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Abstract. Different approaches to the decomposition of a nonsingular
totally positive matrix as a product of bidiagonal matrices are studied.
Special attention is paid to the interpretation of the factorization in terms
of the Neville elimination process of the matrix and in terms of corner
cutting algorithms of Computer Aided Geometric Design. Conditions of
uniqueness for the decomposition are also given.

§1. Introduction

Totally positive matrices (TP matrices in the sequel) are real, nonnegative
matrices whose all minors are nonnegative. They have a long history and
many applications (see the paper by Allan Pinkus in this volume for the early
history and motivations) and have been studied mainly by researchers of those
applications. In spite of their interesting algebraic properties, they have not
yet received much attention from linear algebrists, including those working
specifically on nonnegative matrices. One of the aims of the masterful survey
[1] by T. Ando, which presents a very complete list of results on TP matrices
until 1986, was to attract this attention.

In some papers by M. Gasca and G. Mühlbach ([13] for example) on
the connection between interpolation formulas and elimination techniques it
became clear that what they called Neville elimination had special interest
for TP matrices. It is a procedure to make zeros in a column of a matrix
by adding to each row an appropriate multiple of the precedent one and had
been already used in some of the first papers on TP matrices [33]. However,
in the last years, we have developed a better knowledge of the properties of
Neville elimination which has allowed us to improve many previous results on
those matrices [14–22]. In this paper we shall use this elimination technique
to get the factorization of a nonsingular TP matrix as a product of bidiagonal
matrices. This provides a useful representation of such matrices which allows
us to identify some important subclasses, as for example that of strictly to-
tally positive matrices (that is, TP matrices whose minors are all positive).
Under some conditions on the zero pattern of the bidiagonal matrices that
representation is unique.
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A direct consequence of the well-known Cauchy-Binet identity for de-
terminants is that the product of TP matrices is again a TP matrix. Con-
sequently, one of the topics in the literature of TP matrices has been their
decomposition as products of simpler TP matrices. In particular, in view of
applications, the most interesting factorization seems to be in terms of bidiag-
onal nonnegative matrices which, obviously, are always TP matrices. Let us
give a brief overview of some of the different approximations to this question.

Square TP matrices of order n form a multiplicative semigroup Sn, and
the nonsingular matrices of Sn form a semigroup sn of the group of all real
nonsingular square matrices of order n. In [31], Loewner used some notions
from the theory of Lie groups which we briefly recall for the study of Sn

and sn. If U(t) is a differentiable matrix function of the real parameter t in
an interval [0, t0], representing for each t an element of sn, and U(0) is the
identity matrix I (which belongs to sn), then the matrix (dU(t)

dt )t=0 is called
an infinitesimal element of sn. The first task in [31] was to prove that the set
σn of all infinitesimal elements of sn consists of the Jacobi (i.e., tridiagonal)
matrices with nonnegative off-diagonal elements.

As in Lie-group theory, it can be shown that if Ω(t) (0 ≤ t ≤ t0) is any
one-parameter family of elements of σn which is piecewise continuous in t, the
differential equation

dU(t)
dt

= Ω(t)U(t) (1.1)

has a unique continuous solution U(t) in sn satisfying U(0) = I. In this case
we say that U(t0) is generated by the infinitesimal elements Ω(t) (0 ≤ t ≤ t0).
In general, a semigroup cannot be completely generated by its infinitesimal
elements. However, Loewner proved in [31] that this is not the case for sn.
He used the following reformulation of a result due to Whitney [33].

Let Eij (1 ≤ i, j ≤ . . . , n}) be the n × n matrix with all elements zero
with the exception of a one at the place (i, j) and denote Fij(ω) = I + ωEij .
Then every nonsingular TP matrix U can be written as a product

U = U1U2 · · ·Un−1DV1V2 · · ·Vn−1, (1.2)

where, for i = 1, 2, . . . , n− 1,

Ui = Fn,n−1(ωi
n,n−1)Fn−1,n−2(ωi

n−1,n−2) · · ·Fi+1,i(ωi
i+1,i), (1.3)

Vi = Fn−i,n−i+1(ωi
n−i,n−i+1)Fn−i+1,n−i+2(ωi

n−i+1,n−i+2) · · ·Fn−1,n(ωi
n−1,n),

(1.4)
with all the ω-s nonnegative, and D represents a diagonal matrix with positive
diagonal elements.

Observe that the matrices Ui and Vi are products of bidiagonal elemen-
tary totally positive matrices but neither Ui nor Vi are bidiagonal: (1.2) uses
n(n− 1) bidiagonal factors.
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The conclusion of [31] is that, by using infinitesimal generators, any non-
singular TP matrix of order n can be generated from the identity by the
solutions of the differential equation (1.1).

In 1979 Frydman and Singer ([12], Theorem 1) showed that the class of
transition matrices for the finite state time-inhomogeneous birth and death
processes coincides with the class of nonsingular TP stochastic matrices. This
result was based upon a factorization of nonsingular TP stochastic matrices
P in terms of bidiagonal matrices ([12],Theorem 1’) similar to (1.2) without
the diagonal matrix D:

P = U1U2 · · ·Un−1V1V2 · · ·Vn−1, (1.5)

and with the elementary matrices F scaled to be stochastic. As in (1.2) the
matrices Ui, Vi are not bidiagonal and (1.5) contains n(n − 1) bidiagonal
factors. The fact that those transition matrices for birth and death processes
are totally positive had been pointed out in 1959 by Karlin and Mc Gregor
[27, 28] with probabilistic arguments. All these results have been surveyed in
1986 by G. Goodman [23], who extended them to compound matrices, that
is matrices whose elements are the values of the minors of a certain order m
of a given matrix A.

