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A Newton approach to bivariate Hermite interpolation on generalized
natural lattices ∗

J. M. Carnicer and M. Gasca

Abstract.— A natural lattice is the set of all the intersections points of a set of lines in general position in the plane.
The Lagrange interpolation problem on a natural lattice withn + 2 lines has a unique solution in the space of bivariate
polynomials of degree not greater thann. A generalized natural lattice is the set of all intersection points of a set of
distinct lines, allowing parallelism and multiple concurrences. A Hermite interpolation problem is posed on a generalized
natural lattice in a space of polynomials whose degree decreases along the directions corresponding to parallel lines. In
this paper, we study the unisolvence of this problem and suggest a Newton approach for solving it.

Una aproximaci ón a la interpolaci ón de Hermite bivariada sobre retı́culos naturales gener-
alizados usando f órmulas de Newton

Resumen.— Un ret́ıculo natural es el conjunto de todas las intersecciones de un conjunto de rectas del plano en
posicíon general. El problema de interpolación de Lagrange sobre un retı́culo natural den+2 rectas tiene solución única
en el espacio de los polinomios bivariados de grado menor o igual quen. Un ret́ıculo natural generalizado está formado
por todas las intersecciones de un conjunto de rectas distintas, sin excluir paralelismos o concurrencias múltiples. A
un ret́ıculo natural generalizado le asociamos un problema de interpolación de Hermite en un espacio de polinomios
cuyo grado disminuye a lo largo de las direcciones correspondientes a las rectas paralelas del retı́culo. En este trabajo
estudiamos la existencia y unicidad de solución del problema y el uso de fórmulas de Newton para su resolución.

1 Introduction

An interpolation problem is determined by the space of interpolating functions and a set of interpolation data. In multi-
variate polynomial interpolation, the existence and uniqueness of solution of a problem with a set of interpolation data
in a polynomial space always depends on the geometrical distribution of the set of interpolation points, also called nodes
(see [10]). One of the most frequent problems in this framework is the identification of simple distributions of points such
that the unisolvence of the problem on a given space is guaranteed.

In this paper, we study a particularly simple distribution of nodes in the plane. The interpolation points are the
intersections ofn + 2 straight linesr0, . . . , rn+1 and the interpolation space is a subspace of the space of polynomials of
degree not greater thann, Πn(R2). The case ofn + 2 lines in general position, giving rise to

(
n+2

2

)
different intersection

points, was studied among other authors by Chung and Yao [7] who introduced the termnatural lattice. If we denote by
X the set of

(
n+2

2

)
intersection points and byri(x) an affine polynomial such thatri(x) = 0 is an equation of the lineri,

the polynomial

q(x) =
∑

P∈X

f(P )
n+1∏

i=0
ri(P ) 6=0

ri(x)
ri(P )

. (1.1)

matches the functionf at all pointsP ∈ X.
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Natural lattices are the simplest cases of sets satisfying what Chung and Yao called thegeometric characterization.
The geometric characterization is important because the solution of the corresponding interpolation problem can be found
by a very simple Lagrange formula, which is a generalization of (1.1). Busch [1] extended Chung and Yao’s geometric
characterization allowing multiple concurrences but not parallel lines. He provided a recursive procedure for the con-
struction of Lagrange formulae. These formulae become very complicated and we think that a Newton approach is more
appropriate for solving the problem.

Our aim in this paper is to extend natural lattices allowing parallel lines and multiple concurrences of lines. This
problem was studied by Dyn and Ron in [8]. They analyzed completely thesimple casewhere no multiple concurrences
of lines occur although parallel lines are allowed. They observed that the Lagrange interpolation formula (1.1) for the
interpolating polynomial still holds. This formula describes the unique solution of the problem in a subspace of polyno-
mials inΠn(R2) whose degree diminishes when we restrict the variables to lines of some directions. Dyn and Ron also
described the interpolation problem for thegeneral casebut a constructive method to obtain the solution was not provided
for this case. On the other hand, their motivation for studying this problem came from some results on box spline spaces.
As a consequence, their approach requires a larger background than here. Further results can be found in [2].

