
(n− k)!

Dn−k
v p(u0 + νw) =

1
(n− k)!

k∑

j=0

1
j!

Dn−k
v Dj

wp(u0)νj . (2.2)

If we set ν = ν1, we get

1
(n− k)!

Dn−k
v p(u1) =

1
(n− k)!

k∑

j=0

1
j!

Dn−k
v Dj

wp(u0)νj ,

that is, by (2.1),

D̄k,n
u1,v =

k!
(n− k)!

k∑

j=0

1
j!

Dn−k
v Dj

wp(u0)ν
j
1 . (2.3)

Observe that, for k = 0, (2.3) can be written, taking into account (2.1),

D̄0,n
u0,vp = D̄0,n

u1,vp. (2.4)

In general, D̄k,n
u0,v depends on the direction v and on u0. However (2.4) means

that it does not depend on u0 when k = 0.
Our aim in this paper is to interpret vanishing asymptotic data as conditions

which decrease the degree of a polynomial when restricted to a given direction,
that is to any line parallel to a given one.

3 Degree diminution along prescribed directions

In this section we are going to see that the degree of a polynomial decreases
when it is restricted to any line of a given direction if and only if the polynomial
satisfies some set of asymptotic conditions 0. First the asymptotic conditions
will be referred to only one point u0.

Proposition 3.1. Let v be a nonzero vector of Rd. A necessary and sufficient
condition for a polynomial p of total degree not greater than n to become a
univariate polynomial of degree not greater than n − k − 1, (0 ≤ k ≤ n − 1),
when restricted to any straight line with the direction of v is that, for some point
u0 ∈ Rd and a set w1,w2, . . . ,wd−1 of vectors such that {w1,w2, . . . ,wd−1,v}
is a basis of Rd, one has

D̄t+|α|,n
u0,v Dα1

w1
Dα2

w2
· · ·Dαd−1

wd−1p = 0, |α|+ t ≤ k, (3.1)

where α = (α1, . . . , αd−1) ∈ Nd−1
0 and |α| = α1 + · · ·+ αd−1.

Proof: According to (2.1), condition (3.1) can be written

Dn−t−|α|
v Dα1

w1
Dα2

w2
· · ·Dαd−1

wd−1p(u0) = 0, |α|+ t ≤ k. (3.2)
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If we write any point of Rd in the form u0 + µv +
∑d−1

j=1 νjwj , from Taylor
formula we obtain

p
(
u0 + µv +

d−1∑

j=1

νjwj

)
=

∑

i+|α|≤n

1
i!α!

Di
vDα1

w1
Dα1

w2
· · ·Dαd−1

wd−1p(u0)µiνα

=
n∑

i=0

1
i!

( ∑

|α|≤n−i

1
α!

Di
vDα1

w1
Dα2

w2
· · ·Dαd−1

wd−1p(u0)να

)
µi,

with ν = (ν1, . . . , νd−1), which is a polynomial of degree ≤ n− k− 1 in µ if and
only if

Di
vDα1

w1
Dα1

w2
· · ·Dαd−1

wd−1p(u0) = 0, |α| ≤ n− i, i = n− k, . . . , n.

By denoting t = n− i− |α|, we get (3.2).
Our next step is to consider other sets of asymptotic conditions equivalent

to (3.1). More precisely, (3.1) is a set of
(
k+d

d

)
conditions, all of them referred

to the point u0. We want to consider sets of conditions referred to points
distributed along parallel lines with direction v. Since the bivariate case is the
most important and the simplest one, we restrict ourselves to this case. In
particular, (3.1) reduces to

D̄t+r,n
u0,v Dr

wp = 0, r + t ≤ k, (3.3)

where r ∈ N0. So, formula (3.2) can be written

Dn−t−r
v Dr

wp(u0) = 0, r + t ≤ k. (3.4)

Now we shall prove the following

Theorem 3.2. Let v ∈ R2, v 6= 0, and l0, l1, . . . , lk be parallel lines with
directional vector v (coincidences are allowed). Let {urt ∈ R2 | r + t ≤ k}
be a set of

(
k+2
2

)
points not necessarily distinct, distributed along the lines lr:

urt ∈ lr, t + r ≤ k. A necessary and sufficient condition for a polynomial p of
total degree ≤ n to become a univariate polynomial of degree ≤ n− k− 1 when
restricted to any line of R2 with direction v is that

D̄t+r,n
urt,v Dhr

wrt
p = 0, r + t ≤ k, (3.5)

where hr is the number of lines in the sequence l0, . . . , lr−1 coincident with lr
and wrt is any nonzero vector with direction different from v.

