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A Newton approach to bivariate Hermite interpolation on generalized
natural lattices *

J. M. Carnicer and M. Gasca

Abstract.— A natural lattice is the set of all the intersections points of a set of lines in general position in the plane.
The Lagrange interpolation problem on a natural lattice with 2 lines has a unique solution in the space of bivariate
polynomials of degree not greater than A generalized natural lattice is the set of all intersection points of a set of
distinct lines, allowing parallelism and multiple concurrences. A Hermite interpolation problem is posed on a generalized
natural lattice in a space of polynomials whose degree decreases along the directions corresponding to parallel lines. In
this paper, we study the unisolvence of this problem and suggest a Newton approach for solving it.

Una aproximaci 6n a la interpolaci 6n de Hermite bivariada sobre reticulos naturales gener-
alizados usando f 6rmulas de Newton

Resumen.— Un reficulo natural es el conjunto de todas las intersecciones de un conjunto de rectas del plano en
posicbn general. El problema de interpolagide Lagrange sobre uni@ilo natural de: + 2 rectas tiene soluén Gnica

en el espacio de los polinomios bivariados de grado menor o iguat.qua refculo natural generalizado ésformado

por todas las intersecciones de un conjunto de rectas distintas, sin excluir paralelismos o concurtdtigias. nfA

un refculo natural generalizado le asociamos un problema de interpolae@ Hermite en un espacio de polinomios
cuyo grado disminuye a lo largo de las direcciones correspondientes a las rectas paralele=iliel Egt este trabajo
estudiamos la existencia y unicidad de sduailel problema y el uso défmulas de Newton para su resoluti

1 Introduction

An interpolation problem is determined by the space of interpolating functions and a set of interpolation data. In multi-
variate polynomial interpolation, the existence and uniqueness of solution of a problem with a set of interpolation data
in a polynomial space always depends on the geometrical distribution of the set of interpolation points, also called nodes
(see [10]). One of the most frequent problems in this framework is the identification of simple distributions of points such
that the unisolvence of the problem on a given space is guaranteed.

In this paper, we study a particularly simple distribution of nodes in the plane. The interpolation points are the
intersections of: 4 2 straight lines-q, . . ., 7,41 and the interpolation space is a subspace of the space of polynomials of
degree not greater than I1,,(R?). The case of. + 2 lines in general position, giving rise (6“2“2) different intersection
points, was studied among other authors by Chung and Yao [7] who introduced theatemal lattice If we denote by
X the set of(”ﬁ) intersection points and by (x) an affine polynomial such thaf(z) = 0 is an equation of the line;,
the polynomial

n+1 (o
o0 =3 1) I 2 (1.1)
pex '"ifi)o#o Z

matches the functioyi at all pointsP € X.
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J. M. Carnicer and M. Gasca VoL. 16,NUm 1

Natural lattices are the simplest cases of sets satisfying what Chung and Yao caljedntietric characterization
The geometric characterization is important because the solution of the corresponding interpolation problem can be found
by a very simple Lagrange formula, which is a generalization of (1.1). Busch [1] extended Chung and Yao's geometric
characterization allowing multiple concurrences but not parallel lines. He provided a recursive procedure for the con-
struction of Lagrange formulae. These formulae become very complicated and we think that a Newton approach is more
appropriate for solving the problem.

Our aim in this paper is to extend natural lattices allowing parallel lines and multiple concurrences of lines. This
problem was studied by Dyn and Ron in [8]. They analyzed completelgithgle casevhere no multiple concurrences
of lines occur although parallel lines are allowed. They observed that the Lagrange interpolation formula (1.1) for the
interpolating polynomial still holds. This formula describes the unique solution of the problem in a subspace of polyno-
mials inIL, (R?) whose degree diminishes when we restrict the variables to lines of some directions. Dyn and Ron also
described the interpolation problem for tipeneral caséut a constructive method to obtain the solution was not provided
for this case. On the other hand, their motivation for studying this problem came from some results on box spline spaces.
As a consequence, their approach requires a larger background than here. Further results can be found in [2].