For the sake of completeness and in order to offer a simpler approach, we study again in Section 2 the simple case,
introduce the interpolation spaces and provide the Lagrange interpolation formula. In Section 3, we study the general
case (without coincidences of lines) from a Newton approach, giving a constructive method to find the solution of the
problem by a Newton formula. In these sections, we use the spaces of polynomials introduced by Dyn and Ron [8] whose
degree diminishes along prescribed directions. These spaces arise in a natural way in the interpolation problems with
asymptotic conditions that we have studied in some recent papers [4, 5, 6]. In Section 4, we see the relationship between
both approaches. Interpolation problems with asymptotic conditions have also been considered in [11] as traces of usual
data when two manifolds tend to be parallel. Finally, some examples are given in Section 5.

In summary, for a set of anyn + 2 different lines, we provide a set of interpolation conditions on the intersection
points, a subspace ofΠn(R2) as the interpolation space and a construction of the unique solution of the interpolation
problem.

2 Lagrange formulae for generalized natural lattices in the simple case

Let r0, r1, . . . rn+1 ben + 2 different straight lines and assume that any 3 of them do not intersect at the same point. Let
X be the set of intersection points

X := {ri ∩ rj | i < j, ri is not parallel torj}. (2.1)

For eachi let us define
ki :=

∣∣{j > i | rj is parallel tori

}∣∣. (2.2)

Observe that each point inX is the intersection of a lineri with a transversal (not parallel) linerj , i < j. The number of
linesrj , j > i, transversal tori is n + 1− i− ki and then we have

|X| =
n∑

i=0

(n + 1− i− ki) =
(

n + 2
2

)
−

n∑

i=0

ki. (2.3)

The number of nodes|X| is less than or equal to
(
n+2

2

)
and depends on the number of parallel lines. Formula (1.1) still

holds as a Lagrange formula to solve the Lagrange interpolation problem on the set of nodesX. The interpolation space
is notΠn(R2) in general. How to describe the space generated by the Lagrange polynomials

`P (x) :=
n+1∏

i=0
ri(P ) 6=0

ri(x)
ri(P )

(2.4)

in terms of the given linesr0, . . . , rn+1? In order to answer to this question, let us associate to each lineri a directional
vectorρi 6= 0. The direction ofri can be regarded as the 1-dimensional subspace〈ρi〉 of R2. Thenri is parallel torj if
and only if they have the same direction〈ρi〉 = 〈ρj〉. Let D := {〈ρ0〉, . . . , 〈ρn+1〉} be the set of directions of the lines
r0, . . . , rn+1. To each direction〈ρ〉 ∈ D we may associate the number

κ〈ρ〉 :=
∣∣{i ∈ {0, . . . , n + 1} | ri has direction〈ρ〉}∣∣− 1. (2.5)
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If we denote
D1 := {〈ρ〉 | 〈ρ〉 ∈ D, κ〈ρ〉 ≥ 1}, (2.6)

then we have
n∑

i=0

ki =
∑

〈ρ〉∈D1

(
κ〈ρ〉+ 1

2

)
(2.7)

and we may write (2.3) in the form

|X| =
(

n + 2
2

)
−

∑

〈ρ〉∈D1

(
κ〈ρ〉+ 1

2

)
.

Let us now observe that all Lagrange polynomials`P (x) in (2.4) are products ofn linear factors. More precisely,
if P = ri ∩ rj , then`P (x) =

∏
h6=i,j(rh(x)/rh(P )). For any direction〈ρ〉 ∈ D, then, at leastκ〈ρ〉 factors of`p(x)

correspond to lines with direction〈ρ〉. This means that̀P (x) belongs to the subspace of polynomials of degreen whose
degree decreases ton− κ〈ρ〉 when restricted to lines with direction〈ρ〉, for each〈ρ〉 ∈ D1.