Proof: According to (2.1), formula (3.5) can be written

Dn−t−r
v Dhr

wrt
p(urt) = 0, r + t ≤ k. (3.6)

We are going to prove the equivalence with (3.4) by induction on k. For k = 0
both conditions

Dn
vp(u0) = 0, Dn

vp(u00) = 0
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are equivalent, since, according to (2.4), Dn
vp is a constant when p has degree

≤ n.
Assume that the equivalence has been proved until k (< n) and consider

k + 1. So, we can replace conditions (3.6) by (3.4) until k, and then we have to
prove the equivalence of the sets of conditions

Dn−k−1
v Dr

wp(u0) = 0, r = 0, . . . , k + 1, (3.7)

and
Dn−k−1

v Dhr
wr,k+1−r

p(ur,k+1−r) = 0, r = 0, . . . , k + 1, (3.8)

assuming that
Dn−t−r

v Dr
wp(u0) = 0, r + t ≤ k. (3.9)

holds.
The vector wr,k+1−r can be written as a linear combination of v and w, and

so Dhr
wr,k+1−r

can be put as a linear combination of Dα
vDβ

w, α + β = hr(≤ r).
Hence

Dn−k−1
v Dhr

wr,k+1−r
p(ur,k+1−r)

can be expanded as a sum with each of its summands the product of a real
number by

Dn−k−1+α
v Dβ

wp(ur,k+1−r), α + β = hr. (3.10)

On the other hand, ur,k+1−r − u0 can also be written in the form

ur,k+1−r − u0 = δrw + γr,k+1−rv,

with δr, γr,k+1−r real numbers. Observe that the coefficient of w depends only
on the line lr and not on the particular point uk+1−r,r in this line (let us
remember that these lines are parallel with direction v), and that different lines
lr give different numbers δr.

Now we can use Taylor expansion to write (3.10) as a sum where each term
is the product of a real number by

Dn−k−1+α+a
v Dβ+b

w p(u0), α + β = hr, a, b ≥ 0, a + b ≤ k + 1− hr. (3.11)

All terms (3.11) with α + a ≥ 1 are 0 by (3.9) and so we only need to consider
summands with α = a = 0, β = hr, b ≤ k + 1− hr, that is

Dn−k−1
v Dhr+b

w p(u0), b = 0, 1, . . . , k + 1− hr.

In other words, one has

Dn−k−1
v Dhr

wr,k+1−r
p(ur,k+1−r) = Dn−k−1

v Dhr
w p(u0) + δrD

n−k−1
v Dhr+1

w p(u0) +

δ2
r

2
Dn−k−1

v Dhr+2
w p(u0) + · · ·+ δk+1−hr

r

(k + 1− hr)!
Dn−k−1

v Dk+1
w p(u0),
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and in particular, if hr = 0,

Dn−k−1
v p(ur,k+1−r) = Dn−k−1

v p(u0) + δrD
n−k−1
v D1

wp(u0) +

δ2
r

2
Dn−k−1

v D2
wp(u0) + · · ·+ δk+1

r

(k + 1)!
Dn−k−1

v Dk+1
w p(u0).

Hence the vector formed with (3.8)

d̂k+1 = [Dn−k−1
v Dhr

wr,k+1−r
p(ur,k+1−r)]0≤r≤k+1 (3.12)

is related to the vector formed with (3.7)

dk+1 = [Dn−k−1
v Dr

wp(u0)]0≤r≤k+1,

by
d̂k+1 = V [δ0, δ1, . . . , δk+1]dk, (3.13)

where V [δ0, δ1, . . . , δk+1] is the (confluent) Vandermonde matrix of order k + 2
whose row corresponding to the index r, 0 ≤ r ≤ k+1, is the derivative of order
hr of [δj

r/j!]0≤j≤k+1 with respect to δr, that is

[1, δr, δ
2
r/2!, . . . , δk+1

r /(k + 1)!]T , if hr = 0,

[0, 1, δr, δ
2
r/2!, . . . , δk

r /k!]T , if hr = 1,

[0, 0, 1, δr, δ
2
r/2!, . . . , δk−1

r /(k − 1)!]T , if hr = 2,

and so on.
The confluent Vandermonde matrix is the coefficient matrix of a Hermite

univariate polynomial interpolation problem and it is well known that its de-
terminant is nonzero. Therefore d̂k+1 = 0 if and only if dk+1 = 0, and the
equivalence of (3.7) and (3.8) under condition (3.9) has been proved.