In [9], Remark 4.1, Cryer pointed out that a matrix A is TP iff it can be
written in the form

A =
N∏

r=1

Lr

M∏
s=1

Us

where each Lr (resp. Us) is a TP bidiagonal lower (upper) triangular matrix.
In that remark the author did not give any relation between N, M, and the
order n of A

On the other hand, factorizations of TP matrices as product of bidiagonal
matrices are important in Computer Aided Geometric Design and, in particu-
lar, in corner cutting algorithms. In [24], Goodman and Micchelli showed that
the existence of a corner cutting algorithm transforming a control polygon of
a curve into another one with the same number of vertices was equivalent to
the fact that both polygons were related by a nonsingular stochastic matrix.
The key tool to obtain this result was again (see [24], Theorem 1) the charac-
terization of a nonsingular TP stochastic matrix of order n as the product of
n− 1 bidiagonal lower triangular stochastic matrices by other n− 1 matrices
which are bidiagonal upper triangular, with a zero pattern which will be pre-
cised in Sections 3 and 4. Observe that in this case the factorization is formed
by 2n−2 bidiagonal matrices and compare with (1.5). What has happened is
that the set of all elementary matrices which appeared in (1.5), by replacing
the factors Ui, Vi by their corresponding decompositions (1.3),(1.4), has been
reordered, as we shall see in Section 3, to give rise to a short number of bidi-
agonal (in general nonelementary) matrices. In [32], Theorem 3.1, Micchelli
and Pinkus obtained a factorization theorem for rectangular TP matrices as a
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product of bidiagonal matrices in order to extend the previous interpretation
to general corner cutting algorithms. For more details related with this mat-
ter and for concrete factorizations associated with corner cutting algorithms
to the Bezier polygon, see [25],[26], [5] and [6]. The use of Neville elimina-
tion was crucial to prove the results on optimality obtained in these last two
papers. See also the paper by Carnicer and Peña on optimal bases in this
volume.

As we shall see in the following sections, in [19] we proved the uniqueness
of factorizations of the type just mentioned above for nonsingular TP matrices,
under certain conditions on the zero pattern of the bidiagonal factors. In [20],
we interpreted these last results in terms of corner cutting algorithms.

Finally, factorizations of biinfinite TP matrices in terms of bidiagonal
matrices have also important applications. Motivated mainly by some prob-
lems of Approximation Theory, Cavaretta et al. proved in [7], Theorem 1, the
existence of such factorization for biinfinite strictly m-banded TP matrices. In
[4], Theorem B, de Boor and Pinkus proved that every finite nonsingular TP
m-banded matrix is the product of m TP bidiagonal matrices and, in Theo-
rem C of the same paper, they extended this result to biinfinite m-banded TP
matrices with linearly independent rows and columns. Recently, Dahmen and
Micchelli [10] have obtained factorization results in terms of bidiagonal ma-
trices for biinfinite TP matrices with a special structure of zeros (which they
called 2-slanted matrices) and they applied these results to multi-resolution
analysis and wavelet theory. This study has been extended in [21] to p-slanted
matrices (p ≥ 2), and some applications of these results to spline interpolation
and locally finite decomposition of spline spaces have been also provided.

This paper is organized in the following way. In Section 2 we describe
carefully Neville elimination for nonsingular matrices and study the proper-
ties of the bidiagonal elementary matrices associated to it. We pay special
attention to the nonsingular matrices which can be transformed into diagonal
form by Neville elimination without permutations of rows or columns. This
property is referred to as the WRC condition. Section 3 is devoted to the
decomposition of matrices which satisfy the WRC condition as products of
bidiagonal matrices with a prescribed zero pattern in the places (i, i− 1) for
the bidiagonal lower triangular matrices and in the places (i, i + 1) for the
bidiagonal upper triangular ones. Since any nonsingular TP matrix A satis-
fies the WRC condition, in Section 4 we apply to these matrices the results
of the precedent section and, depending on the choice of the zero pattern of
the bidiagonal matrices, we arrive to form 16 different factorizations (some
of them coincident for some special classes of TP matrices). Each of these
decomposition is unique under the prescribed conditions and has a different
interpretation with respect to the Neville elimination process of the matrix
A. At our knowledge, the uniqueness of the different factorizations, which
is a consequence of the uniqueness of the elimination process, is a novelty in
this type of results. In the last section we relate the previously studied fac-
torizations of A with other characterizations of nonsingular TP matrices. In
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particular we discuss determinantal characterizations, that is necessary and
sufficient conditions on the signs of a short number of minors of a matrix in
order to classify it as a TP matrix or as a matrix belonging to some pecial
classes of TP matrices. We also mention some of the characterizations of a
nonsingular TP matrix by its LU decomposition or, as we recently saw in [16],
by its QR decomposition.

§2. Neville elimination

The following notation will be convenient. For k, n ∈ IN, 1 ≤ k ≤ n, Qk,n

will denote the set of all increasing sequences of k natural numbers not greater
than n. For α = (α1, α2, . . . , αk), β = (β1, β2, . . . , βk) ∈ Qk,n and A an n× n
real matrix, we denote by A[α|β] the k × k submatrix of A containing rows
α1, . . . , αk and columns β1, . . . , βk of A. Q0

k,n will denote the set of increasing
sequences of k consecutive natural numbers not greater than n.

Neville elimination was precisely described for general finite matrices in
[14]. Here, following [22], we restrict ourselves to the case of nonsingular
matrices. For a nonsingular matrix A of order n this elimination procedure
consists of n−1 successive steps, resulting in a sequence of matrices as follows:

A = Ã(1) → A(1) → Ã(2) → A(2) · · · → Ã(n) = A(n) = U,

where U is an upper triangular matrix. For each t, 1 ≤ t ≤ n, the matrix
A(t) = (a(t)

ij )1≤i,j≤n has zeros below its main diagonal in the first t−1 columns,
and also one has

a
(t)
it = 0, i ≥ t ⇒ a

(t)
ht = 0 ∀h ≥ i. (2.1)

A(t) is obtained from the matrix Ã(t) by moving to the bottom the rows with
a zero entry in the column t, if necessary, in order to get (2.1). The rows are
moved and placed with the same relative order as they appear in Ã(t). To get
Ã(t+1) from A(t) we produce zeros in the column t below the main diagonal by
subtracting a multiple of the ith row to the (i+1)th for i = n−1, n−2, . . . , t,
according to the formula

ã
(t+1)
ij =


a
(t)
ij if i ≤ t

a
(t)
ij −

(
a
(t)
it /a

(t)
i−1,t

)
a
(t)
i−1,j if i ≥ t + 1 and a

(t)
i−1,t 6= 0

a
(t)
ij if i ≥ t + 1 and a

(t)
i−1,t = 0.