Let us introduce the idea of directional degree.

Definition 1 Given a bivariate polynomialp and a direction of the plane〈v〉, v ∈ R2, we define the directional degree
of p along〈v〉 as

∂〈v〉p := max
a∈R2

degt p(a + tv),

wheredegt p(a + tv) denotes the degree of the univariate polynomialp(a + tv) in the indeterminatet.

Let us observe that∂〈v〉p depends on the direction but not on the particular choice of a vectorv in this direction. The
partial degree of a polynomialp in each of the indeterminates can be seen as the directional degree along the directions
〈(1, 0)〉, 〈(1, 0)〉. Conversely the directional degree can be seen as a partial degree.

Given v ∈ R2, take a vectorw ∈ R2 such that{v, w} form a basis ofR2 and define the bivariate polynomial
P (t, s) := p(tv + sw). Eacha ∈ R2 can be writen asa = t0v + s0w, and sop(a + tv) = P (t0 + t, s0). Then

∂〈v〉p = max
a∈R2

degt p(a + tv) = max
t0,s0∈R

degt P (t0 + t, s0) = max
s0∈R

degt P (t, s0).

So we have seen that∂〈v〉p is the partial degree in the indeterminatet of P (t, s), which is independent on the choice ofw.
The fact that the directional degree coincides with a partial degree under a change of variables implies that many

properties of the partial degree can be extended to directional degrees. In fact, we have

∂〈v〉(pq) = ∂〈v〉p + ∂〈v〉q. (2.8)

Let us now introduce a notation for spaces of polynomials whose degree diminishes along prescribed directions.

Definition 2 Given a setV of different directions and a mappingµ : V → N ∪ {0}, we defineΠn(V, µ) as the
polynomial space

Πn(V, µ) :=
{

p ∈ Πn(R2) | ∂〈v〉p ≤ n− µ〈v〉, ∀〈v〉 ∈ V
}

.

Remark 1 The directions〈v〉 such thatµ〈v〉 = 0 are redundant in the previous definition. So, ifV1 := {〈v〉 ∈ V |
µ〈v〉 ≥ 1}, we haveΠn(V, µ) = Πn(V1, µ).

The following proposition shows that if a product of polynomials belongs to the spaceΠn(V, µ), then the factors
belong to that space.

Proposition 1 LetV be a set of directions andµ : V → N∪ {0}. If q ∈ Πn(V, µ), q 6= 0, can be factored as a product
of two polynomials,q = q1q2, thenq1, q2 ∈ Πn(V, µ).

PROOF.
Clearlyq1, q2 ∈ Πn(R2), because

deg q1 + deg q2 = deg q ≤ n.

53



J. M. Carnicer and M. Gasca VOL. 16,NÚM 1

Let v ∈ R2 with 〈v〉 ∈ V . By (2.8) we may write

∂〈v〉q1 + ∂〈v〉q2 = ∂〈v〉q ≤ n− µ〈v〉
and then∂〈v〉qi ≤ n− µ〈v〉, i = 1, 2. ¥

The next result shows that the space generated by the Lagrange functions is justΠn(D,κ) = Πn(D1, κ).
We discuss first the case in which all linesri are parallel, that is,D consists only of one direction〈v〉, with κ〈v〉 =

n + 1. ThenX is the empty set andΠn(D,κ) = 0, the null space. SincedimΠn(D,κ) = 0 = |X|, in a trivial sense
Πn(D, κ) coincides with the space generated by the empty set of Lagrange polynomials. In order to avoid this trivial case,
we shall require that|D| ≥ 2 or equivalentlyX 6= ∅.
Theorem 1 Let r0, . . . , rn+1 be a set ofn + 2 different lines not all of them parallel. Assume that no more than two of
these lines intersect at the same point and let

