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ON BIVARIATE HERMITE INTERPOLATION WITH MINIMAL
DEGREE POLYNOMIALS

MARIANO GASCAT anp THOMAS SAUER?

Abstract. A Newton type approach is used to deal with bivariate polynomial Hermite interpo-
lation problems when the data are distributed in the intersections of two families of straight lines, as
a generalization of regular grids. The interpolation operator is degree reducing and the interpolation
space is a minimal degree space. Integral remainder formulas are given for the Lagrange case, then
extended to the Hermite case and finally used to obtain error estimates.
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1. Introduction. In [3] Gasca and Maeztu introduced a Newton type approach
to deal with multivariate polynomial interpolation problems. In the bivariate case,
from a given set of points distributed along straight lines, ro,71,..., 7, a Birkhoff in-
terpolation problem is constructed, including as particular cases Lagrange and Hermite
interpolation problems. The interpolation space is always polynomial and is spanned
by a Newton basis. The problem has a unique solution which is easily obtained by
solving a triangular linear system.

A particular distribution of points was studied a little later by Maeztu [4] in
order to provide the coefficients of the solution, in that case, with some properties
similar to those of univariate divided differences. Since we are going to deal with this
distribution, which on the other hand includes many important particular cases, we
avoid the general notations of [3] and recall the necessary definitions of [4].

In general an interpolation problem is defined by an interpolation space V of
dimension N and a set of N linear functionals L; on V. The problem consists in
finding an element p of V such that L;p = z; Vi, where the z;’s are N given real values.
Usually V' is a subspace of a space F' of functions, the L;’s are linear functionals on
F and the problem is stated in the form L;p = L;f Vi, for a given f € F. The values
L;f are called interpolation data. The interpolation problem is said to be poised if it
has a unique solution for any set {z;}, that is, for any f.

In Section 2 we state the problem and prove constructively that it is poised. In
fact we prove that the problem is a particular case of the general one considered in
[3] and remark some of the special properties of this case. More precisely, due to the
special structure of the interpolation data, the linear system to solve this problem is
not only lower triangular but also block lower triangular with diagonal blocks in the
diagonal. Some well-known examples of this structure are given in Section 3.

In Section 4 we prove that in the problem we are considering, with the terminology
of [6], the interpolation operator is degree reducing and the interpolation space is a
minimal degree space for the problem. Divided differences and finite differences are
introduced in the next section. The first ones are used to construct the solution of
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the problem recursively, while the main interest of finite differences, as introduced
in [6,7,8], is to provide a first remainder formula for the problem. The relationship
between both concepts is given.

Finally Section 6 is devoted to the development of the remainder formula from
the preceeding section. First we study the Lagrange case and see a simplified formula
which shows explicitly the role played by the geometry of the data. Then this formula
is extended to the Hermite case by an argument of “coalescent lines”. In the last
subsection some error estimates are given.

2. Statement of the problem. LetT' = {ro,r1,...,m, }, IV = {r{, 71, -, ", }
be two indexed systems of straight lines in IR? such that each pair (m,r;) el xI7
intersects at exactly one point u;; of IR?. In this form the product T’ x T” can also be
interpreted as a system of (n+1)(m + 1) points u;; € R?. Observe there is no restric-
tion on each set I',I” separately. Namely, parallelism and coincidence are allowed in
I’ and in I, and consequently repetitions (which will be adequately interpreted) can
happen in the set of points u;;. Throughout this paper we will always denote points
in R? by u = (x,y) or u;j = (ij,yi;), respectively.

An interpolation problem P can be constructed following [3] and [4] as soon as
we choose some of the points u;;, that is, when we take a set of indices

I={(51i=0,1,...,n;5=0,1,...,m(i)} (1)

under these conditions:
i) m=m(0)>m(l)>...>m(n) >0.
ii) If up; = ui; for (h,7), (4,7) both in I, then the lines rp,7; are coincident.

iii) If ug = wip for (4,k), (i, h) both in I, then the lines ], 7} are coincident.

Note that these conditions do not prevent, for example, the possibility of us; = ¢
(respectively us; = ug) with rg not coincident with r; (resp. 7} not coincident with
r7), but in that case (I,t) (resp. (s,1)), should not belong to I.

In the sequel, r; will denote, simultaneously, a straight line and an affine polyno-
mial a;x + b;y + ¢; which vanishes at the points of that line. In other words, r; denotes
both the polynomial a;x + b;y 4+ ¢; and the graph of the equation a;x + b;y + ¢; = 0.
Since this polynomial is fixed up to a constant factor, we assume in addition that the
normal vector (a, b) is normalized with respect to the Euclidean norm and that either
a > 0ora=0andb > 0, which is no restriction on the generality of the interpolation
problem. The same can be said, obviously, for the straight lines r;v.

If we denote S = (I' x IV, I) we define a Newton basis Bg associated to S as the
set of polynomials

Bs ={¢i; | (i,j) € I} (2)
with
-1 j-1
dij = H || 7 (3)
h=0 k=0
As usual, the empty product (¢ = 0 or j = 0) is understood as 1.

For a vector p = (a, b) (not necessarily unitary), different from zero, the derivative

of f at the point (zi,y;) in the direction p will be denoted by

of . y_ 0f . ,of
o (xi, ) = o (i, Ys) +b8y (i, i) -
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Let pi, pf;, defined as p; = (—bhai),p; = (—b;-,a;-), be the directional vectors of
T4, ré- respectively. According to our assumptions above, they are unitary with respect
to the Euclidean norm, i.e., [|pil| = [|p}] = 1.

The interpolation data associated to S are defined by

asi+t]‘ f

Lijf = ——F
J ap/;iapz]

(uiz) (4)

where s; (resp. t;) is the number of lines r, (r}) with h < 4 (k < j) which are

coincident with r; (r}).
The interpolation problem P to be considered is the following: for a given set
{zi; | (i,7) € I} of real numbers, find a polynomial p in the space Vg spanned by Bg
such that
Lijp = zij V(i,j) € 1. (5)

Note that, under condition i) for I, this set can also be described as
I={GNi=01,....,m;i=0,1,...,n(5)},

with n = n(0) > n(l) > ... > n(m) > 0. This fact and conditions ii) and iii)
allow us to interchange the roles of the sets I', IV and the interpolation problem would
be obviously the same. This was the reason to call S in [4] a reversible system of
interpolation.

Observe also [4, Theorem 1] that if an interpolation datum of the form

as+tf
ap/sapt (u) )

with s + ¢ # 0, appears in the set {L;;p | (i,7) € I}, then all

anrBf

will appear also in that set. In other words, our problem is a Hermite interpolation
problem. In the terminology of [7], it is even a regular Hermite interpolation problem
and therefore an ideal interpolation scheme in the sense of [1]. We remark that there
is no “common” notion of a multivariate Hermite interpolation problem.