For the sake of completeness and in order to offer a simpler approach, we study again in Section 2 the simple case,
introduce the interpolation spaces and provide the Lagrange interpolation formula. In Section 3, we study the general
case (without coincidences of lines) from a Newton approach, giving a constructive method to find the solution of the
problem by a Newton formula. In these sections, we use the spaces of polynomials introduced by Dyn and Ron [8] whose
degree diminishes along prescribed directions. These spaces arise in a natural way in the interpolation problems with
asymptotic conditions that we have studied in some recent papers [4, 5, 6]. In Section 4, we see the relationship between
both approaches. Interpolation problems with asymptotic conditions have also been considered in [11] as traces of usual
data when two manifolds tend to be parallel. Finally, some examples are given in Section 5.

In summary, for a set of any + 2 different lines, we provide a set of interpolation conditions on the intersection
points, a subspace @f, (R?) as the interpolation space and a construction of the unique solution of the interpolation
problem.

2 Lagrange formulae for generalized natural lattices in the simple case

Letrg,r1,...7mn+1 ben + 2 different straight lines and assume that any 3 of them do not intersect at the same point. Let
X be the set of intersection points
X ={r;Nrj|i<j, r;isnotparallel ta;}. (2.1)
For each let us define
ki == |{j >i|r;is parallel tor; }|. (2.2)

Observe that each point i is the intersection of a ling; with a transversal (not parallel) ling, i < j. The number of
linesr;, j > i, transversal te; isn + 1 — i — k; and then we have

n n

|X|:Z(n+1—i—ki):(n;2>—2ki. (2.3)

=0

The number of nodelsX | is less than or equal t(f;r?) and depends on the number of parallel lines. Formula (1.1) still
holds as a Lagrange formula to solve the Lagrange interpolation problem on the set offhotles interpolation space
is notIL,, (R?) in general. How to describe the space generated by the Lagrange polynomials

n+1

ri(z)
(p(z) = ! (2.4)
Il 77
i (P)#0
in terms of the given linesy, ..., r,11? In order to answer to this question, let us associate to each; ladirectional

vectorp; # 0. The direction of-; can be regarded as the 1-dimensional subspa¢ef R?. Thenr; is parallel tor; if
and only if they have the same directigny) = (p;). Let D := {(po), ..., (pn+1)} be the set of directions of the lines
ro,..., nt1. 1O €ach directiop) € D we may associate the number

r(p) == |{i € {0,...,n + 1} | r; has direction(p) } | — 1. (2.5)
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VoL. 16,NUm 1 A Newton approach to bivariate Hermite interpolation

If we denote
Dy :={(p) | {p) € D, r(p) =1}, (2.6)

then we have

~, k{p) +1

Zk,_ > ( ) ) (2.7)

i=0 (p)ED;
and we may write (2.3) in the form

n—+2 K(p) +1
A= (1) 5, (97)
(p)ED1

Let us now observe that all Lagrange polynomiélgx) in (2.4) are products of linear factors. More precisely,
it P =r;Nr; thenlp(z) =[]}, ;(rn(x)/rn(P)). For any directionp) € D, then, at leask(p) factors of¢,,(z)
correspond to lines with directiofp). This means thatp (x) belongs to the subspace of polynomials of degreéhose
degree decreasesto- x(p) when restricted to lines with directiap), for each(p) € D;.

Let us introduce the idea of directional degree.

Definition 1  Given a bivariate polynomiagl and a direction of the plané), v € R?, we define the directional degree
of p along(v) as
0 = d t
()P = Mmax deg, pla+tv),

wheredeg, p(a + tv) denotes the degree of the univariate polynomial + tv) in the indeterminate.

Let us observe thal,,p depends on the direction but not on the particular choice of a vectothis direction. The
partial degree of a polynomialin each of the indeterminates can be seen as the directional degree along the directions
((1,0)), {(1,0)). Conversely the directional degree can be seen as a partial degree.