(2.2)

Observe that in the third case a
(t)
i−1,t = 0 implies that a

(t)
it = 0. In this process

one has Ã(n) = A(n) = U , and when no row exchanges are needed, then
Ã(t) = A(t) for all t. This happens, for example, when

det A[α|1, 2, . . . , t] 6= 0, 1 ≤ t ≤ n, ∀α ∈ Q0
t,n (2.3)
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(see [14] , Lemma 2.6) or when A is a nonsingular totally positive matrix ([14],
Corollary 5.5).

The element
pij = a

(j)
ij , 1 ≤ j ≤ i ≤ n, (2.4)

is called the (i, j) pivot of the Neville elimination of A and the number

mij =

 a
(j)
ij /a

(j)
i−1,j(= pij/pi−1,j) if a

(j)
i−1,j 6= 0

0 if a
(j)
i−1,j = 0

(
⇒ a

(j)
ij = 0

) (2.5)

the (i, j) multiplier. Observe that mij = 0 if and only if pij = 0 and that by
(2.1)

mij = 0 ⇒ mhj = 0 ∀h > i. (2.6)

The complete Neville elimination of a matrix A consists in performing the
Neville elimination of A to get U as above and then proceeding with the Neville
elimination of UT , the transpose of U (or, equivalently, the Neville elimination
of U by columns). The (i, j) pivot (resp., multiplier) of the complete Neville
elimination of A is that of the Neville elimination of A if i ≥ j and the (j, i)
pivot (resp. multiplier) of the Neville elimination of UT if j ≥ i.

Consider in more detail the case of a nonsingular matrix A whose Neville
elimination can be performed without row exchanges. As in [19], they will be
referred to as matrices satisfying the WR condition. In this case, the elimi-
nation process can be matricially described by elementary matrices without
using permutation matrices. To this end, we denote by Ei(α) (2 ≤ i ≤ n) the
lower triangular, bidiagonal matrix whose element (r, s), 1 ≤ r, s ≤ n is given
by { 1 if r = s

α if (r, s) = (i, i− 1)
0 elsewhere,

that is

Ei(α) :=



1
1

. . .
1
α 1

. . .
1


. (2.7)

Observe that E−1
i (α) = Ei(−α)

Ei(α)Ei(β) = Ei(α + β)
Ei(α)Ej(β) = Ej(β)Ei(α) except for |i− j| = 1 with αβ 6= 0.

(2.8)
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For a matrix A satisfying the WR condition, the Neville elimination pro-
cess can be written

En(−mn,n−1) · · ·(E3(−m32) · · ·En(−mn2))
· (E2(−m21) · · ·En−1(−mn−1,1)En(−mn1))A = U,

(2.9)

where U is a nonsingular upper triangular matrix, and the mij ’s are the
multipliers (2.5) satisfying (2.6).

It is easily seen that

Ei(mij)Ei+1(mi+1,j) · · ·En(mnj) =



1
0 1

. . . . . .
0 1

mi,j 1
. . . . . .

mn,j 1


(2.10)

is a bidiagonal, lower triangular matrix, whose entries (2, 1), . . . , (i− 1, i− 2)
are zero. On the contrary, the product En(mnj) · · ·Ei+1(mi+1,j)Ei(mij) is
just a lower triangular matrix that, in general, is not bidiagonal. This last
ordering was used in [31] and (1.2)-(1.4) and was the cause of the high number
of bidiagonal factors in (1.2). Consequently (2.9) can be written in the form

Fn−1Fn−2 · · ·F1A = U (2.11)

with

Fi =



1
0 1

. . . . . .
0 1

−mi+1,i 1
. . . . . .

−mn,i 1


. (2.12)

From (2.9) we get the factorization of A

A = (En(mn1)En−1(mn−1,1) · · ·E2(m21))
·(En(mn2) · · ·E3(m32)) · · ·En(mn,n−1)U.

(2.13)

Observe that the diagonal entries uii of U are the pivots pii given by (2.4).
A careful and technical discussion of how the zero pattern of the matrix U is
modified by the successive factors Ei’s of the right-hand side of (2.13) shows
the following result ([19], theorem 2.2):



8 M. Gasca and J. M. Peña

Theorem 2.1. A nonsingular n × n matrix A satisfies the WR condition if
and only if it can be factorized in the form (2.13) with the mi,j ’s satisfying
(2.6). If A satisfies that condition, the factorization is unique and mij is the
(i, j) multiplier of the Neville elimination of A.