Let us consider on I the lexicographical order

(4,7) < (h,k) if i<h or i=h and j<k.
THEOREM 1. Under the above conditions, the interpolation problem P has a

unique solution
p= ) aiby
(i.9)el

in the space Vg, and the functions ¢ij satisfy, for any (i,7), (h,k) € I,
Lijne =0 if (i,7) < (h, k), (6)

Lijowe =0 if (i) > (hk) and j <. (3)
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Proof. The existence and uniqueness of p will be a consequence of (6) and (7),
since these equations mean that the matrix

(Lijbnk) ij),(h.k)er

is lower triangular for the lexicographical order in I, with the diagonal entries different
from zero. The proof of (6)—(8) is based on the following results which use the notations
introduced above (see [3]) and are direct consequences of the definitions or of the
Leibniz rule for differentiation:

a) Ifi,h € {0,1,...,n}, then

(97‘ h 87‘1'

dpi - Apn’

hi — —

with Ap; # 0 except if r; and r, are parallel or coincident.
b) If (4,4) € I then

or; a"";
=— = B;; #0.
op'; dpi i 7
¢) If w is any polynomial, then for any non-negative integer s and (4,5) € I one
has 9 9
er:w Sw
,Ls = Ir’iig7 (9)
op; 9p;
osriw
= s!Bsw 4+ rijun (10)
/S 1] )
op;
osr; Tl
— s = riw. (11)
p;
Here w;,wy are polynomials.
d) If vy, ..., v are affine polynomials and w is an arbitrary polynomial, then for
any non-negative integer s and any vector p € IR? one has
85111 it 05— tw Z Ovhl '”81)ht V1 U
o aps t s ap rvhl...fvht’
where the summation ), ~, ranges over all subsets of {1,2,..., k} having ¢ different

elements hy < ... < hy. When t = 0 this summation reduces to vy - - - V.

Equations (6), (7) are a particular case of the general situation considered in [3,
Theorem 1] and therefore they are proved exactly like there.

On the contrary, (8) does not hold for that general situation. In the present
problem, L;; is given by (4), and if j < k then ¢y, contains at least ¢; + 1 factors r7.
Hence, as in (11), we have

e
o = rjw2,
op;’
with we a polynomial, and, by (9)
0%ir’ws O%iwsy



BIVARIATE HERMITE INTERPOLATION 5

that is (8). 0

Remark. Equations (6)-(8) can also be written in the form
Lijéone =0 if di<handj>k,

Lij¢hk =0 if 1> hand j <k,
Lijonk = (i,5),(h,k) LhkPnk if {<handj<k,

with Lyprénk # 0, (h, k) € 1. As usual, 6, 1)(;,5) takes the value 1 if (h, k) = (i, j) and
0 elsewhere.
Let us now order the index set I in the form

(i,5) < (h,k) if i+j<h+k or i+j=h+k and i<h. (12)

This ordering is usually called the graded lexicographical order. According to that we
make the following partition:

I=J1UJaU...UJyp, (13)

with
Jr={(,j)elli+j=r}

and
M =max{i+j | (i,j) € I}.

Then the collocation matrix of our problem

(Lijbnk) ij),(h.k)el

with the graded lexicographical order < in I is not only lower triangular but also
block lower triangular with diagonal blocks in the diagonal. This implies that the
same would happen if each part J, of I in (13) is ordered separately in any other
form, for example ¢ > h in (12) instead of i < h.

We remark that the space Vg is a subspace of I, the space of bivariate polyno-
mials of total degree not greater than M.

3. Some examples. A simple and well-known example of the problem P arises
when we take the lines r;, 7“; parallel to the coordinate axes. If we consider the lines

ri(u) =x — x;, 0<i<n,
rj(“‘) =Y — Y5, St n,
then the points u;; are
Uij = (xi7yj)7 (Za]) € Ia (15)
the Newton basis is formed by
i—1 j—1
¢ij(u) = [[ (@ —2n) [T — 1) (16)
h=0 k=0

and the interpolation space Vg is spanned by the monomials

W = {z2yB, (a,08)€l}.
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Observe that due to the conditions of our problem one has
zoyB e W= a2y e W Vo' < a,B <p.

In particular, if m(i) = m Vi, then Vg is the tensor product of the univariate
polynomial spaces I, (x) and I, (y), and if m = n and m(i) =n —4 Vi, then Vg is
the bivariate space II,, of polynomials of total degree not greater than n.

The linear functionals L;; are, in these problems,

asi-‘rtjf
Lijf = W(Jﬂiﬂj)a (17)

where s; (respectively t;) is the number of times that the value z; (resp. y;) appears
in the list {zo,z1,...,zi—1} {yo,y1,-..,yj-1}).

In the case that all the x;’s and the y;’s are different, then one has (z;,y;) #
(xh,yx) for (4,7) # (h, k) and

Lz]f:f(xlayj) V(Zh])?

that is, a Lagrange interpolation problem.
If we want to interpolate a function f on a set of N given points

X ={(ui,vi) [1<i <N},

all them different, we can easily check if they are distributed on lines parallel to the axes
according to (14)-(15). First we check how many different ordinates appear among the
points of X, say m + 1. Then we denote by o, 91, ..., ym these ordinates, ordered by
decreasing number of points of X on each of them, say n(0) > n(1) > ... > n(m). If
several ordinates have the same number of points, then the relative order among them
is irrelevant. Afterwards we do the same for the abscissae, denoted by zo,x1, ... Zn,
ordered by decreasing number of points m(0) > m(1) > ... > m(n).

These orderings can always be done. Now the problem belongs to the class we
are considering in this paper if and only if the set X coincides with the set

{(zi,y5) [0<i<n,0<j<n(i)} (18)

(or equivalently with {(x;,y;) |0 <7 <m,0<i<m(j)}). For example, the set of
points X = {(0,0),(1,0),(0,1),(2,1)}, with xo =0, 21 =1, 22 = 2, yo = 0, y1 = 1,
cannot be put in the form (18).

Repetitions of lines in (14) give rise to Hermite interpolation problems (see (17)).
Reciprocally, suppose we have a problem such that if

aertf
Oxs Oyt (a,0)

is an interpolation datum, then all

Oh+k f

are also data. In this case we should check whether or not the problem can be stated in
the form (14)-(15). For it we can proceed similarly to the Lagrange case but the partial
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derivatives with respect to x or y should be interpreted as repetitions of abscissae or
ordinates respectively. For example, a problem with the data

{fwi),gi(ui),gg(un, 0<iz2l, (20

with uwp = (0,0), u1 = (1,0) , uz = (0,1), satisfies (19) but cannot be put in the
form (14)-( 17) because it does not satisfy (18). In fact, it has four data for yo = 0,
((f(0,0), 5 (O 0), f(1,0), %(1 0)), two data for y; = 0, (af (0,0), 8f(1 0)), two data

for y2 = 1 (f(0, ),%(O 1)) and one datum for y3 = (ay (0,1)). Analogously,

the abscissae are z9 = x1 = 0, 2 = x3 = 1. However, according to (18), since
3—5(1,0) is one of the data of the problem, corresponding to (z2,y1), then (z1,yo)

(and correspondingly a‘{fgy (0,0)) should also appear among the data, what obviously
does not happen. This example corresponds to Figure la, where, as usual in finite
elements the arrows mean partial derivatives.