From the previous Theorem, it follows:

Corollary 3.3. Let v ∈ R2, v 6= 0, and l0, l1, . . . , lk be distinct parallel lines
with directional vector v (coincidences not allowed). Let {urt ∈ R2 | r + t ≤ k}
be a set of

(
k+2
2

)
points not necessarily distinct, distributed along the lines lr:

urt ∈ lr, t + r ≤ k. A necessary and sufficient condition for a polynomial p of
total degree ≤ n to become a univariate polynomial of degree ≤ n− k− 1 when
restricted to any line of R2 with direction v is that

D̄t+r,n
urt,v p = 0, r + t ≤ k. (3.14)

Remark 3.4. Several sets of conditions (3.5) with different directions v can be
prescribed to a polynomial, always taking into account that the dimension of
Πn(R2) is

(
n+2

2

)
. On the other hand, observe that (3.5) produces a polynomial

whose degree decreases to n− k − 1 along any line with direction v. If some of
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these conditions are not satisfied, it can happen that the degree of the polyno-
mial decreases to different numbers along different lines of the same direction
v. For example, in the case k = 1, if (3.14) holds only for (r, t) = (0, 0) and
(r, t) = (1, 0), it can be seen [4] that the degree of the polynomial is n − 1 on
any line of direction v and in particular n− 2 on the line l1.

4 Interpolation problems and some examples

The techniques of [3, 4] allow us to construct unisolvent interpolation problems
on spaces of polynomials with degree diminution along some directions and to
find their solution.

In [8], for a given set of interpolation data a Newton basis was constructed
which spans the interpolation space. In particular, in that paper it was shown
that when there are n + 1 data on a line r0, n data on another line r1, and so
on until rn, with a total of

(
n+2

2

)
interpolation data, the resulting interpolation

space is Πn(R2). Coincidences of lines and/or data points were allowed giving
rise to derivatives among the interpolation data.

In [3, 4] we showed that asymptotic conditions can be combined with usual
interpolation conditions in some form so that a similar technique to the one of
[8] still works. The results of Section 3 allow us to be more precise. Consider a
usual interpolation problem with

(
n+2

2

)
data on the lines r0, r1, . . . , rn as above

and suppose that, for example, k of these lines ri1 , ri2 , . . . , rik
, with i1 < i2 <

· · · < ik are parallel. Suppose that we replace
(
k+2
2

)
interpolation data by(

k+2
2

)
vanishing asymptotic conditions as in Theorem 3.2: k on the line ri1 ,

k − 1 on ri2 and so on until 1 on rik
. So we have an interpolation problem

with
(
n+2

2

)
conditions (

(
k+2
2

)
of them asymptotic) on Πn(R2). According to

Theorem 3.2 it can be seen as an interpolation problem with
(
n+2

2

) − (
k+2
2

)
usual interpolation data on the space of polynomials of Πn(R2) which become
univariate polynomials of degree n − k − 1 when restricted to any line parallel
to ri1 . For example, in Figure 1 we have 15 data, 9 of them ordinary data
(black points) and 6 of them vanishing asymptotic conditions (white points).
The interpolation problem only with ordinary data is unisolvent in the space of
polynomials of Π4(R2) which have degree 1 along the lines parallel to r0.
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Figure 1. An interpolation problem with 9 ordinary data
and 6 vanishing asymptotic conditions

It must be said that the techniques of [3, 4] allow us to solve these problems
very easily by a Newton formula. More precisely, let us consider the interpo-
lation problem with data f(0, 0), f(0, 1) and f(1, 3) (see Figure 2, left) and
suppose we want to interpolate with the space of polynomials of Π2(R2) which
become constant along any line of direction (1,1). According to [3, 4] this
problem is unisolvent (see Figure 2, right) and a Newton basis to solve it is
1, x− y, (x− y)(x− y + 1). So the solution can be written p = a0 + a1(x− y) +
a2(x− y)(x− y + 1) and the coefficients can be found recursively as in Newton
formulae from the data.

Figure 2. An interpolation problem with quadratic polynomials

We can also consider, for example, polynomials of Π4(R2) which have degree
2 on lines of one direction v and on lines of another direction w. So we have
3 vanishing asymptotic conditions for each direction and 9 remaining (usual)
interpolation conditions. The problem can be solved as above assuming that
the data are distributed in such a form that [3, 4] can be applied. See those
papers for more examples.

We shall finish mentioning that the tensor product space Πm,n(R2) can be
interpreted as the subspace of Πm+n(R2) formed by polynomials which have
degree m on lines parallel to OX and degree n on lines parallel to OY . The
space Πm,n(R2) arises when we consider

(
n+1

2

)
vanishing asymptotic conditions
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of the type of Theorem 3.2 on n lines parallel to OX and analogous
(
m+1

2

)
vanishing asymptotic conditions on m lines parallel to OY . Observe that the
dimension of Πm,n(R2) is (m + 1)(n + 1), that of Πm+n(R2) is

(
m+n+2

2

)
and

that (
m + n + 2

2

)
= (m + 1)(n + 1) +

(
m + 1

2

)
+

(
n + 1

2

)
.
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