When no row exchanges are needed in the Neville elimination of A and
UT we say that the process is possible without row or column exchanges and,
for brevity, that A satisfies the WRC condition. In this case, accordingly to
Theorem 2.1, A can be written in the form

A = (En(mn1)En−1(mn−1,1) · · ·E2(m21)) · (En(mn2) · · ·E3(m32)) · · ·
·(En(mn,n−1))D(ET

n (m′
n,n−1))(E

T
n−1(m

′
n−1,n−2)E

T
n (m′

n,n−2)) · · ·
·(ET

2 (m′
21) · · ·ET

n−1(m
′
n−1,1)E

T
n (m′

n1)) (2.14)

with mij and m′
ij satisfying (2.6) and D a diagonal matrix. Moreover this

representation is unique, and mij (respectively m′
ij) is the (i, j) multiplier of

the Neville elimination of A (resp. UT ). Here ET
i denotes the transpose of

Ei.
By transposition of the right-hand side of (2.14) we deduce that AT

satisfies the WRC condition too and the multipliers of the Neville elimination
of AT are those of UT . Therefore, if we denote

mij = m′
ji for all i > j, (2.15)

we can say that, for any (i, j), i 6= j, mij is the (i, j) multiplier of the complete
Neville elimination of A, in the sense that, if i > j, it is the multiplier of the
Neville elimination of A and, if i < j, it is the (j, i) multiplier of the Neville
elimination of AT (or, equivalently, of UT ). On the contrary, what we have
called pivots are different, in general, for the Neville elimination of UT and
AT . However, due to the fact that UT is lower triangular, the (i, i) entry of
D in (2.14) is the same as of UT and both are the (i, i) pivot of the Neville
elimination of A (and of AT ).

All these questions can be summarized in the following:

Theorem 2.2. A nonsingular n×n matrix A satisfies the WRC condition if
and only if it can be factorized in the form

A = (En(mn1)En−1(mn−1,1) · · ·E2(m21)) · (En(mn2) · · ·E3(m32)) · · ·
·(En(mn,n−1))D(ET

n (mn−1,n))(ET
n−1(mn−2,n−1)ET

n (mn−2,n)) · · ·
·(ET

2 (m12) · · ·ET
n−1(m1,n−1)ET

n (m1n)) (2.16)

with D a diagonal matrix and the mij ’s satisfying

mij = 0 ⇒ mhj = 0 ∀h > i if i > j,

mij = 0 ⇒ mik = 0 ∀k > j if i < j.
(2.17)

Moreover, under this condition the factorization is unique, mij is the (i, j)
multiplier of the complete Neville elimination of A and the (i, i) entry of D is
the (i, i) pivot of the Neville elimination of A.



Factorizations 9

§3. Factorization of a matrix as a product of bidiagonal matrices

In this section we only consider nonsingular matrices having the WRC
condition. We shall see in Section 4 that nonsingular TP matrices satisfy this
condition.

As we have seen in the reasoning leading to (2.11) the factor (En(mn1) ·
En−1(mn−1,1) · · · E2(m21)) in the right-hand side of (2.16) is not, in general,
a bidiagonal matrix. With the aim of finding a decomposition of A as a prod-
uct of a short number of bidiagonal matrices, we can reorder the elementary
factors of (2.15). By (2.8) we have, for example,

En(mn1)En−1(mn−1,1) · · ·E2(m21)En(mn2) =
En(mn1)En−1(mn−1,1)En(mn2) · · ·E2(m21).

So, we can go on to write (2.16) in the form

A = (En(mn1)) · (En−1(mn−1,1)En(mn2) · (En−2(mn−2,1)(En−1(mn−1,2)

En(mn3)) · · · (E2(m21)(E3(m32) · · ·En(mn,n−1))D(ET
n (mn−1,n) · · ·

ET
3 (m32)ET

2 (m21)) · · · · (ET
n (m2n)ET

n−1(m1,n−1)) · (ET
n (m1n)) (3.1)

and, by (2.10),

A = Fn−1Fn−2 · · ·F1DG1 · · ·Gn−2Gn−1, (3.2)

with

Fi =



1
0 1

. . . . . .
0 1

mi+1,1 1
. . . . . .

mn,n−i 1


(3.3)

and

Gi =



1 0
. . . . . .

1 0
1 m1,i+1

. . . . . .
1 mn−i,n

1


. (3.4)

Observe that in Section 2 we have stated the uniqueness of the decom-
position (2.16) under the condition (2.17). Since (3.1) has been obtained by a
reordering of (2.16) completely determined, (3.1) is also unique and so is (3.2).
The element (h+1, h), h ≥ i, of Fi in (3.2) is the (h+1, h+1− i) multiplier of
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the Neville elimination of A and a similar interpretation can be given to the
matrices Gi with respect to AT . Therefore, (2.17) means that if the element
(h+1, h) of Fi is zero, then the element (h+1+k, h+k) of Fi+k, for k = 1, . . . ,
n − i, is also zero, and similar condition for the G’s. However, we shall see
different factorizations of the matrix A as a product of bidiagonal matrices
under other different conditions. One of these different factorizations is based
upon [19], theorem 2.6, giving rise to the following result (which appears in
[19] as theorem 3.3):

Theorem 3.1. Let A be a nonsingular matrix which can be factorized in the
form A = LDV with L (resp. V ) lower (upper) triangular, unit diagonal,
and D a diagonal matrix. Then A satisfies the WRC condition if and only
if the matrix B = L−1CV −1, with C a diagonal matrix, satisfies the same
condition. In the affirmative case, the multipliers of the Neville elimination
of A (resp. AT ) are the negatives of those of B (resp. BT ), but in general
occur in a different order.

Let A be a nonsingular matrix satisfying the WRC condition. From
Theorems 2.1 or 2.2 we deduce that A can be written in the form A = LDV
and by Theorem 3.1 the matrix L−1 satisfies the WRC condition. From
Theorem 2.2 we get

L−1 = (En(µn,1)En−1(µn−1,1) · · ·E2(µ2,1)) · (En(µn2) · · ·E3(µ3,2)) · · ·
·(En(µn,n−1))

(3.5)

with µij the (i, j) multiplier of L−1, satisfying

µij = 0 ⇒ µhj = 0 ∀h > i. (3.6)

Consequently one has

L = (En(−µn,n−1)) · · ·(E3(−µ3,2) · · ·En(−µn,2))·
(E2(−µ2,1)) · · ·En−1(−µn−1,1)En(−µn,1)),

(3.7)

that is
L = Hn−1Hn−2 · · ·H1

with

Hi =



1
0 1

. . . . . .
0 1

−µi+1,i 1
. . . . . .