(0,1) 0,1) 0,1)

(0,0) (1,0 0,0) (1,0) (0,0) (1,0)

a b c

Figure 1
On the contrary, it is easy to see that the problems described in Figures 1b
and lc can be put in the form (14)-(17). In the case of Figure 1b we can choose
Yo=y2=0,11 =1, 20 =21 =0, 2 = 3 = 1, with m(0) = 4,m(1) = 2,m(2) =1,
and the interpolation space spanned by

{1, z,22,23,y, 2y, 3%} .

In the case of Figure 1c we can take yo = y1 = 0, y2 = y3 = 1, zg = 1 = 0,
xo = x3 = 1, with m(0) = 4,m(1) = m(2) = m(3) = 1, and the interpolation space
spanned by
{1 2,22, 2%y, 92,43}
The case of lines not parallel to the axes can be treated similarly but in practice
is, obviously, more complicated.

4. Degree reducing interpolation operators and minimal degree inter-
polation spaces. Recall that we have defined

M=max{i+j| (¢,j) € I}

and complete I', I, if necessary, with arbitrary lines rn41,...,7a and vy, q,..., 7,
according to the same conditions as in Section 2 for the lines rq, ..., 7, and 1, ..., 7.
We denote these new sets by

*={ro,...,Tm}, I ={ry,....r'}, (21)
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and also set m*(i) = M — 4,4 =0,..., M. Obviously this can be done in many ways
and we consider an arbitrary one. Now we can easily prove the following
PROPOSITION 2. Under the above conditions, the set of functions
J

-1 j-1
o5 ::HthT;, i+ <M, (22)
0

h=0 k=

is a basis of the space .
Proof. Let us consider a new interpolation problem P* defined similarly to P in
Section 2 in the following form. The problem P* has

{Lijf|i+j <M},

defined as in (4), and {¢i; | i+ j < M} defined as in (3), as interpolation data and
Newton basis respectively. Observe that this notation is consistent with that of
the problem P, because this one is a “subproblem” of P* : the polynomial system
{(b;‘j |i4j < M} is an extension of the polynomial system {¢; | (i,7) € I} because
one has ¢, = ¢ij, (i,5) € I.

According to [3,4] the problem P* has a unique solution in the space spanned by
{¢ij | i+ j < M} and these functions form a Newton basis for that space. Since the
cardinality of this basis coincides with the dimension of IIp;, the space spanned by
the ¢;;’s is also IIs. |

For the remainder of the paper all the functions ¢}; of (22) will be denoted by ¢;;
when this does not cause any confusion. For each r = 0,1..., M we denote, as in [6],

and
L={(Gg)¢lli+j<r}.
Observe that for all r

LUll={Gj)i+j<ry, LnI=0 Iy=I,

and for J, introduced in (13)
Jp =1\ Ir_1.

The interpolation problem P is defined by the linear functionals (4) as inter-
polation data and the polynomial space Vg spanned by (2) as interpolation space.
Consider the space F of functions f such that the linear functionals (4) applied to
f are well defined. The interpolation operator L(-, P) associates to each f € F the
solution p € Vg of the problem

Lijp = Lijf V(Z,j) el.

So we have L(f,P) =p
According to [6] the interpolation operator L(-, P) is said to be degree reducing if
for each ¢ € I, r = 0,1,... M, the interpolating polynomial L(g, P) also belongs to
II,.. The space Vg, which is included in ITj;, is said to be a minimal degree interpolation
space if there is no subspace V of II3;_1 such that the interpolation problem of finding
p € V satisfying
Lijp=Li;f V(i,j) el
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is poised.

THEOREM 3. The interpolation operator L(-, P) defined by the problem P is de-
gree reducing and the space Vg spanned by {¢i; | (i,7) € I} is a minimal degree inter-
polation space for P.

Proof. jFrom Proposition 2 we easily deduce that, for each r = 0,1,..., M, the
set of functions {¢i; | i +j < r} is a basis of II,. Consequently, any ¢ € II, can be

written in the form
q= Z ijdij + Z ijPij,
(3,5) €1 (i,9)€l;.

and therefore, due to the linearity of the problem P,

L(¢,P)= >  aiL(¢ij,P)+ > «aijL(6i;, P). (23)

(i,5)€lr (i,5)el}.

From the poisedness of P we have that, for any (i,7) € I (and in particular for
(Zvj) € I”‘)7
L(ij, P) = ¢ij. (24)

On the other hand, let (4,5) € I}, (v,w) € I and consider again the problem P*
of the proof of Proposition 2. If (v, w) < (i,7) then from (6) applied to the problem
P* we get Lyweij = 0. If (v,w) > (4,7), then v > i, and therefore condition i) of I
(see Section 2) and the fact that (i,7) € I imply that w < j. Hence we can also use
(8) applied to the problem P* to get Lyw®;; = 0. In summary, for any (i,j) € I one
has

va¢¢j =0, (’U,’LU) el,

and consequently
L(¢ij, P) = 0. (25)

(From (24), (25) and (23) we get

L(g,P)= Y oo €1l
(i,5)€lr

that is, L(, P) is degree reducing.

For the minimal degree property we just have to prove that the collocation matrix
formed with {L;; | (i,5) € I} and any basis of IIp;—1 has rank less than #I (the
cardinality of I). Let us take the basis

{¢ij | i+7 <M —1} ={¢s; | (i,4) € Inr—1} U {sj | (i,) € Ty, }-

As in (25), we easily see that in the matrix (Lpx¢s;) (with rows indexed by (h, k) € I
and columns indexed by (4,7) with i + j < M — 1) all the columns corresponding to
{¢ij | (i,5) € I};_, } vanish, and therefore the rank R of that matrix is less than or
equal to #1p/—1. Since at least one of the indices (7,7) € I belongs to I; and not to
Ipr—1 by definition of M, we have

R < #In— < #In = #1.

Hence, the interpolation problem defined by

{Lij | (i,7) € I}
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and any subspace of IIj;_1 can not be poised and Vs is a minimal degree space. a

Let us denote by P., r = 0,..., M, the interpolation problem defined by the
functionals L;j, (i,5) € I, and the polynomial space spanned by {¢i; | (4,5) € I}
Since all the properties of the interpolation problem P carry over to these subproblems
we have the following immediate consequence of Theorem 3.

COROLLARY 4. Forr =0,...,M, the interpolation operator L(-, P;) defined by
the problem P, is degree reducing and the space spanned by {¢i; | (i,7) € Iy} is a
minimal degree interpolation space for Py.