Givenv € R?, take a vectonw € R? such that{v,w} form a basis ofR? and define the bivariate polynomial
P(t,s) := p(tv + sw). Eacha € R? can be writen as = tyv + sow, and sg(a + tv) = P(ty +t, s0). Then

O(vyp = max deg, p(a + tv) = max deg, P(to +t,50) = max deg; P(t, s0).
acR? spER

to,s0€R

So we have seen that,p is the partial degree in the indeterminatef P(t, s), which is independent on the choicewof
The fact that the directional degree coincides with a partial degree under a change of variables implies that many
properties of the partial degree can be extended to directional degrees. In fact, we have

Ay (Pg) = Ow)p + Oy (2.8)
Let us now introduce a notation for spaces of polynomials whose degree diminishes along prescribed directions.

Definition 2 Given a setV of different directions and a mapping : V. — N U {0}, we definell,(V, ) as the
polynomial space

I,(V,p) := {p €, (R?) | Opyp < n— pufv), V(v) € V}.

Remark 1 The directions(v) such thatu{v) = 0 are redundant in the previous definition. SoVif := {(v) € V|
wuiv) > 1}, we havdl, (V, p) = IL,,(V1, p).

The following proposition shows that if a product of polynomials belongs to the S9ac¥, 1), then the factors
belong to that space.

Proposition 1 LetV be a set of directionsand: V' — N U {0}. If ¢ € II,,(V, u), ¢ # 0, can be factored as a product
of two polynomialsg = ¢1¢2, thengy, g2 € I1,,(V, u).

PrROOF
Clearlyqi, g2 € 11,,(R?), because
degq1 +deggs = degq < n.
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Letv € R? with (v) € V. By (2.8) we may write
Owyq1 + Ovyq2 = Oppyq < m — p(v)

and therd,yq; <n — p(v),i=1,2. A
The next result shows that the space generated by the Lagrange functiondlig(iistc) = I1,,(D1, k).
We discuss first the case in which all lingsare parallel, that isD consists only of one directiofv), with x(v) =
n + 1. ThenX is the empty set antl,,(D, x) = 0, the null space. SincéimII,(D,x) = 0 = | X], in a trivial sense
11, (D, ) coincides with the space generated by the empty set of Lagrange polynomials. In order to avoid this trivial case,
we shall require thatD| > 2 or equivalentlyX = ().

Theorem 1 Letry,...,r,11 be a set oh 4 2 different lines not all of them parallel. Assume that no more than two of
these lines intersect at the same point and let

X :={r;Nr; |1 <j, r;isnotparallel ta-;}.

Let D be the set of directions of the lines, ..., r,+1. For each(p) € D, let x(p) be defined by2.5) and the set of
directions D, by (2.6). For any functionf defined on a set containing, the Lagrange interpolation problem: find a
polynomialg € I1,,(D, ) such that

q(P)=f(P), PeX,

has a unique solution, which can be expressed f.1). Furthermore

dim L, (D, k) = (”;2> -y (“(p); 1) (2.9)

pED1
andIl,(D, k) =11,(D1,k) = ({p | P € X), wherelp are the Lagrange polynomia(g.4).

PROOF
LetW := ({p | P € X) be the space generated by the polynomials (2.4). Since the polyndmiale linearly

independent, we have
: n+2 K(p) +1
d1mW:|X|:< 5 )— E < 5 )

pED1

Clearly {p(a + tv) is the product of constants and polynomials of first degree i fact, r;(a + tv) is a constant
polynomial for alla if and only if v is a directional vector of;. Therefored,,,/p is equal to the number of lines not
containing the poinf nor the direction, that is,d,,¢/p = n — x(v). Then we havép < I1,(D, ) forall P € X and
thereforeW C 11,,(D, k) = I1,,(D;, k). So we have shown the existence of an interpajastll,, (D, ) given by (1.1).
Let us show that there exists a unigue IL, (D, ) satisfying the given interpolation conditions. This is equivalent to
show that the only polynomial ifl,,(D, k) vanishing onX is the zero polynomial. The proof will be done by induction
on the number of lines.

