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Abstract

Some asymptotic conditions along prescribed directions are added to the usual interpolation data in bivariate problems.
These asymptotic conditions are written in terms of interpolation and then the new problem is studied in the frame of the
interpolation systems introduced by Gasca and Maeztu some years ago. A Newton type interpolation formula is obtained
for the enlarged problem and then some particular cases are studied. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

A Newton-like approach to multivariate interpolation problems was suggested in [5]. The interpo-
lation space associated with a given problem is described as the space spanned by a Newton basis.
A natural question which arises is how to characterize these spaces. A desirable description should
be intuitive and suggested by the data.
The interpolation spaces are subspaces of the space of polynomials not exceeding a given degree,

say M . A common feature of those subspaces is that some of the monomial terms of the highest
degrees are missing. We try to describe this property by ensuring that some limits of the polynomials
are zero when the variables tend to in�nity. This idea leads to the concept of asymptotic conditions.
On the one hand, Dyn and Ron [4] studied some interpolation problems, whose associated interpo-

lation spaces can be interpreted in terms of vanishing asymptotic conditions (see [2]). On the other,
asymptotic conditions have a precedent in the work of Bojanov et al. in [1,7]. Each polynomial,
when restricted to an a�ne submanifold of Rs (a trace of a polynomial), can be interpreted as a
polynomial in less than s variables. Improper submanifolds can be seen as intersections of proper
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a�ne submanifolds when they tend to be parallel and a limiting polynomial trace can be de�ned
for improper manifolds.
Our aim is to de�ne general asymptotic conditions for describing interpolation spaces in [5].
Let M be a given positive integer, p a bivariate polynomial of total degree not greater than M; u0

a point of the a�ne space R2 and v= (vx; vy) a vector of R2 di�erent from 0. As usual, we denote
by Dv the directional derivative operator de�ned by

Dvf:=vx
@f
@x
+ vy

@f
@y

(1)

and then, for a parameter �= 0; we have

�Mp
(
u0 +

1
�
v
)
=

M∑
i=0

1
i!
Divp(u0)�

M−i = q(�);

where q(�) is a univariate polynomial of degree not greater than M .
For 06k6M we de�ne

Dk∞;M;u0 ;vp:=D
kq(0) =

k!
(M − k)!D

M−k
v p(u0): (2)

Equivalently, one has

Dk∞;M;u0 ;vp= k! lim�→∞
p(u0 + �v)−∑k−1

i=0 (1=i!)�
M−iDi∞;M;u0 ;vp

�M−k ; k¿1 (3)

with

D0∞;M;u0 ;vp= lim
�→∞

p(u0 + �v)
�M

: (4)

In other words, Dk∞;M;u0 ;vp is the result of multiplying by k! the coe�cient of �
M−k in the univariate

polynomial p(u0 + �v).
Obviously, if the degree of p is less than M then Dk∞;M;u0 ;vp=0 for 06k6M −deg(p)−1 while,

if the exact degree of p is M and we write

p(x; y) =
M∑
i=0

pi(x; y)

with pi homogeneous polynomial of degree i, then one has

D0∞;M;u0 ;vp= pM (vx; vy):

In this paper, we shall be concerned with the problem of determining a bivariate polynomial p
of prescribed total degree not greater than M , which satis�es some usual interpolation conditions
and some additional asymptotic conditions. Here, by usual interpolation conditions we understand
values of p and=or some of its directional derivatives at prescribed points. By asymptotic conditions
we mean that the values of some operators of the type Dk∞;M;u0 ;v applied to p and=or some of its
derivatives are also prescribed. The problem will be stated in a precise form in Section 2 and its
solution will be constructed in a recursive way in Section 3. In Section 4, we study some particular
problems with vanishing asymptotic conditions which give rise to some interesting interpolation
spaces: spaces of polynomials of a given total degree which are of other given lower degrees when
restricted to any straight line of some prescribed directions. Finally, some examples are provided in
Section 5.
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2. Statement of the problem