5. Divided differences, finite differences and the computation of the
solution. As we have seen, the solution p (or L(f, P)) of an interpolation problem of
the type we are considering can be written in the form

p= ) aidi (26)

(1,5)el

and {¢i; | (i,7) € I} is a Newton basis. In [4] the coefficients a;; were denoted

by [ro, Tlyeeos T | 7O, Ty - ,r;-] f and called divided differences associated to the re-
versible system S. In the same paper, a complicated recurrence relation was obtained
for them. The name “divided differences” was due to the fact that the Newton formula
we have for p can be considered as an extension of the univariate Newton interpolation
formula. However, no remainder formula was obtained in [4].

On the other hand, in [7] Sauer and Xu introduced the concept of finite differences
for an interpolation problem with a blockwise or graded Newton basis. They used this
concept to get some interesting remainder formulas. In this section we adapt both
concepts to our problem, show the relationship between them and obtain a remainder
formula which will be further developed in Section 6.

The special structure of the collocation matrix

(Lijnk) i ) (hkyer »

which is lower triangular (as seen in Section 2) when I is lexicographically ordered
allows us to compute the coefficients a;; recursively. They can be computed in the
form
Lijf =32 hky<(i,j) @k Lijdnk
Lijdij ’
with (¢,7) € I linearly ordered by <, as it can be done in any interpolation problem
considered in [3]. However, as we have also seen in Section 2, in the present problem
the collocation matrix is block lower triangular with diagonal blocks in the diagonal
when we use the graded lexicographical order < . Therefore the coefficients can be
computed recursively by

(27)

A5 =

Lijf =22 (hmyetsy,, @nkLiidnk
Lijdi; ’

once we have computed all coefficients apg, (h, k) € Ji+j—1, and so on. Note that all
coefficients a,s with (r,s) € Jiy+; can be computed simultaneously.

In order to see the relationship between these coefficients and the finite differences
introduced in [7] the latter order of computation will be more convenient. With this
aim, we denote

(28)

A5 =

)\H_j(P)f = aij, (29)

ij
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and observe from (28) that the following algorithm provides all the coefficients of the
solution p of our problem:

For (i,j)GJoUJ1U...UJ1V[

it
T (30)

17 Pij

Forr=0,1,...,M —1:
For (Z,j) e Jrr1UdrpaU. ..U Jy,
T 1¢
PP Y e, o
(h,k)€I, Lij i

End

In order to introduce here the finite differences of [7] we need (a basis of) poly-
nomials {p;; | (4,7) € I} such that

Lhkpij =0, if h+k<i + 7, (32)

Lh}cpij = 6(h,k)(i,j)7 if h + k=1 +j. (33)

Taking into account (6)-(8), the basis {pi; | (¢,5) € I} can be obtained as a nor-
malization of the basis {¢i; | (,7) € I} by setting

i
Lij¢ij

This is stated more precisely in the following proposition. First we need some more
notation: let n; = (a;,bi) and n; = (af,b}) be the normal directions of r; and 77,
respectively, which, by assumption, are unitary with respect to the Euclidean norm.
As usual, we denote by (-, -) the Euclidean scalar product. Finally, for any two points

u,v € R? we define

bij =

8(u, v) = [lu = v[| + du,0,

which equals the (Euclidean) distance between the two points u, v except for the case
when both points coincide, where we have §(u,u) = 1. The numbers s; and ¢; which
appear in the proposition were defined in Section 2.

PROPOSITION 5. For (i,5) € I there exists o35 € {—1,1}, such that

j71 /

Pij = letjjll_[@ha > 4 H . = ) (34)

uz] y uhj) k=0 <p’t7 77k> d (U’ZJ7 uzk)

To verify the proposition, we will have to prove that L;;¢;; equals the denominator
of the right-hand side of (34). For this purpose, we take into account the following
lemma.

LEMMA 6. Let (

J),(h,k) € I and suppose rp # 1; and ) # ri. Then there
exist numbers oyjn, o zyk e{-1

, 1} such that

v (uig) = dijn (Mns P5) llwig — ungll s

I (i) = o -~ o (35)
7y, (uij) = Oijk (pismpe) lwig — wire|| -
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Proof. We prove only the first identity, the second one is proved in the same way.
Recalling that rp,(u) = (9n,u) + 5 and that

Uij — Unj = Tijn [[uij — unjl| P

since both points are on 7’;, we have that

T (ij) = (Mhs wij + Unj — Ung) + Ch = (1h, Unj) + Ch + (1h, Wij — Unj)
= rn(unj) + oijn (n, p) luij — wi|
= oijn (Mn, P;> [l — wik]| -

O

Proof of Proposition 5. Now we can proceed with the proof of the proposition.
In the case of simple lines without repetitions (i.e. P is a Lagrange interpolation
problem), (34) is a direct consequence of Lemma 6 because s; = ¢; = 0.

In the case of repeated lines we have to be a bit more careful. Indeed, suppose
that for some (i,5) € I the lines r; and 7/, have already appeared s; and t; times in
the sets {r | k < i} and {r} | k < j}, respectively. The interpolation datum is

8Si+t7

apl?ap? J

and the basis function can be written as

L Sipaty I Sig b
Gij =1;'1] H Th H T =T Yk

rRFET; 1’2" ;ﬁr;.

Recalling statement a) in the proof of Theorem 1 we note that for any i,7 < M and
any s,t > 1

ors 37‘;t
op; B Bpgt B

Applying the Leibniz formula we first obtain
8t by ot TN, AN Oty
Y i . (’I"/»tji/} 'k) = pi Z O I A B ) 7"/-t v
dpiti C9piti U v —\t t! \ dp; 7 Opgt
and then

0%itti gy
ap/vsi 8Pit-7

j
i ts 8;—S ti—t
M (Sl) <tj> silty] (3“') <6T9> T et 0
141 / ] 0] ' S$9p.t"
i \s t) st \ 9p; opi dp;"Opi
Since 7 (uij) = 1’ (ui;) = 0, all terms of the above sum except s = ¢ = 0 vanish when
evaluated at u;; and, consequently,

ositt; bij or; i or' 2]
Lij¢i; = W (uij) = silt;! (8,09) (8/01) Vij (wij) - (36)
7 %
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Now (34) follows easily from Lemma 6 taking into account that

8i or'’ L
8; = <niap;>a apj = <pi,ﬂ§>, (i,5) € I.

/ .
7 (3

O

We can also define finite differences associated to the minimal degree Hermite
interpolation problem P and give recurrence relations for them. For that purpose we
let P_1 = ) be the (trivial) problem of interpolating no data with the zero polynomial.
Then we define the finite differences A, [Pr—1;u] f, 7 =0,...,M + 1, as

Ao [0;u] f = f(uw),

At [Prsul f = M [Proviul f = Y Lighe [Pro; ] f pij(w). (37)
(1,9)€JTr

This is, of course, not what one would expect of a difference at first glance: the itera-
tion asks us to consider the finite difference as a function of the additional argument
u = (z,y) and (in the case of a Hermite interpolation scheme) requires directional
derivatives of this function. However, they allow us to get a first formula for the
remainder.