If n = 0, we have two lines, r; determining two different directions and a single intersection pint {ro Nry}.
The spacdl,(D, ) coincides with the spacH, of all constant polynomials. If a constant vanishes at a point, then it
must be the zero polynomial.

Let us now show the result far+ 2 lines, assuming that it holds far+ 1 lines. Since neither the interpolation points
nor the space depend on the order of the lines, we may assume without loss of generality that the lastitye lipesre
not parallel. Letp; be a directional vector for the ling, 7 = 0,...,n + 1. Letq be a polynomial vanishing oX and let
ag+tpo be a parameterization of the limg. Then,g(ag+tpo) is a polynomial of degree less than or equakter{pg) =
n—ko, wherek is given by (2.2) vanishing on thet 1—kq points of X Nrq. Thereforey(ag+tpg) = 0for all ¢ and therrg
is a factor of the polynomia). So, we can write = o4, whereg € I1,,_; (R?) is a polynomial withd,)§ < n—1—r(p),
if (p) € D, {p) # (po),» andd;,,y4§ < n — k(po). Furthermorey vanishes onX \ ro. For the set of linesy, ..., 7,1,
we define the set of direction’® := {(p1),..., (pn), (pns1)} @andi(p) := |{i > 0 | r; has directionp)}| — 1. Then
¢ € ,,_1(D, &) and vanishes o& := {r; Nr; | 0 < i < j,r; not parallel tor;} = X \ ro. By the induction hypothesis
q is the zero polynomial and thenis identically zero.

We have shown that the interpolation problem is unisolvent and this allows us to compute the dimension of the space
11, (D4, k), dim 11, (D4, k) = | X|, and conclude thdd” = I1,,(D1, ). So, the result followsll

As a consequence of Theorem 1, we can deduce a formudarfoll,, (V, u) if the spacdl,, (V, 1) can be interpreted
as the solution space of an interpolation problem described in the theorem.
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VoL. 16,NUm 1 A Newton approach to bivariate Hermite interpolation

Corollary 1 LetV be a set of directions of the plane and V' — N U {0}. Let us defind; := {(v) € V | u{v) > 1}.
If

n> Y p)+ Vil -2, (2.10)
(v)eV:

dim L, (V, 1) = (”;2> -y (“<”>2+1>. (2.11)

then

PrROOF
First, for each different direction df; we takeu(v) + 1 lines of direction(v). If (2.10) holds, then we can take other lines
with any different directions not belonging g until obtainingn + 2 linesry, ..., ,+1. Let D be the set of directions
of the linesr;, i = 0,...,n + 1, k(p) defined by (2.5) and; defined by (2.6). Then, the condition imposed on the lines
70y - -, Tny1 iMplies thatVy = Dy, ulv, = k|p,. By Remark 1]1,,(V, u) = 11,,(D, k).

However there might exist more than two lines amepg . ., r,,+1 meeting at the same point. In this case, we can
always choose a ling parallel tor; so that at most two lines intersect at the same point. Since theflines , 7,1 have
simple intersections, the interpolation problem associated to these lines is the Lagrange problem described in Theorem 1.
The spacél,, (D, x) does not depend on the lines but rather on the directions of these lines. Then the space associated to
the Lagrange problem based on the lifgs . . , 7,11 is still I1,, (D, k). From (2.9), we obtain (2.11

3 Newton formulae for generalized natural lattices

A generalized natural lattices any set of: 4 2 different straight lines. In the preceding section we have dealt with sets of
lines such that no 3 lines intersect at the same point. Now we considgetegal casemultiple concurrences and also
parallel lines are allowed. However, we do not consider coincidences of lines. Multiple concurrences can be interpreted as
limit cases of simple intersections and so, directional derivatives appear in a natural way, leading to Hermite interpolation
problems. In this case Lagrange formulae become very complicated (see [1]) and so we prefer a Newton approach.