X := {ri ∩ rj | i < j, ri is not parallel torj}.
Let D be the set of directions of the linesr0, . . . , rn+1. For each〈ρ〉 ∈ D, let κ〈ρ〉 be defined by(2.5) and the set of
directionsD1 by (2.6). For any functionf defined on a set containingX, the Lagrange interpolation problem: find a
polynomialq ∈ Πn(D, κ) such that

q(P ) = f(P ), P ∈ X,

has a unique solutionq, which can be expressed by(1.1). Furthermore

dimΠn(D,κ) =
(

n + 2
2

)
−

∑

ρ∈D1

(
κ(ρ) + 1

2

)
(2.9)

andΠn(D, κ) = Πn(D1, κ) = 〈`P | P ∈ X〉, where`P are the Lagrange polynomials(2.4).

PROOF.
Let W := 〈`P | P ∈ X〉 be the space generated by the polynomials (2.4). Since the polynomials`P are linearly

independent, we have

dim W = |X| =
(

n + 2
2

)
−

∑

ρ∈D1

(
κ〈ρ〉+ 1

2

)
.

Clearly `P (a + tv) is the product of constants and polynomials of first degree int. In fact, ri(a + tv) is a constant
polynomial for alla if and only if v is a directional vector ofri. Therefore∂〈v〉`P is equal to the number of lines not
containing the pointP nor the directionv, that is,∂〈v〉`P = n− κ〈v〉. Then we havèP ∈ Πn(D, κ) for all P ∈ X and
thereforeW ⊆ Πn(D, κ) = Πn(D1, κ). So we have shown the existence of an interpolantq ∈ Πn(D, κ) given by (1.1).
Let us show that there exists a uniqueq ∈ Πn(D, κ) satisfying the given interpolation conditions. This is equivalent to
show that the only polynomial inΠn(D,κ) vanishing onX is the zero polynomial. The proof will be done by induction
on the number of lines.

If n = 0, we have two linesr0, r1 determining two different directions and a single intersection pointX = {r0 ∩ r1}.
The spaceΠ0(D,κ) coincides with the spaceΠ0 of all constant polynomials. If a constant vanishes at a point, then it
must be the zero polynomial.

Let us now show the result forn+2 lines, assuming that it holds forn+1 lines. Since neither the interpolation points
nor the space depend on the order of the lines, we may assume without loss of generality that the last two linesrn, rn+1 are
not parallel. Letρi be a directional vector for the lineri, i = 0, . . . , n + 1. Let q be a polynomial vanishing onX and let
a0+tρ0 be a parameterization of the liner0. Then,q(a0+tρ0) is a polynomial of degree less than or equal ton−κ〈ρ0〉 =
n−k0, wherek0 is given by (2.2) vanishing on then+1−k0 points ofX∩r0. Thereforeq(a0+tρ0) = 0 for all t and thenr0

is a factor of the polynomialq. So, we can writeq = r0q̂, whereq̂ ∈ Πn−1(R2) is a polynomial with∂〈ρ〉q̂ ≤ n−1−κ〈ρ〉,
if 〈ρ〉 ∈ D, 〈ρ〉 6= 〈ρ0〉, and∂〈ρ0〉q̂ ≤ n − κ〈ρ0〉. Furthermoreq vanishes onX \ r0. For the set of linesr1, . . . , rn+1,

we define the set of directionŝD := {〈ρ1〉, . . . , 〈ρn〉, 〈ρn+1〉} andκ̂〈ρ〉 := |{i > 0 | ri has direction〈ρ〉}| − 1. Then
q̂ ∈ Πn−1(D̂, κ̂) and vanishes on̂X := {ri ∩ rj | 0 < i < j, ri not parallel torj} = X \ r0. By the induction hypothesis
q̂ is the zero polynomial and thenq is identically zero.