THEOREM 7. Forr =0,...,M we have
L(f,P)(u)= > LijAitj [Prvjor;u] f pij(u) (38)
(t,5)€l,
and
f(w) = L(f, Pr) (u) = Apy1 [Priu] f. (39)

Proof. We first remark that iteration of (37) immediately implies the formula

APyl f=F—= Y. Lijhij [Prj15 1 f pis. (40)
(i,5)€lr—1

Because of Corollary 4 and the structure of the polynomials p;;, in order to prove (38),
it suffices to show that for any (h, k) € I, we have

D Lihivg [Prvjo1: ] f Lukpis = LS. (41)
(@.9)elr

For that purpose we apply Lp to both sides of (40) and recall that Lyrpij = O(h k), (i,5)
(i,4) € Jr, to obtain

Lpif — Z LijNitj [Pivj—1;°] f Lukpij = LagAr [Pr—1;-] f

(ird)€lr—1
= Z LijAv [Pr—1;°] f Lukpig,
(i,9)€Tr
that is (41). Substituting (38) into (40) then gives (39). 0

The relationship between divided differences and finite differences becomes clear:
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COROLLARY 8. For all (i,j) € I one has

i+ LijNiyj[Pivj—1;-1f
A74+‘7 P = J +J J ’ .
i) = Lol

(42)

6. Remainder formulas. In this section we will describe the interpolation er-
ror f— L(f, P) in terms of derivatives of the function f, assuming that f € CM+1(Q),
where, as before, M = max {i +j|(i,j) € I} and Q C R? is any convex and com-
pact set with nonempty interior such that {us; | (¢,5) € I} C Q. This formula will
be obtained from the more general approach in [6] for minimal degree Lagrange in-
terpolation which will be recalled together with the underlying notation in the first
subsection. We will then specialize this formula to reversible Lagrange interpolation
systems which will reveal a very appealing connection with the underlying geometry.
Thereafter we show by a limit argument of coalescent lines this formula remains valid
when passing from the Lagrange to the Hermite case, which gives the general result
we are heading for. Finally, we will briefly comment on error estimates for reversible
systems which follow directly from the error formula.

6.1. General preliminaries. In order to give the remainder formula we need
some more terminology. For any set {zo,...,2n} of (not necessarily distinct) points
in R? we define the simplex spline integral (cf. [5]) as the functional

/ f= f(ooxo+ -+ +onzN)dor---don
AN

[xg,...,acN] (43)
1
S R C——r

where
AN:{UERN+1 |aj20,ao+~-~+aN:1}.

The (normalized) function M (:|zo,...,zn) is called the simplex spline with knots
To,...,xn. Clearly, the simplex spline integral is symmetric in the knots.

In general we shall use notations and concepts similar to those of [6,7,8] with
some slight modifications. In this respect, see also [2].

Remember that in Section 2 we have denoted

Jo={G,j)el|i+j=r}, Ji={0G,J)¢I|i+j=r}.

A path p of length r (0 < r < M) in I is defined as a vector u = (uo, 41, - - -, fbr)
such that ps € Js, s =0,...,7. The set of all paths of length r in I will be denoted by
A, (I). Similarly, a path in I” is a vector u = (po, g1, - - - , f4r) Whose first r components
form a path of length » — 1 in I and the last component pu, belongs to J; :

AT = {(a, ) | 1€ Area (D), pir € T}

These notions, which have been introduced in [6,7,8], have turned out to be crucial
for remainder formulas for general Lagrange and Hermite interpolation problems.

With any path p in either A, (I) or A,(I’) and s < r we associate the collection
of points

Xﬁ = {uﬁ«ov"'auﬂ«s}
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and the number .
—

T = H Ly 1Du;
j=0

with the convention that for ;1 € A,.(I’) the point u,,, and the functional L, are taken
from the extended interpolation problem P* introduced in Proposition 2.

6.2. Lagrange interpolation. If there is no repetition of lines, i.e., if all r;,
i =0,...,nand 1%, j = 0,...,m(n), respectively, are pairwise different, then the
interpolatlon problem Pisa mzmmal degree Lagrange interpolation problem with ad-
ditional points in the terminology of [6] and we can apply the remainder formula of
[6, Corollary 1] to obtain

f(u) = L(f, P)(u) = Anry1 [Prul f

Z / OM+1f
= p IW
nEANM(T) : M,u 6 U — Upn 8(U,UM U’#M—l) Tt a(um — u#o) (44)
of
+ Z Z plh“ / .
r=0 pe, (1) o, INup, — Upy—y) - Oupy — Upg)

In Lagrange interpolation we have
Lijf = fluiz) V(ij)el.
Hence, for p € A.(I) or Ar(I'):

r—1

Ty = H P (Uprgir)-

s=0

Let us briefly comment on formula (44): since the polynomials ¢;j, (or pij;),
(¢,7) € I}, vanish on all the interpolation points and therefore belong to the kernel
of the operator L(P,-), they have to be reproduced by I — L(P,-) and that is exactly
what the second term in the remainder formula produces. If P = P* i.e, if we have a
full system of interpolation conditions, with IT,; as interpolation space, then that term
vanishes. In other cases we assume that the extended problem P* has been chosen to
be a Lagrange problem.

We are going to see that the remainder formula (44) can be simplified due to the
special structure of the interpolation data in our problem. This structure allows us to
consider significantly smaller subsets of A,(I) and A,(I’). These sets, which will be
denoted by A,(I) and A,(I"), are defined as

A(I) ={p € A(I) | pj S pjpr, 5 =0,...,r — 1}, (45)
and A, (I') analogously. Here < denotes the partial ordering
(i,5) < (h,k) & i<h,j<kand (i,j5) # (h,k).

Observe that the set A.(I) is formed by the paths p = (po,..., 1) € Ap(I)
such that if g, = (i,41), I = 0,...,7 — 1, then one has either ;41 = (4 + 1,7;) or
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pi1 = (i, j1 + 1) . Therefore, for y in A(I) or in A,(I’), the difference uy,,, —uy, is
either a multiple of p;-l or a multiple of p;,, respectively. In both cases we will denote
this direction by p;(p), i.e.

_ p;l if i = (i + 1, 52), 1=0 -1 46
pilk) {Pu if puyr = (i, i + 1), B o

In the same fashion, we define

i, if Hi+1 = (ll + ]-vjl)a
_ : L 1=0,...,r—1. 4
m(n) {772‘1 if g1 = (i, j1 + 1), Orem )

Notice that with this notation 7 (1) is not normal to p;(u), while 7}, and n;, are normal
to p;l and p;, respectively. Now we can formulate the main result of this subsection.