−µn,i 1


(3.9)

and the µ’s satisfying (3.6).
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Let us remark that the µ’s are the multipliers of the Neville elimination
of L−1. If we want to interpret them in terms of the elimination of L we have
to reorder the factors of the right-hand side of (3.7) as in (2.13) keeping in
mind the condition (2.6). As it is seen in the proof of Theorem 2.6 of [19],
this can be done as in the beginning of this section, with the reordering which
has led to (3.1). If all the µ’s are different from zero, the condition similar
to (2.6) for the new ordering still holds. If some of the µ’s are zero a more
complicated reordering, which is explained in [19], must be done. In summary
the result is that the numbers −µi,j which appear in the subdiagonal of the
matrices Hi are the multipliers of the Neville elimination of L, but in general
they occur in a different order than in the elimination process of L.

Similar reasonings can be applied to the upper triangular factor V of the
matrix A to get a factorization of it of the form

A = Hn−1Hn−2 · · ·H1DK1 · · ·Kn−2Kn−1 (3.10)

with

Hi =



1
0 1

. . . . . .
0 1

αi+1,i 1
. . . . . .

αn,i 1


, (3.11)

Ki =



1 0
. . . . . .

1 0
1 αi,i+1

. . . . . .
1 αi,n

1


. (3.12)

and the α’s satisfying

αi,j = 0 ⇒ αh,j = 0 ∀h > i if i > j,

αi,j = 0 ⇒ αi,k = 0 ∀k > j if i < j.
(3.13)

Observe that Theorem 3.1 means that the computational cost of the
Neville elimination of a nonsingular matrix A which satisfies the WRC con-
dition is the same as that of matrices B whose lower triangular factor is the
inverse of that of A. This means that if the factor L of A is the inverse of a
bidiagonal, lower triangular matrix, L−1, the computational cost of the Neville
elimination of A is very low (that of L−1). This property does not hold for
Gauss elimination and consequently for these matrices Neville elimination is
more efficient.
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§4. Totally positive matrices

In [19], Corollary 5.5, it was proved that a nonsingular matrix A is totally
positive if and only if there are no row or columns exchanges in the complete
Neville elimination of A and all the pivots are nonnegative. Furthermore it is
clear that the diagonal pivots must be different from zero. With the notations
of Section 2 and taking into account that, according to (2.5), the multipliers
of the elimination process are quotient of pivots,we can reformulate this result
as

Theorem 4.1. A nonsingular n× n matrix A is totally positive if and only
if it can be factorized in the form (2.16) with D a diagonal matrix with
positive diagonal entries and the mi,j ’s nonnegative numbers satisfying (2.17).
Moreover, under this condition the factorization is unique, mi,j is the (i, j)
multiplier of the complete Neville elimination of A and the (i, i) entry of D is
the (i, i) pivot of the Neville elimination of A.

Analogously, following Section 3 a nonsingular TP matrix can be ex-
pressed in two different forms as a product of bidiagonal matrices.

Theorem 4.2. A nonsingular n×n matrix A is totally positive if and only if
it can be factorized in the form (3.2) (respectively (3.10)) with D a diagonal
matrix with positive diagonal entries, Fi, Gi like in (3.3),(3.4), (resp. Hi, Ki

like in (3.11),(3.12)) and the mi,j ’s ( αi,j ’s) nonnegative numbers satisfying
(2.17) ((3.13)). Under this condition, the factorization is unique.

Since (3.2) comes from a simple reordering of (2.15), the interpretation
of the numbers mi,j is the same as in Theorem 4.1. The αi,j ’s are the same
numbers, in general in a different ordering. However, when all the multipliers
mi,j are different from zero, (2.17) and (3.13) do not apply and by uniqueness
both factorizations are coincident.

Example: The matrix

A =


1 1 3 6 0
1 2 7 15 2
3 6 23 52 13
0 0 4 15 17
0 0 2 10 24


is totally positive because its complete Neville elimination can be carried out
without row or column exchanges, with multipliers m51 = m41 = 0, m31 = 3,
m21 = 1, m52 = m42 = m32 = 0, m53 = 2, m43 = 1/2, m54 = 5/2, m15 = 0,
m14 =, 2 m13 = 3, m12 = 1, m25 = 2, m24 = m23 = 1, m35 = 1, m34 = 1/2,
m45 = 0, and diagonal pivots p11 = p22 = p44 = 1, p33 = 2, p55 = 8. Its
factorization (3.2) is
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A =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




1 0 0 0 0
0 1 0 0 0
0 3 1 0 0
0 0 0 1 0
0 0 0 1/2 1



·


1 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 2 1 0
0 0 0 5/2 1




1 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 1 0
0 0 0 0 8




1 1 0 0 0
0 1 1 0 0
0 0 1 1/2 0
0 0 0 1 0
0 0 0 0 1



·


1 0 0 0 0
0 1 3 0 0
0 0 1 3 0
0 0 0 1 1
0 0 0 0 1




1 0 0 0 0
0 1 0 0 0
0 0 1 2 0
0 0 0 1 2
0 0 0 0 1




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



.

In order to get the factorization (3.10), the first, third and fourth factors
above must be replaced, respectively, by

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1/2 1

 ,


1 0 0 0 0
0 1 0 0 0
0 3 1 0 0
0 0 2 1 0
0 0 0 5/2 1

 and


1 0 0 0 0
1 1 0 0 0
0 3 1 0 0
0 0 0 1 0
0 0 0 1/2 1

 .

As it has been recalled in Section 1 a matrix is said to be strictly totally
positive (STP for brevity) if all its minors are positive. In [19], Theorem
4.1, it was proved that a square matrix is STP if and only if it satisfies the
WRC condition and the multipliers and diagonal pivots of its complete Neville
elimination are all positive. This can be expressed in a theorem similar to
Theorem 4.2:

Theorem 4.3. A nonsingular n × n matrix A is strictly totally positive if
and only if it can be factorized in the form (3.2) with D a diagonal matrix
with positive diagonal entries, Fi, Gi like in (3.3),(3.4), and the mi,j ’s positive
numbers. This factorization is unique.