In order to apply the results of [9], we introduce some notations. Let us considedifferent linesrg, r1,...,r41.
Without loss of generality, we may assume that all parallel lines corresponding to any direction have consecutive indices.
This assumption allows us to simplify our index notation. Let us define

Tij = Tn+1—j, j = 0,,m(z) =n-—1— ki, (31)

wherek; is given by formula (2.2), and an index set

P {(,j)|0<i<n0<j<m)), (3.2)

lexicographically ordered. For notational convenience we introduce the sets

Rij={rn|h<i}U{rp|p<j}={rn|h<iorh>n+1-j}, (i,5)€l. (3.3)
Now we introduce the set of polynomials
J :Hrh,Hrip: H T, (Z,])Ef (34)
h<i p<j rE€R;;

Let X be the set of all points determined as intersection of at least two lines amgong,r,,+1. For any point
PeX,let
=[{ief0,...,n+1} | ri(P) =0} —2. (3.5)
In order to state the main result in this section we use multiindex notation. = (a1, as2), |a| :== a1 + a3 and
D® := D¢ D¢?, wheree; = (1,0), e2 = (0, 1).

Theorem 2 Letrg,...,r,+1 ben + 2 different lines not all of them parallel and |8 be the set of points lying on at
least two of those lines
X :={rinr;|i<j, r;isnotparallel to;} # 0.
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Let D be the set of directions of the lines i = 0,...,n + 1. For each(p) € D, let x(p) be defined by2.5). For
any sufficiently differentiable functiohdefined on an open set containifiy the Hermite interpolation problem: find a
polynomialg € 11, (D, k) such that

D%q(P)=D“f(P), |a/<v(P), PeX, (3.6)

wherev (P) is given by(3.5), has a unique solution. Furthermore, the set of polynomigJs(i, j) € I, defined by(3.4)
is a basis oflI,,(D, x) andq can therefore be expressed by

n m(z

)
q:= Z aijPij- (3.7)

i=0 j=0

PrROOF
Let us denote by,;; € X the intersection of the lines, r;;,

Uij 1= T4 n Tij = T4 n Tn4+1—3, (Z,]) el (38)

Observe that the concurrence of 3 or more lines at the same point give rise to repetition of points. The number of different
indices for a given poinP € X is precisely(”(?”). In order to use the results of [9], we need some definitions. For

(i,§) € I, we define a functional;; in the form
Lij f = Dy f(ui), (3.9)
wherep; is a directional vector of the ling and
tij == [{r € Rij | r(ui;) = 0}, (3.10)
According to [9], there exists a unique polynomjah the space
W= (¢ | (i,5) € I) (3.11)

such that R

The polynomialy can be expressed in the form (3.7) and its coefficients can be computed from (3.12). Indeed, in [9], itis
shown that for(é, j) € 1

Lij¢hk = 07 (ha k) S j7 (h7 k) > (7'7])7
Lijoi5 # 0,
hence the matriXL;;¢ni) i) (el with the indices lexicographically ordered is lower triangular and the coefficients
a;; can be computed by the recurrence

aoo := Loo f, aij = (Lijf - Z ahkLijthk) /Lij®ij, (i,7) > (0,0). (3.13)
(h,k)<(i,5)

In this sense, the functions (3.4) can be considered a Newton basis for the interpolation problem (3.12) in thé space
and (3.7) can be seen as a Newton formula.

In order to prove the theorem, we shall show that the spécdefined in (3.11) id1, (D, x) and that the set of
interpolation conditions (3.12) is equivalent to the set of conditions (3.6).