THEOREM 9. Suppose that the lines in I' and I are pairwise distinct. Let Q0 C
R? be a convex set which contains the interpolation points wij, (i,5) € I and let
f e CM+1(Q). Then, for any u € €,

fi (U or
fo-Lpw =Y Y S [y
=1 el (1) [x27% 4]
where -
O =[] m(w), (), peA ('), r=0,...,M+1. (49)
=0

Proof. The starting point of our proof is the general remainder formula (44). As
an immediate consequence of Theorem 1 we observe that

Lijpne #0 = (h, k) < (i, 7)
and therefore, for p € A (1),

Ty # 0 = we A (D),

and the same for u € A, (I’). Consequently, the summations in (44) run only over
Ay (I) and Ap(I'), 7 =0,..., M. Hence,

f(u) = L(f, P)(u) = Anryr [Prul f

> / e
B X a — Uppy a(uuM - u/‘«]w—l) e a(um - uuo)
e (I) X2 ,u (50)
orf
oY i [ .
r=0 MEA (I/ [X;_l’u] 6(”#7‘ - U’NT*l) T a(uMl - uNO)

First, observe that in the present problem I always contains (0, 0), hence A()(I =10
and, consequently, the second sum above only runs from r =1 tor = M.
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Now, let us consider one of the terms that appear in either of the summations in
(50). For that purpose we fix any p € A,(I) or p € Ar(I’) and write again p; = (i7, 1),
l

=0,...,7r. Then, there are the two possibilities
; ; (i +1,5)

= (%141, =q ., 0 l=0,...,r—1.
1 = (d141, Ji41) { (it +1)

In either case
Uiy +1,50 — Wig,5;

u —Uu =
Hit1 Hi . [
* { Wiy, i+1 — Uiz, g

and therefore, as in the proof of Lemma 6,

Upypq — Upy = Uul7ul+1pl<ﬂ) d (uuz+1 ) uuz) ) (51)

where o, .., € {—1,1}. We also observe, from the definition of ¢;; and (35), that

Purgr (Wasn) _ {”l (wi+1,.)

Pu (UMH) 75, (Wi ji+1)

_ { O pis i <77u ) p]] > 6 (wip+1, Jis uu,]z)
Oy, i1 <pllv7771> 5 Uu i1, Uiy Jz)

= Opus (M), (1)) 8 (W, ) -

Since, in addition,

— ¢N7‘(u) . ¢#l (uﬂl+1)
Hpuz uuz+1 ¢#T () 11 S (i)
1 5 ¢M (Um+1)

Gpo (Uuo) =0 ¢/u+1 (uuz+1)

=1

P, (W) = pp, (u

= ¢, ()

7

we get
Pu, (W) = oy 1 P () ) (52)
LT ) pe(1) 6 (w15 )
1=0
with

(53)

Op = Opo,pr """ Opp—1,ptre s

To finish the proof, we first consider the sum over Ay (I). Applying (51), we obtain
that

0 0 M o
O g, 15 Uppy gy Upy
8(“#1% - uuM—l) 8(“#1 - u,uo) E HoRr ( pre TR ) 6Pl( )
oM M-1
= Ou 5 1 )
0y Bpar—1 (1) -~ Apol 111) um+ um)
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which, with (52), give, for any u € A (1),

OM+1¥
puM / (9 = Upps 8(“#1»1 - ultM—l) e 6(“#1 - uuo)
X]\/I
% / oy .
O(u — pup, )Opri—1(p) -+ Opo (k)

XN ’“

Applying an identical argument to the sum over A,(I’), r = 0,..., M, we obtain the
representation

¢#1\/I / oMF1f
u) — L(f
7 -2 O(u — upy, )Opar () -+ - Opo(p)
wEAn (1)
o o f (54)
+ i / :
Zl 2 dpr(p) - Opo ()
=1 el (I') [X;—l }
We moreover note that, for any (i,7) € Iy; and u € R?,
¢Z Ui P *
i () (u — uig) = (wir1y — uij) — o (i) Ty ()
1, (wit1,5) (55)

Gij (wij+1) .
+ (Wi, j+1 — wij) ; ]+1(UZ,J+1) z,j+1(u).
This vector interpolation formula, which was crucial for the inductive proof of [6,
Corollary 1] is easily verified by checking its validity for all points upg, h+k < i+j+1.
Indeed, if h+k < i+ j+ 1, then both sides vanish when setting © = upx and the same
happens for h+k =i+ j+ 1 as long as (h, k) € {(i +1,7), (4,5 + 1)} because then
either h < i or k < j. Finally, for (h,k) = (i + 1, ) then both sides of (55) become
¢ij (Wit1,5) (Wir1,; — uiy) and similarly for (h,k) = (4,7 + 1). Since interpolation at
these points is unique in ;4 41, (55) follows.

Specializing to (i,5) € Ipr and u € €, there are numbers 0ij, 0;; € {-=1,1} such

that

Uit,j = Uij = 0ij p 0 (Wit1,5,Uij) s Uijr — Ui = 035 pi 6 (Ui g1, Uig)
and, by (35),

Gij (wir1j) 1 _ 1

Gipry (wivry)  7ri(wirrg) 0w (i p) 0 (wign j, uig)’

Gij (wij+1) 1
OF jr (Wigr1)  of (MG pi) 6 (wige, uig)

Hence, for any (i,7j) € In and u € €2, we can rewrite (55) as

¢z+1,y( )P- ¢;‘k7j+1(u)
(mir ) 7 (nfpi)

Pij(u) (u—uij) = pi- (56)
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(From equation (56) and the linearity of directional derivatives it follows that for
(Z,]) ely,ueQand f e Cl(Q)

of _ ¢f+1,j(u) of n ¢zj+1(u) of

¢ij(u)8(u—uzj) B (ni7p}> ap; <77§,,0¢> dpi-

Writing pas = (iar, jam ), and substituting this into the first sum of (54), we then get

(bMM / a]\/[Jrlf
Z O(u — tpy )Opr—1(p) - - - Opo(p)
XM

#GAM
_ Z QS'L]WJM / aMJrlf
a(u - ulA{J}M)apM*l(M) T aPO(M)

pehar (1) [XM,u
= Z ¢ZM+17JM / oMH1f
i (Mine» P, ) 0 . 0, 0pr—1(p) -~ Opo(p)
in JM+1 / oM+1f
{0y Pine ) O OpinsOpar—1(p) - - Opo(p)”

,u

Now, we shall see that this sum can be written running over Ay 1 (). Writing piarq1
for (inr + 1,7m) we note that par(p) = pj,, and nar(p) = iy, . Hence, the first term

in the sum becomes
Pfinssr (1) / OM+Lf
Oy Opar (1) -+ 9po(p)’

(x4 ]

where 6, includes now the factor <niM,p;-M> = (mam(p), par(p)). The same happens
for the second term in the sum, with pprr41 = (ipr, jm + 1), and consequently

¢uM oML f
Z / O(u — tpy )Oprr—1(p) - - - Opo(p)

MGAM XM,u
— Z ¢M1\/1+1 / aM—Hf
0 -0 ’
A (D) (X ] o (1 po(fL)
which, together with (54), gives (48) and completes the proof. 0

6.3. Hermite interpolation as a limit process. For this subsection, we fix
an index (i,7) € I. We have already denoted by (s;, ;) the multiplicity of u;j, i.e.,
the number of repetitions of the lines r; and r in I and I, respectively. For the sake
of brevity we drop the subscripts in the multiplicity and simply write (s,t) instead.
Hence, there exist numbers

<1 < - <ig=1 and jo<in<---<jt=1]

such that
Tig =+ = Ti, and Tjo =+ =Tj,.
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Also assume that (s,t) is the mazimal multiplicity of the lines r; and 7“3-7 ie.,
ri Zrn, h=i+1,...,n, andré-#r}g, kE=j74+1,...,m(3).