We have shown that the interpolation problem is unisolvent and this allows us to compute the dimension of the space
Πn(D1, κ), dimΠn(D1, κ) = |X|, and conclude thatW = Πn(D1, κ). So, the result follows.¥

As a consequence of Theorem 1, we can deduce a formula fordimΠn(V, µ) if the spaceΠn(V, µ) can be interpreted
as the solution space of an interpolation problem described in the theorem.
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Corollary 1 LetV be a set of directions of the plane andµ : V → N∪ {0}. Let us defineV1 := {〈v〉 ∈ V | µ〈v〉 ≥ 1}.
If

n ≥
∑

〈v〉∈V1

µ〈v〉+ |V1| − 2, (2.10)

then

dim Πn(V, µ) =
(

n + 2
2

)
−

∑

〈v〉∈V1

(
µ〈v〉+ 1

2

)
. (2.11)

PROOF.
First, for each different direction ofV1 we takeµ〈v〉+1 lines of direction〈v〉. If (2.10) holds, then we can take other lines
with any different directions not belonging toV1 until obtainingn + 2 linesr0, . . . , rn+1. Let D be the set of directions
of the linesri, i = 0, . . . , n + 1, κ〈ρ〉 defined by (2.5) andD1 defined by (2.6). Then, the condition imposed on the lines
r0, . . . , rn+1 implies thatV1 = D1, µ|V1 = κ|D1 . By Remark 1,Πn(V, µ) = Πn(D,κ).

However there might exist more than two lines amongr0, . . . , rn+1 meeting at the same point. In this case, we can
always choose a linẽri parallel tori so that at most two lines intersect at the same point. Since the linesr̃0, . . . , r̃n+1 have
simple intersections, the interpolation problem associated to these lines is the Lagrange problem described in Theorem 1.
The spaceΠn(D,κ) does not depend on the lines but rather on the directions of these lines. Then the space associated to
the Lagrange problem based on the linesr̃0, . . . , r̃n+1 is still Πn(D, κ). From (2.9), we obtain (2.11).¥

3 Newton formulae for generalized natural lattices

A generalized natural latticeis any set ofn+2 different straight lines. In the preceding section we have dealt with sets of
lines such that no 3 lines intersect at the same point. Now we consider thegeneral case: multiple concurrences and also
parallel lines are allowed. However, we do not consider coincidences of lines. Multiple concurrences can be interpreted as
limit cases of simple intersections and so, directional derivatives appear in a natural way, leading to Hermite interpolation
problems. In this case Lagrange formulae become very complicated (see [1]) and so we prefer a Newton approach.

In order to apply the results of [9], we introduce some notations. Let us considern+2 different linesr0, r1, . . . , rn+1.
Without loss of generality, we may assume that all parallel lines corresponding to any direction have consecutive indices.
This assumption allows us to simplify our index notation. Let us define

rij := rn+1−j , j = 0, . . . ,m(i) := n− i− ki, (3.1)

whereki is given by formula (2.2), and an index set

Î := {(i, j) | 0 ≤ i ≤ n; 0 ≤ j ≤ m(i)}, (3.2)

lexicographically ordered. For notational convenience we introduce the sets

Rij := {rh | h < i} ∪ {rip | p < j} = {rh | h < i or h > n + 1− j}, (i, j) ∈ Î . (3.3)

Now we introduce the set of polynomials

φij :=
∏

h<i

rh

∏

p<j

rip =
∏

r∈Rij

r, (i, j) ∈ Î . (3.4)

Let X be the set of all points determined as intersection of at least two lines amongr0, . . . , rn+1. For any point
P ∈ X, let

ν(P ) :=
∣∣{i ∈ {0, . . . , n + 1} | ri(P ) = 0

}∣∣− 2. (3.5)

In order to state the main result in this section we use multiindex notation. Ifα = (α1, α2), |α| := α1 + α2 and
Dα := Dα1

e1
Dα2

e2
, wheree1 = (1, 0), e2 = (0, 1).