First, we show thatV’ = I1,,(D, x). Observe thad;; = [[,.; 7x Hh>n+1_j rp, dividesy;; = Hh¢i7n+1_j ry,. For
any(p) € D, 0,y%;; is equal to the number of lines,, i # 4, j whose direction is nofp). S09,yv; = n — k(p) for
each(p) € D, and theny,; € II,,(D, k), whereD is the set of directions of the lines, ..., r,; andx is defined in
(2.5). Sincep;; dividest);; we deduce from Proposition 1 that; € I1,,(D, x). So we have seen théit C II,,(D, k).

On the other hand, since the interpolation problemiinis unisolvent,dim W is equal to the number of interpolation
data, that is

n n n

dmW = [I] =) (m(i)+1) =) (n+1—i—k)= (”;2) > ki
=0

=0 =0

56



VoL. 16,NUm 1 A Newton approach to bivariate Hermite interpolation

By (2.7) and Corollary 1, we have
: n+2 k(p) +1 :
dim W = ( 5 ) - E ( 5 = dimIL,(D, k)

(p)ED1

and so the spad@” generated by the Newton basidlg (D, ).
It only remains to show that the interpolation conditions (3.12) given by the linear functibpails (3.9) are equiva-
lent to the Hermite conditions (3.6). I is any point ofX andr;,, ... 19 < -+ <dy(py < iy(p)+1, Ar€

the lines containing?, then the(*(")2) interpolation data are

Tiypyr Tiv(py41r

D: f(P), 0<j<k<wv(P).

Pij
The corresponding linear formg — D’;ivf(P) are linearly independent because the interpolation problem (3.12) is
J

unisolvent. This set of linear forms is generated by (th‘é;)”) linear functionalsf — D*f(P), |a| < n. Therefore,
the space generated by both sets of linear functionals is the same. So we have shown that the interpolation problems (3.6)
and (3.12) are equivalent in the sense that both lead to the same sqltdican arbitrary/. B

Remark 2 The proof of Theorem 2 suggests a construction of the solgtadnhe interpolation problen3.6). First, we
write the problem in the equivalent for(8.12) The definition of the linear forms;; of (3.9) require an ordering of the
lines such that parallel lines have consecutive indices and the defin{Boh)s (3.2), (3.3), (3.8)and(3.10) Taking into

account that a
(8%
Dk _ apo
= ()

|a|=k

we computel;; f as a linear combination oD f(u;;) which are data of the probler(8.6). Then,(3.7) is a Newton
formula for the solution of the problem (3.12), because the coefficigntsan be computed bfB.13) For the efficient
computation of eaclh;; ¢, in (3.13)one can take into account [3]. An alternative is suggested by the formula

dbii
= Jsts S:0¢hk(uij + pis).

We first compute the product of univariate polynomidls. . 7(uij + pis) = ¢ni(ui; + pis) and then the coefficient
of s's of this polynomial ig1/t;;!)L;; dnk-

D;@j Ok (wij)

4 Generalized natural lattices and asymptotic conditions

Spaces of bivariate polynomials of a certain degree which decreases when the variables are restricted to lines with pre-
scribed directions have appeared in [8] and in some recent papers [4, 5, 6] dealing with interpolation problems with
asymptotic conditions. In fact, the results of Section 3 can also be obtained using those asymptotic conditions.

Let p be a bivariate polynomial of degreeandp(a + tv), t € R, be the restriction op to the line of parametric
equationr = a+tv, a,v € R2. In[4, 5] asymptotic conditions gmalong the line- were introduced as certain conditions
on the coefficients of degreen — 1,. .. of p(a + tv).

As seenin [9], an interpolation problem with+ 1 —i data on a straight line;, 0 < i < n, is unisolvent inL, (R?). In
[5] a construction similar to that of [9] was provided to deal with interpolation problems including asymptotic conditions.
In this framework, a problem with + 1 — 4 data (asymptotic or not) or, 0 < i < n, gave rise tdl,,(R?) as a suitable
space in order to have unisolvence.