Now, we choose € > 0 and define

Tie =T; (75771) =r;—¢&, 1";76 :T-; (—ET];) :T‘}*&.

For the respective modified sets of lines we write
e . . . A / !/ !/ / /
De=A{ro,...,ric1,Tie,Titly---,Tn}, e = {ro, e T T T ,rm} .

Then we denote by P¢ either the Hermite interpolation based on I': and I or the
one based on I and T'Z. Since we are treating reversible systems here, these two types
of modification are essentially the same and we will not distinguish between them
formally.

To formulate a suitable notion of convergence, we assume again that €2 is a convex
and compact subset of IR? with nonempty interior and equip f € C* (Q), k € INy,
with its standard norm. For that purpose we define the the semi-norms of the [-th
derivatives as

o f
|D! flg = max max s
uw€Q | ll==|m=1|0m - - O

(u)l, 1=0,...,k,

where the derivatives are extended to the boundary by continuity, and set

k

||fHk,Q = Z |D flg, -

=0

It is well known that, together with the norm | - ||x,q, the vector space C'*(§2) becomes
a Banach space.

LEMMA 10. Let Q be any convex and compact set which contains the points
Unk, U5, (R, k) € I, in its interior. Then for either choice of P¢ there exists a contin-
wous function p : [0,a] — R, a > 0, with u(0) = 0, such that for any f € CM+1(Q)

L (f;Pe)— L(f§P)HM+1,Q < u(e) ||f||M+1,Q ’ (57)

i.e., L(-; Pe) — L(+; P) in the strong operator topology.

Proof. We will only consider the first case, i.e., the case that P¢ stems from I'.
and I, the second one is identical. It will become clear that the right boundary point
a of the interval [0, a] can always be chosen properly (i.e., sufficiently small), but will
depend on the line systems I" and I".

Let us denote by uj, the points of the modified interpolation problem. It is easy
to see that

A er
w, = e tenly ih=i (h,k) € 1. (58)
Uhk if h 7é i?

Finally, write ¢, for the respective basis functions. Since ¢7, = ¢n if h <4 and

Tie
¢ = — (ZS
hk
hk i
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otherwise, we observe that

Moo 5060 — dne =4 o w0 kel (59)
+k—-1 hk hk _ g Qhk ifh> ’i, y .

T

Also, for I = 0,..., M, let again P7 and P, denote the subproblems related to I;; in
particular, due to (26) and (29),

L(f,P)= Y MiMIPEIf &5y 1=0,...,M. (60)
(h,k)EL

Note that
NEEIP]f = MR P (k) btk <

and analogously for /\ng [PF] f, and /\ZZ]C [Pe] f.

We also remark that the divided differences )\Z;k [P], related to the original
interpolation problem, are continuous linear functionals on CM+1(Q), (see equations
(30) and (31)), hence they are bounded, i.e.,

INFEIPI S| < Cur I f lgsnor Chi < 0. (61)

For convenience, we will set C; = max, xyer, Chk, [ =0,..., M.

We will prove by induction on I = h 4 k that the functionals A"* [P<] converge
strongly to )\h+k [P], (h,k) € I;, which means that there exist continuous functions
Ank 2 [0,a] — IR with Apx(0) = 0 such that

Nt " [Pl = X" [PV < M@ I larnes (k) € L. (62)

In the same spirit as above we set \;(x) = max p)er, Ank().
We first remark that the validity of (62) for some [ € INy implies the strong
convergence L (-; Pf) — L (-; P)), i.e., there exist y; € C[0, a] such that £;(0) = 0 and

WL (5 B7) = L5 Pl pggno < (@) 1l arsno- (63)

To prove this remark, we begin with the estimate

|zt - s )|

M+1,0
= Z kR [pe) f g2, Z MNAFIPLf dn
(h,k)EI (h.k)el, M4+1,0
< Z MEER [Pe) f (65, — dnk)
(h,k)ET M+1,0
XS P = NP S) o
(h.k)EL M11,0

and observe from (62) and (63) that

[N © [Pe)F| < NS TP+ [ [PeLf = A [P S|

(64)
< (Cr+M(@) 1 lar+1.0-
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Hence, by (59), the first term is bounded by
Phik

Tq

e(Cr+ME) I fllm+1.0 Z

(h,i)el;
h>i

)

M+1,Q

while the second term is easily seen to be bounded by

)\l(g) Z “¢ILk||M+1,Q'

(h.k)el,

Combining these two inequalities readily gives a choice of y; with the required prop-
erties of being continuous and satisfying p;(0) = 0.

Starting with the induction for (62), the case [ = 0 is trivial (¢oo = ¢§, = 1 and
Ao [Pe] f = [ (ugy) = f (u0o)), hence we assume that the formula (62) and therefore
also (63) are valid for some [ > 0 and pick (h, k) € Hj41. From the recurrence relation
(28) we obtain that

1

>\h+k Ps fi
hk [ ] szgbs

e L (f = L(F, Pr)) - (65)

as well as
Nk [P f =

Tondmn Lpk (f = L(f, P)) - (66)

Here we have denoted by Lj,, the (h, k) linear form which defines the corresponding
interpolation datum of P¢. We first consider the simpler case h # 7; here, uj, = un
and Lj, = Ly, and therefore

At [Pe)f =

Tande ———Lnk (f = L(f, PF)) .

Splitting this into

Mt P f = A [P < ’ "Lhk o

Lk, Lhk¢

‘Mm@ﬁiﬁ—LMBD

_l’_
Liidnk

and using the induction hypothesis on the second term as well as the simple fact that
If =L P larsr,0 S I = L0 P)llagsr,o + 1L (A B) = LU POl 0
< (TH1EC P+ 1)) 1 arsn

we obtain that (63) holds true for

A =— Likos
hk(g) ILhk¢hk| | hk hk|

ﬂl(5)7

depending on whether i > i or h < 7. This quantity is again continuous on some neigh-
borhood of 0 and satisfies Apx(0) = 0 since Lpidnr # 0 and therefore, for sufficiently
small €, we also have that

: {HMNWW%Q“+M@%HMVBH)+MQL

1
| Lnk @y > 3 | Lhk@nk| > 0. (68)
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So, let us consider now the case h = i. In this case, due to (58) we find, like in Lemma
6, that
(mi, PL)
ri (uS,) = ri (win) + ¢ =g,
i ' (i, Pl)

which yields

tr
Lf}.c(bfk = t! <pi7n;€> "es H T (ufk:) H TZ (ufk)
TIFT {7 (69)