Theorem 2 Let r0, . . . , rn+1 ben + 2 different lines not all of them parallel and letX be the set of points lying on at
least two of those lines

X := {ri ∩ rj | i < j, ri is not parallel torj} 6= ∅.
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Let D be the set of directions of the linesri, i = 0, . . . , n + 1. For each〈ρ〉 ∈ D, let κ〈ρ〉 be defined by(2.5). For
any sufficiently differentiable functionf defined on an open set containingX, the Hermite interpolation problem: find a
polynomialq ∈ Πn(D, κ) such that

Dαq(P ) = Dαf(P ), |α| ≤ ν(P ), P ∈ X, (3.6)

whereν(P ) is given by(3.5), has a unique solution. Furthermore, the set of polynomialsφij , (i, j) ∈ Î, defined by(3.4)
is a basis ofΠn(D,κ) andq can therefore be expressed by

q :=
n∑

i=0

m(i)∑

j=0

aijφij . (3.7)

PROOF.
Let us denote byuij ∈ X the intersection of the linesri, rij ,

uij := ri ∩ rij = ri ∩ rn+1−j , (i, j) ∈ Î . (3.8)

Observe that the concurrence of 3 or more lines at the same point give rise to repetition of points. The number of different
indices for a given pointP ∈ X is precisely

(
ν(P )+2

2

)
. In order to use the results of [9], we need some definitions. For

(i, j) ∈ Î, we define a functionalLij in the form

Lijf := Dtij
ρi

f(uij), (3.9)

whereρi is a directional vector of the lineri and

tij := |{r ∈ Rij | r(uij) = 0}|. (3.10)

According to [9], there exists a unique polynomialq in the space

W := 〈φij | (i, j) ∈ Î〉 (3.11)

such that
Lijq = Lijf, (i, j) ∈ Î . (3.12)

The polynomialq can be expressed in the form (3.7) and its coefficients can be computed from (3.12). Indeed, in [9], it is
shown that for(i, j) ∈ Î

Lijφhk = 0, (h, k) ∈ Î , (h, k) > (i, j),
Lijφij 6= 0,

hence the matrix(Lijφhk)(i,j),(h,k)∈Î with the indices lexicographically ordered is lower triangular and the coefficients
aij can be computed by the recurrence

a00 := L00f, aij :=
(
Lijf −

∑

(h,k)<(i,j)

ahkLijφhk

)
/Lijφij , (i, j) > (0, 0). (3.13)

In this sense, the functions (3.4) can be considered a Newton basis for the interpolation problem (3.12) in the spaceW
and (3.7) can be seen as a Newton formula.

In order to prove the theorem, we shall show that the spaceW defined in (3.11) isΠn(D,κ) and that the set of
interpolation conditions (3.12) is equivalent to the set of conditions (3.6).

First, we show thatW = Πn(D,κ). Observe thatφij =
∏

h<i rh

∏
h>n+1−j rh dividesψij :=

∏
h6=i,n+1−j rh. For

any〈ρ〉 ∈ D, ∂〈ρ〉ψij is equal to the number of linesrh, h 6= i, j whose direction is not〈ρ〉. So∂〈ρ〉ψij = n − κ〈ρ〉 for
each〈ρ〉 ∈ D, and thenψij ∈ Πn(D, κ), whereD is the set of directions of the linesr0, . . . , rn+1 andκ is defined in
(2.5). Sinceφij dividesψij we deduce from Proposition 1 thatφij ∈ Πn(D, κ). So we have seen thatW ⊆ Πn(D, κ).
On the other hand, since the interpolation problem inW is unisolvent,dimW is equal to the number of interpolation
data, that is

dim W = |Î| =
n∑

i=0

(m(i) + 1) =
n∑

i=0

(n + 1− i− ki) =
(

n + 2
2

)
−

n∑

i=0

ki.
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By (2.7) and Corollary 1, we have

dim W =
(

n + 2
2

)
−

∑

〈ρ〉∈D1

(
κ〈ρ〉+ 1

2

)
= dim Πn(D, κ)

and so the spaceW generated by the Newton basis isΠn(D,κ).
It only remains to show that the interpolation conditions (3.12) given by the linear functionalsLij in (3.9) are equiva-

lent to the Hermite conditions (3.6). IfP is any point ofX andri0 , . . . , riν(P ) , riν(P )+1 , i0 < · · · < iν(P ) < iν(P )+1, are

the lines containingP , then the
(
ν(P )+2

2

)
interpolation data are

Dk
ρij

f(P ), 0 ≤ j ≤ k ≤ ν(P ).