Observe that the condition (2.17) does not apply here and that the fac-
torizations (3.2) and (3.10) are now coincident.

An important class of TP matrices is that of almost strictly totally positive
matrices (see [15]). A nonsingular TP matrix A of order n is called almost
strictly totally positive (ASTP for brevity) if it satisfies the following property:
for any α, β ∈ Q0

k,n

detA[α|β] > 0 ⇐⇒ aαh,βh
> 0, h = 1, 2, . . . , k. (4.1)
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In other words, a minor of A formed from consecutive rows and columns is
positive if and only if all its diagonal entries are positive. It was proved in
[15] that if A is ASTP then (4.1) holds for any α, β ∈ Qk,n and, consequently,
for this type of matrices, we know exactly the minors which are positive
and the ones which are zero. Important examples of ASTP matrices are the
collocation matrices of B-splines (see [2]) and Hurwitz matrices (see [30]).
Obviously, STP matrices form a subclass of ASTP matrices. The following
theorem ([22], Theorem 4.1 and Remark 4.2) allows us the characterization
of ASTP matrices in terms of their factorizations:

Theorem 4.4. A nonsingular n×n matrix A is ASTP if and only if it can be
factorized in the form (3.2) with D a diagonal matrix with positive diagonal
entries, Fi, Gi like in (3.3),(3.4), and with mij ≥ 0 satisfying

mij = 0 and i > j ⇒ mrs = 0 ∀(r, s) with r ≥ i, s ≤ j

mij = 0 and i < j ⇒ mrs = 0 ∀(r, s) with r ≤ i, s ≥ j.
(4.2)

Let us observe that (2.17) is a part of (4.2) and therefore the factorization
is unique. Moreover, since (3.13) is also a part of (4.2) the factorizations (3.2)
and (3.10) are coincident for ASTP matrices.

Remark. A signature sequence of order n is a sequence ε = (εi)1≤i≤n of real
numbers with |εi| = 1 for all i. An n×m matrix A is called sign-regular with
signature ε if ε is a signature sequence of order h = min{n, m} such that, for
k = 1, 2, . . . , h,

εk detA[α|β] ≥ 0 (4.3)

for any α ∈ Qk,n, β ∈ Qk,m. A is called strictly sign-regular with signature
ε if ≥ is replaced by > in (4.3). TP and STP matrices are examples of sign-
regular and strictly sign-regular matrices, respectively, with εi = 1 for all i.
Neville elimination provides an algorithmic characterization of strictly sign-
regular matrices as can be found in [17] and also a factorization of them as
a product of bidiagonal matrices. In the same paper, we gave the algorithms
corresponding to Theorems 4.1 and 4.3 above to check the total positivity or
strict total positivity of a matrix via Neville elimination.

Some other factorizations of nonsingular totally positive matrices of order
n as a product of 2n − 2 bidiagonal matrices by a diagonal matrix can be
considered. The converse A# of a matrix A = (aij)0≤i,j≤n is the matrix
whose (i, j) entry (0 ≤ i, j ≤ n) is an−i,n−j (see [1]). It is easy to prove
that (AB)# = A#B#. According to Theorem 4.2, if A is a nonsingular TP
matrix, then the upper triangular matrix K = K1 · · ·Kn−2Kn−1 of (3.10) is
TP. Consequently its converse K# is lower triangular and TP and again by
Theorem 4.2 it can be decomposed as in (3.10)

K# = H̃n−1H̃n−2 · · · H̃1, (4.4)

where the matrices H̃i have the form (3.11) with the bidiagonal elements
satisfying (3.13). If we denote Ui := H̃#

i , one has

K = Un−1Un−2 · · ·U1.
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Therefore, in (3.10), we get

A = Hn−1Hn−2 · · ·H1DUn−1Un−2 · · ·U1, (4.5)

with Hi given by (3.11) and

Ui =



1 βi1

1 βi2

. . . . . .
1 βi,n−i

1 0
. . . . . .

1 0
1


, (4.6)

with the βij satisfying

βij = 0 ⇒ βhj = 0 ∀h < i. (4.7)

Other factorizations can be easily obtained from (3.10) and (4.5) by ap-
plying to the lower triangular factors a similar idea. First we take the converse
H# of the lower triangular factor H = Hn−1Hn−2 · · ·H1 of a nonsingular TP
matrix in (3.10). Afterwards we decompose H# as in (3.10) and take the
converses again. From (3.10) and (4.5), respectively, we get

A = L1L2 · · ·Ln−1DK1 · · ·Kn−2Kn−1 (4.8)

and
A = L1L2 · · ·Ln−1DUn−1Un−2 · · ·U1, (4.9)

where

Li =



1
γi1 1

. . . . . .
γi,n−i 1

0 1
. . . . . .

0 1


, (4.10)

with the γij satisfying (4.7).
On the other hand, we can consider A# instead of A, apply any of the four

factorizations (3.10),(4.5),(4.8) and (4.9), and take converses again. Then we
get four similar factorizations with the roles of the lower and upper triangular
matrices interchanged:

A = Ûn−1Ûn−2 · · · Û1D̂L̂1L̂2 · · · L̂n−1, (4.11)
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A = Ûn−1Ûn−2 · · · Û1D̂Ĥn−1 · · · Ĥ2Ĥ1, (4.12)

A = K̂1K̂2 · · · K̂n−1D̂L̂1L̂2 · · · L̂n−1, (4.13)

A = K̂1K̂2 · · · K̂n−1D̂Ĥn−1 · · · Ĥ2Ĥ1. (4.14)

In summary, from (3.10) we have got eight different factorizations of A as
a product of bidiagonal matrices. Other eight factorizations, with the same
types of factors as above but with different conditions for the subdiagonal
elements are obtained by starting from the factorization (2.16) with the con-
dition (2.17). Nevertheless, recall that for ASTP matrices, and in particular
for STP matrices, (2.16) and (3.10) are coincident and therefore only the eight
first factorizations must be considered for these matrices.