= ti! {pi, )™ e5ar, (1) -
We also recall that

Lirdir = ti!s! (i, p,)° (pas i)™ Wire (win) = Vin, (wirs) , (70)

and therefore define R
Yk = tals! (i, )" (i )™ Vi, (71)

where now ;. (u) # 0.
Set g := f — L(f, PF). Since

us, =uix and LS, = L, v=0,...,1—1,

and, consequently,

ovtte ovtn f
ﬁL(fan)(Uik)Zﬁ(uik)7 1/:0,.”’3_17
dpj, Op; opy,” 0p;

we obtain that
aqutkg
W(Uz‘k):& v=0,...,s— 1.
k i

By the Taylor expansion for g at u = wu;; there exists

ae
f:<1—a)uik+auik:Uik+Wp;€, o€ [0, 1],
(2N
such that )
Otrg — 1 € Yo grtteg
w0 =3 3 () arraa
P; =0 v <Th, pk> Pr. OpP;
1 5 * Osting
+ ol < Y] ) 7S te (f)a
s\ (mi, pl,) Ipy Op;
and we obtain that ot 1 ot
kg o ST g
(u5) = (©). (72)

apl st i, pf)” 9l >0l
Substituting (69) and (72) into (65) and taking into account (71), we find that
. 1
Ntk pel f=—— L, — L(f, P)), 73

where we have denoted by L;ke f the value of the linear functional L;j, defined in (4)
with u;x replaced by &.
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(From (70) and (66) we also obtain

Xt P s L (f — L(f, P)). (74)

_ 1
B 1/% (uzk)

The rest of the proof is now straightforward again; indeed,

N IPLf = (P |

1 1 E
B ’¢ik (usy) T (uik) ‘ [ Live (F = L(£, PD))I
1
+ ey [Loe (F = LU PE) = Lue (f = L (£, D))
b L (L(F ) — L(, PE) (usk)]

The first and the third term can be estimated like above, while for the second term
we put it in integral form and use (67) for the estimate

1 e /1 9 Os+tr < e )
5y a0 J LB Uik + ——~ ), | da
i, (wan)| (1ir 1) Jo |00 Dp "0 (f — L(f, PF)) ( war Y
1 €
< LS P
= Wik (k)| (i, Pl If =L P .0

< 1 £
= Yk (wir)| (i, p3,)

Combining these estimates we get that (62) holds for

A+ ILC PO+ () 1l arsr,0-

_ B 1 € ||7/’ik||M+1,Q .
M9 = e (1 T ) A+ (o) + LG B))
p (e
T o wan)]”

Since this function is again continuous with respect to € in some neighborhood of 0
and satisfies \;x(0) = 0, we have advanced the induction hypothesis and hence, have
completed the proof. O

Now we can immediately deduce the main result on remainder formulae which
says that Theorem 9 extends to Hermite interpolation.

THEOREM 11. Let Q C R? be a convex and compact set which contains the
interpolation points ui; (i,7) € I in its interior and let f € CM+1(Q). Then, for any
u € €,

P, (1) / orf
F(u) = L(f, P)(u) = . 75
() = L, P)tw) ; Z O Opr—1(p) -+~ Opo(p) (%)
= peA (1) (X5 ]
Proof. The proof is now a simple induction on o = max{s; +¢; | (4,5) € [}.

Indeed, @ = 0 is the statement of Theorem 9. In the case @ > 0 there is a finite
number of pairs (i,j) such that the maximum is assumed. If there is only one pair
then the respective multiplicity (s;, t;) satisfies at least one of the inequalities s; > 0 or
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t; > 0. Assume that s; > 0. Then we consider the reduced interpolation problem P=,
choosing ¢ sufficiently small. Now, by the induction hypothesis, (75) can be applied
and yields

¢ (u) of
s -rg =y 3 [
=1 peh, (1) (X5t ]
Hence,
M+1
¢7‘
Hf—L(f,P)—Z1 > 0 / (it apo()HM+1,n
T ,U«GA (I/ X7 1

/ Opr—1( 3,00( )HM-H,Q

+||L(f7P5)_L( ’ )||M+1 Q

M+1 o
< /J"r‘ H
SHZ Z 70 / Opr—1( 8p0( Y HM+1,0
r=1 pei, (1) =
i > X .
L (S, Pe) —L( , >||M+m
M+1 & )
fir 1
r+1 DRI o @ | Wl

r=1 peA,.(’)
Q>

by Lemma 10 and (43), which gives (75) as ¢ — 0 and advances the induction hy-
pothesis. If there are several pairs (¢,5) such that s; +t; = «, then we incorporate
an additional induction on this number too: the case of one such pair has just been
treated and more than one such pair is resolved by exactly the same limit argument
as above. 0

Remarks.
i) If m(i) =n—1,0 < i <mn, that is, if the interpolation space is II,,, then
M =n and (48) and (75), in Theorems 9 and 11, reduce to

f) ~ LU P) ) = > %T / aprl fapo()

MGAJW+1(I/ Xr

ii) A particular case of this problem, namely that of interpolation at cardinal
points {(4,7)} with 0 < 4,5 <n, i+ j < n, was studied by Sauer and Xu in [9], where
a particular form of the remainder (48) can be seen.

iii) A very simple particular case of Theorem 11 arises by considering the totally
coincident lines ri(u) := @ — xo, r}(u) ==y — yo for all 0 < i,j < n and m(i) =n —i.
This gives rise to the Taylor interpolation problem of degree n at ugp = (zo,yo) and
(75) is just the bivariate Taylor formula. In fact, simple calculations produce, in the
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right-hand side of (75),

Flu) ~ (£, P) ()
n+1 i j ont1f
- ¥ ("Te-wie-w [ gl

i+j=n+1

[uo, ..., UQ,ul
———
_ (J? _xo)i (y —yO)] 8n+1f (é— )
= 2 ilj! iy 1)

i+j=n+1
where (&i5,7:5) is between u = (x,y) and uo = (o0, yo)-

6.4. Error estimates. It is now very easy to derive error estimates. For that
purpose we only have to notice that for r = 0,..., M + 1 the cardinality of A,(I') is
not greater than 27 and to recall from [5] the formula

1
o
[x()a“wwn] n:

which has been used in the last proof.
We introduce two geometric quantities, depending on the lines and the domain
Q, namely a “radius” of Q relative to I'* and I'"*, defined as

Ra = max {Irilloq |7l 10 <05 < M}

and a “minimal angle of intersection” as
0= min{‘<m,p§->‘ | (i,5) € I} .
Note that 6 depends only on I' and I'V. Finally, we set
r(I)=min{0<r<M+1|I #0}.

Then we can easily obtain an error estimate from (75).
THEOREM 12. Let Q C IR? be a convex compact set which contains the interpo-
lation points w;j, (i,7) € I, and let f € CM+1(Q). Then

r=r(I

&= <2RQ>T 11l
)
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