The corresponding linear formsf 7→ Dk
ρij

f(P ) are linearly independent because the interpolation problem (3.12) is

unisolvent. This set of linear forms is generated by the
(
ν(P )+2

2

)
linear functionalsf 7→ Dαf(P ), |α| ≤ n. Therefore,

the space generated by both sets of linear functionals is the same. So we have shown that the interpolation problems (3.6)
and (3.12) are equivalent in the sense that both lead to the same solutionq for an arbitraryf . ¥

Remark 2 The proof of Theorem 2 suggests a construction of the solutionq of the interpolation problem(3.6). First, we
write the problem in the equivalent form(3.12). The definition of the linear formsLij of (3.9) require an ordering of the
lines such that parallel lines have consecutive indices and the definitions(3.1), (3.2), (3.3), (3.8)and (3.10). Taking into
account that

Dk
v =

∑

|α|=k

(|α|
α

)
vαDα

we computeLijf as a linear combination ofDαf(uij) which are data of the problem(3.6). Then,(3.7) is a Newton
formula for the solution of the problem (3.12), because the coefficientsaij can be computed by(3.13). For the efficient
computation of eachLijφhk in (3.13)one can take into account [3]. An alternative is suggested by the formula

Dtij
ρi

φhk(uij) =
dtij

dstij

∣∣∣
s=0

φhk(uij + ρis).

We first compute the product of univariate polynomials
∏

r∈Rhk
r(uij + ρis) = φhk(uij + ρis) and then the coefficient

of stij of this polynomial is(1/tij !)Lijφhk.

4 Generalized natural lattices and asymptotic conditions

Spaces of bivariate polynomials of a certain degree which decreases when the variables are restricted to lines with pre-
scribed directions have appeared in [8] and in some recent papers [4, 5, 6] dealing with interpolation problems with
asymptotic conditions. In fact, the results of Section 3 can also be obtained using those asymptotic conditions.

Let p be a bivariate polynomial of degreen andp(a + tv), t ∈ R, be the restriction ofp to the line of parametric
equationx = a+tv, a, v ∈ R2. In [4, 5] asymptotic conditions onp along the liner were introduced as certain conditions
on the coefficients of degreen, n− 1, . . . of p(a + tv).

As seen in [9], an interpolation problem withn+1−i data on a straight lineri, 0 ≤ i ≤ n, is unisolvent inΠn(R2). In
[5] a construction similar to that of [9] was provided to deal with interpolation problems including asymptotic conditions.
In this framework, a problem withn + 1− i data (asymptotic or not) onri, 0 ≤ i ≤ n, gave rise toΠn(R2) as a suitable
space in order to have unisolvence.

The problem that we have considered in the proof of Theorem 2 can be studied in this form. Let us denote byI the
set of indices

I := {(i, j) | 0 ≤ i ≤ n; 0 ≤ j ≤ n− i} (4.1)

lexicographically ordered. A set of linear formsLij , (i, j) ∈ I, is used for posing the problem. The setÎ defined in (3.2)
is contained inI and the linear formsLij , (i, j) ∈ Î, are those defined in (3.9). For(i, j) ∈ I \ Î, Lijp prescribe the
values of the coefficients of highest degrees of the polynomial solution of the problem when the variables are restricted to
certain lines. In [5], we show that the interpolation problem

Lijp = Lijf, (i, j) ∈ I,
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has a unique solutionp ∈ Πn(R2) and thatp can be constructed from a Newton formula in the sense that the the basis
constructed there{φij | (i, j) ∈ I} satisfies

Lijφhk = 0, (h, k), (i, j) ∈ I, (h, k) > (i, j),
Lijφij 6= 0, (i, j) ∈ I.