A matrix with nonnegative entries is called stochastic if the row sums are
equal to one. Matrices which are nonsingular, stochastic and totally positive
are of particular interest in Computer Aided Geometric Design. An elemen-
tary corner cutting is a transformation which maps any polygon P1P2 · · ·Pn

into another one Q1Q2 · · ·Qn defined by

Qj = Pj j 6= i

Qi = λPi + (1− λ)Pi+1

(4.15)

for some 1 ≤ i ≤ n− 1 or

Qj = Pj j 6= i

Qi = λPi + (1− λ)Pi−1

(4.16)

for some 2 ≤ i ≤ n.
A corner cutting algorithm is any composition of elementary corner cut-

ting transformations. An elementary corner cutting is defined by a bidiagonal,
nonsingular, totally positive and stochastic matrix, which is upper (respec-
tively lower) triangular in the case (4.15) (resp. (4.16)). In [24] Goodman
and Micchelli proved that a matrix which is nonsingular, totally positive and
stochastic, can be written as a product of bidiagonal matrices of the same
type and therefore describes a corner cutting algorithm.

Observe that a nonsingular, totally positive matrix A = (aij)1≤i,j≤n can
be factorized in the form

A = DB (4.17)

with D = (dij)1≤i,j≤n a diagonal matrix with positive diagonal entries dii =
1/(

∑n
i=1 aij) and B a nonsingular, totally positive, stochastic matrix. The

factorization is obviously unique. By using (4.17) for each factor, a product
of nonsingular, totally positive matrices A = A1, A2, . . . , Am can be written

A = DB1B2 · · ·Bm (4.18)

with B1, B2, . . . , Bm totally positive and stochastic and D a diagonal matrix
with positive diagonal. Moreover, the matrix A is stochastic if and only if D
is the identity matrix I.

Hence, Theorem 4.2 can be slightly changed to characterize nonsingular,
stochastic, TP matrices in terms of factorizations with bidiagonal, stochastic
factors:
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Theorem 4.5. A nonsingular n×n matrix A is stochastic and totally positive
if and only if it can be factorized in the form

A = Fn−1Fn−2 · · ·F1G1 · · ·Gn−2Gn−1, (4.19)

with

Fi =



1
0 1

. . .
. . .

0 1
αi+1,1 1− αi+1,1

. . .
. . .

αn,n−i 1− αn,n−i


(4.20)

and

Gi =



1 0
. . .

. . .

1 0
1− α1,i+1 α1,i+1

. . .
. . .

1− αn−i,n αn−i,n

1


, (4.21)

where, ∀(i, j), 0 ≤ αi,j < 1 satisfies (2.17) (with mij replaced by αi,j). Under
these conditions, the factorization is unique.

As in Theorem 4.2 an analogous result can be stated in terms of a fac-
torization of the type (3.10) with stochastic bidiagonal matrices. And the
same happens with the other similar factorizations: (4.5), (4.8), (4.9) and so
on. One of them was specially considered in [24] to prove that any nonsingu-
lar, stochastic, totally positive matrix describes a corner cutting algorithm.
Uniqueness conditions were not studied in that paper.

§5. Determinantal characterizations and other factorizations

In this section, we shall see that the factorizations of TP matrices we
have just obtained can be interpreted in terms of the signs of some minors of
those matrices, improving some well-known results in the literature.

The main tool we use to relate factorization results with determinantal
characterizations is again Neville elimination. In fact as it is seen in [14],
Lemma 2.6, the pivots of the Neville elimination of a matrix A can be ex-
pressed as Schur complements of submatrices of A and therefore as quotient
of minors of A. Since the multipliers of the elimination process are quotient
of pivots (see (2.5)), hence of minors of A, a necessary and sufficient condition



18 M. Gasca and J. M. Peña

for a nonsingular matrix A to be TP is that the signs of the minors involved
in the calculation of multipliers and diagonal pivots of the complete Neville
elimination of A ensure that the conditions of Theorem 4.1, for instance, are
accomplished.

In consequence, Theorem 4.1 leads to the following determinantal char-
acterization, which corresponds to [16], Theorem 3.1:

Theorem 5.1. Let A be a nonsingular matrix of order n. Then A is TP if
and only if it satisfies simultaneously, for each k ∈ {1, 2, . . . , n}, the following
conditions:

detA[α|1, 2, . . . , k] ≥ 0 ∀α ∈ Qk,n (5.1)

det A[1, 2, . . . , k|β] ≥ 0 ∀β ∈ Qk,n, (5.2)

detA[1, 2, . . . , k] > 0. (5.3)

This characterization reduces considerably the number of minors used in
the characterization obtained by Cryer in [8], namely: a nonsingular matrix
A is TP if and only if

detA[α|β] ≥ 0 ∀α ∈ Q0
k,n, β ∈ Qk,n, k ∈ {1, . . . , n}. (5.4)

On the other hand, observe the symmetry of the conditions of Theorem
5.1 with respect of rows and columns, compared with the unnatural asym-
metry of (5.4). In the case of general TP matrices, nonnecessarily regular,
(5.4) is replaced in [8] by a similar condition which depends on the rang of A.
These matrices can be characterized too by their Neville elimination as it can
be seen in [14], Theorem 5.4.

With respect to STP matrices, Theorem 4.3 corresponds to the following
result, which was contained in [14], Theorem 4.1:

Theorem 5.2. Let A be an n×m matrix. Then A is STP if and only if

det A[α|1, . . . , k] > 0 ∀α ∈ Q0
k,n, k ∈ {1, . . . , n}, (5.5)

det A[1, . . . , k|β] > 0 ∀β ∈ Q0
k,n, k ∈ {1, . . . , n}. (5.6)

This result improves the classical characterization of STP matrices due
to Fekete in [11] (another proof thereof can be found in Theorem 2.5 of [1]):
an n × m matrix is STP if and only if all its minors formed by consecutive
rows and columns are strictly positive.