The problem that we have considered in the proof of Theorem 2 can be studied in this form. Let us dentite by
set of indices

I:={(,7)]0<i<n;0<j<n—i} (4.1)

lexicographically ordered. A set of linear fornis;, (¢, j) € I, is used for posing the problem. The $atefined in (3.2)

is contained i/ and the linear formd,;, (i,5) € I, are those defined in (3.9). F6r,j) € I\ I, L;;p prescribe the
values of the coefficients of highest degrees of the polynomial solution of the problem when the variables are restricted to
certain lines. In [5], we show that the interpolation problem
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has a unique solutiop € II,,(R?) and thatp can be constructed from a Newton formula in the sense that the the basis
constructed therégp;; | (4, j) € I} satisfies

Lijop =0, (hk),(i,5) €I, (hk)> (1,7),
Lij¢i; #0, (i,j) €I

Choose a directiorip). Under our indexing assumptions, the interpolation data of the form (3.9) are given by the
indicess < i < s+ r(p), 0 < j < n+1—s5— r(p), that is, indices belonging tb. In each liner,,, there are
k{p) — h asymptotic conditions) = 0, ..., x{p) — 1. In Theorem 3.2 of [6]. we showed that a polynomjat II,,(R?)
satisfies the vanishing asymptotic conditions on the lings. 1, ..., 7.1 if and only if it has degree. — x(p)
when restricted to any line with directiofp). The same reasoning works when we consider several groups of parallel
lines. So, the subspace of polynomialslipn(R?) satisfying the vanishing asymptotic conditions forj) € I\ Iis
IL,(D, k).

The interpolation problem of finding € II,,(R?) such that_;;p has prescribed values for &l j) € I and satisfying
vanishing asymptotic conditions for all indicés j) € I\ I has a unique solution. In other words, there is a unique
polynomialp € IL,(D, k) such thatL;;p takes prescribed values for dll, j) € I. So, we have derived the same
conclusions as in Section 3 from another point of view.

5 Examples

Figures 1 and 2 show different natural lattices. We have marked with a black circle the simple intersection which give
rise to Lagrange interpolation data (value of the function at that point). We have surrounded a black circle by a concentric
circle to indicate the intersection of three lines giving rise to first order Hermite data (value of the function and two partial
derivatives of first order).

The interpolation space 13, (R?) in Figure 1 left. In the case of Figure 1 right, the space is that of quartic polynomials
which become cubic along two directions, namely the directions of the axes. The dimension of this space is 13.

® ®
®
[ ] [ [ ]
®
® o ® ® ®

Figure 1. Two generalized natural lattices with 6 lines

In Figure 2 left, the interpolation space is the subspace of polynomials of degree not greater than seven, whose
directional degree is not greater than five along the directions of the axes OX, OY and the bisector of the quadrant XQOY.
This space has dimension 27. Finally, in Figure 2 right, the interpolation space is that of sextic polynomials of degree not
greater than five along the directions of the axes and their bisectors. This space has dimension 24.
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Figure 2. Two generalized natural lattices with 8 and 9 lines

Let us describe the construction of the solution of the problem corresponding to Figure 1 right. Dengte; lilre
lines of direction OXy5, r3 the lines of direction OY and,, r5 the diagonals of the rectangle determined-by1, r2, r3.
The index set (3.2) is

I:={(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(3,0), (3,1), (4,0)}.

The interpolation points are
uij:mﬂrg)_j, (Z,j)e[

Observe that the four vertices of the rectangle appear three times in the above list
Upo = Up2 = U30, Up1 = Up3 = U21, U0 = U13 = U20, Uil = U2 = U31-

The Newton basis (3.4) is given by

Gij = HTh Hr5fp, (i,5) € I.

h<i p<j

Finally the linear formd.;; f defined in (3.9) are given by

fluig), for (i,5) € {(0,0),(0,1),(1,0),(1,1), (4,0)},

(), tor (1) € {(0,2), 0,3). (1,2), (1,3)},

Z—i(uijx for (1, ) € {(2,0), (2.1), (3,0), (3,1)}.

The problem can be solved using the recurrence (3.13). For the computation see Remark 2.
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