Choose a direction〈ρ〉. Under our indexing assumptions, the interpolation data of the form (3.9) are given by the
indicess ≤ i ≤ s + κ〈ρ〉, 0 ≤ j ≤ n + 1 − s − κ〈ρ〉, that is, indices belonging tôI. In each liners+h there are
κ〈ρ〉 − h asymptotic conditions,h = 0, . . . , κ〈ρ〉 − 1. In Theorem 3.2 of [6]. we showed that a polynomialq ∈ Πn(R2)
satisfies the vanishing asymptotic conditions on the linesrs, rs+1, . . . , rs+κ〈ρ〉−1 if and only if it has degreen − κ〈ρ〉
when restricted to any line with direction〈ρ〉. The same reasoning works when we consider several groups of parallel
lines. So, the subspace of polynomials inΠn(R2) satisfying the vanishing asymptotic conditions for(i, j) ∈ I \ Î is
Πn(D, κ).

The interpolation problem of findingp ∈ Πn(R2) such thatLijp has prescribed values for all(i, j) ∈ Î and satisfying
vanishing asymptotic conditions for all indices(i, j) ∈ I \ Î has a unique solution. In other words, there is a unique
polynomial p ∈ Πn(D,κ) such thatLijp takes prescribed values for all(i, j) ∈ Î. So, we have derived the same
conclusions as in Section 3 from another point of view.

5 Examples

Figures 1 and 2 show different natural lattices. We have marked with a black circle the simple intersection which give
rise to Lagrange interpolation data (value of the function at that point). We have surrounded a black circle by a concentric
circle to indicate the intersection of three lines giving rise to first order Hermite data (value of the function and two partial
derivatives of first order).

The interpolation space isΠ4(R2) in Figure 1 left. In the case of Figure 1 right, the space is that of quartic polynomials
which become cubic along two directions, namely the directions of the axes. The dimension of this space is 13.

Figure 1. Two generalized natural lattices with 6 lines

In Figure 2 left, the interpolation space is the subspace of polynomials of degree not greater than seven, whose
directional degree is not greater than five along the directions of the axes OX, OY and the bisector of the quadrant XOY.
This space has dimension 27. Finally, in Figure 2 right, the interpolation space is that of sextic polynomials of degree not
greater than five along the directions of the axes and their bisectors. This space has dimension 24.
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Figure 2. Two generalized natural lattices with 8 and 9 lines

Let us describe the construction of the solution of the problem corresponding to Figure 1 right. Denote byr0, r1 the
lines of direction OX,r2, r3 the lines of direction OY andr4, r5 the diagonals of the rectangle determined byr0, r1, r2, r3.
The index set (3.2) is

Î := {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (3, 0), (3, 1), (4, 0)}.

The interpolation points are
uij = ri ∩ r5−j , (i, j) ∈ Î .

Observe that the four vertices of the rectangle appear three times in the above list

u00 = u02 = u30, u01 = u03 = u21, u10 = u13 = u20, u11 = u12 = u31.

The Newton basis (3.4) is given by

φij =
∏

h<i

rh

∏

p<j

r5−p, (i, j) ∈ Î .

Finally the linear formsLijf defined in (3.9) are given by

f(uij), for (i, j) ∈ {(0, 0), (0, 1), (1, 0), (1, 1), (4, 0)},
∂f

∂x
(uij), for (i, j) ∈ {(0, 2), (0, 3), (1, 2), (1, 3)},

∂f

∂y
(uij), for (i, j) ∈ {(2, 0), (2, 1), (3, 0), (3, 1)}.

The problem can be solved using the recurrence (3.13). For the computation see Remark 2.
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