Observe that, for example, in the case n = m, n(n + 1)(2n + 1)/6 minors
should be checked according to Fekete’s criterion, while they are only n(n+1)
according to Theorem 5.2.

Concerning ASTP matrices, Theorem 4.4 is closely related with the fol-
lowing result, which is contained in [22], Theorem 3.3. First, we must intro-
duce some notations related with the zero pattern of an ASTP matrix A.

For an n× n matrix A let us denote:
i0 = 1, j0 = 1;
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for t = 1, . . . , l :
it = max{i|ai,jt−1 6= 0}+ 1 (≤ n + 1),
jt = max{j|ait,j = 0}+ 1 (≤ n + 1),

where l is given in this recurrent definition by il = n + 1. Analogously we
denote:

ĵ0 = 1, î0 = 1;
for t = 1, . . . , r :

ĵt = max{j|aît−1,j 6= 0}+ 1,

ît = max{i|ai,ĵt
= 0}+ 1,

where ĵr = n + 1. In other words, the entries below the places (i1− 1, j) with
j0 ≤ j < j1, (i2− 1, j) with j1 ≤ j < j2, . . . , (il−1− 1, j) with jl−2 ≤ j < jl−1

are zero. So are the entries to the right of the places (i, ĵ1−1) with î0 ≤ i < î1,
(i, ĵ2−1) with î1 ≤ i < î2, . . . ,(i, ĵr−1−1) with îr−2 ≤ i < îr−1. On the other
hand, the entries of both lists, those above the first list and those to the
left of the last list are nonzero. We shall express this by saying that the
matrix A has a zero pattern given by I = {i0, i1, . . . , il}, J = {j0, j1, . . . , jl},
Î = {̂i0, î1, . . . , îr} and Ĵ = {ĵ0, ĵ1, . . . , ĵr}. Only matrices with these patterns
of zeros and all the other entries positive can be ASTP, as it is explained in
[22] with the following result:

Theorem 5.3. Let A be a nonsingular n× n totally positive matrix with a
zero pattern given by I, J, Î, Ĵ as above, satisfying

it > jt t = 1, . . . , l − 1

ĵt > ît t = 1, . . . , r − 1.
(5.7)

Then A is an ASTP matrix if and only if it satisfies the following conditions
simultaneously:

i) For 1 ≤ t ≤ l,
for jt−1 ≤ hÿ < jt,

detA[it − 1− h + jk, . . . , it − 1|jk, jk + 1, . . . , h] > 0,

where jk = max{js|s ≤ t− 1, h− js < it − is}.
ii)For 1 ≤ t ≤ r,

for ît−1 ≤ hÿ < ît,

detA[̂ik, îk + 1 . . . , h|ĵt − 1− h + îk, . . . , ĵt − 1] > 0

where îk = max{̂is|s ≤ t− 1, h− îs < ĵt − ĵs}.

On the other hand, the decompositions studied in the precedent section
can be expressed in a more compact form if we replace all the lower triangular
bidiagonal matrices by their product and, analogously, all the upper triangular
ones by their product. In this form we get the LDU factorization of the matrix
A, and so Theorem 4.1 can be reformulated (see [9], Theorem 7.1 for a first
version of this result)
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Theorem 5.4. A nonsingular n× n matrix A is totally positive if and only
if it can be decomposed in the form LDU with D a diagonal matrix with
positive diagonal entries, L a lower triangular, unit diagonal TP matrix and
U an upper triangular, unit diagonal TP matrix.

Analogously, the factorization of a strictly totally positive matrix which
has been given in Theorem 4.3 can be rewritten in the form LDU , but, ob-
viously, the triangular matrices L and U are not STP. If B is an n× n lower
(resp., upper) triangular matrix such that detB[α|β] > 0 for any α, β ∈ Qp,n,
1 ≤ p ≤ n, with βk ≤ αk (resp, βk ≥ αk) then B is called ∆STP matrix.
Observe that a ∆STP matrix is an ASTP matrix. Hence we get (see [8],
Theorem 1.1)

Theorem 5.5. An n× n matrix A is strictly totally positive if and only if it
can be decomposed in the form LDU with D a diagonal matrix with positive
diagonal entries, L a lower triangular, unit diagonal ∆STP matrix and U an
upper triangular, unit diagonal ∆STP matrix.

Another class of important TP matrices has not yet been considered
in this paper: that of the matrices A such that Am is STP for some posi-
tive integer m. They are called oscillatory. A triangular matrix A is called
∆-oscillatory if A is TP and Am is ∆STP for some positive integer m. Simul-
taneously to the result of Theorem 5.5, it was shown in Theorem 1.1 of [8]
that a square matrix A is oscillatory if and only if it has an LU -factorization
such that L and U are ∆oscillatory.

Let us give two final remarks. The QR factorization of a matrix, that is its
decomposition as the product of an orthogonal matrix by an upper triangular
matrix is important in Numerical Analysis. Its application to TP matrices
has been recently considered by us in [16]. By introducing some new classes
of matrices related to that of TP matrices, whose definitions are omitted here
for brevity, nonsingular TP and STP matrices are characterized in terms of
their QR factorization in Theorem 4.7 of that paper.

The second and last remark concerns to the solution of linear systems with
TP coefficient matrices. Some years ago, in [3], deBoor and Pinkus proved
that partial pivoting is not necessary when Gauss elimination is used to solve
them. Recently, in [18], we have studied scaled partial pivoting with respect
to l∞-norm and Euclidean norm for Gauss and Neville elimination applied
to the same systems. It has been proved that in exact aritmetic they do not
need row exchanges. The same result holds, for sufficiently high precision
arithmetic, in Gauss elimination and also, for almost strictly totally positive
matrices, in Neville elimination.
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