Let us consider a straight line in R2 of equation ax+by+ c=0; (a; b) 6= (0; 0). In the sequel, we
denote by r indistinctly the line and the polynomial ax+by+c. Since this polynomial is determined
by the line only up to a constant factor, we may choose, for example, (a; b)=(cos �; sin �), for some
� ∈ (−�=2; �=2] or any other suitable choice. Once the polynomial r associated to the line has been
chosen, it will remain unchanged in the rest of the paper.
A general interpolation problem consists of �nding a function of a certain (simple) linear space

of dimension N satisfying a set of N linear conditions. Since in our case we shall consider bivariate
interpolation problems, it will be convenient to introduce the following set of indices:

I :={(i; j) | i = 0; 1; : : : ; n; j = 0; 1; : : : ; m(i)}; (5)

lexicographically ordered

(i; j)¡ (k; l) ⇔ i¡ k or (i = k and j¡ l): (6)

The interpolation conditions are determined by a set of linear functionals Lij; (i; j) ∈ I , on the
interpolation space. Each of these functionals will be supported on a single point uij, unless an
asymptotic condition is involved. We shall use a set of 
ags wij indicating which kind of condition
is introduced. If wij=1 then Lijf is the value of f or some derivative of f at uij, whereas if wij=0
we associate to the index (i; j) an asymptotic condition.
For each i all the points {uij | j = 0; : : : ; m(i)} will be collinear, belonging to the same line ri,

and we shall use a set of transversal (that is, neither parallel nor coincident with ri) lines rij to
determine the position of the points uij; j=0; : : : ; m(i), on the line ri: In other words, we shall have
ri ∩ rij = uij.
Therefore, n+ 1 indicates the number of lines ri (i = 0; : : : ; n); containing all points. Usually, the

lines ri are numbered in order to have

m(0)¿ · · ·¿m(n) (7)

to keep the total degree of the interpolating functions as low as possible. Under this condition the
interpolation space will be a subspace of the space �M of bivariate polynomials of degree not greater
than

M := max
(i; j)∈I

{i + j}: (8)

The integer M can be seen as an upper bound for the total degree of all polynomials and a starting
(or reference) degree for describing sequences of polynomials with decreasing degree.
Some years ago, a Newton approach was introduced in [5,6] to deal with bivariate interpolation

problems. The idea was recently extended in [2] to allow one asymptotic condition on some lines.
In order to extend this situation again, to allow several asymptotic conditions at the same line, we
de�ne an interpolation system as a set of triples

S:={(ri; rij; wij) | (i; j) ∈ I)} (9)

with I given by (5), satisfying the following conditions for all (i; j):

Condition 1. The lines ri, rij intersect at exactly one point uij.
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Condition 2. If wij =0 for some (i; j) ∈ I; then m(i)=M − i (with M given by (8)) and moreover;
∀k ¿ j; one has wik = 0.

Let us denote, for each i with some wij = 0; mi:=min{j |wij = 0}. Then, due to Condition 2 we
have, for each of these i’s,

wij =

{
1 for j = 0; : : : ; mi − 1;
0 for j = mi; mi + 1; : : : ; M − i: (10)

Obviously, for the other i’s,

wij = 1; j = 0; 1; : : : ; m(i):

Remark that parallel or coincident lines are allowed in S taking into account the speci�ed condi-
tions above: the only lines which have to be transversal are ri and rij for all (i; j) ∈ I .
If wij = 1 for all (i; j), the interpolation system will give rise to a Hermite–Birkho� interpolation

problem of the type considered in [5]. Else we will have a Hermite–Birkho� interpolation problem
with one or several asymptotic conditions along some lines. In [2] only one asymptotic condition
was allowed on each line ri and a third condition was assumed in order to use only asymptotic data
of the form (4).
For a given interpolation system S we de�ne a set of linear functionals on �M . These linear

functionals Lij will be called the interpolation data. First, we associate to each (i; j) ∈ I two
numbers si; tij. The number of lines rh, h¡ i, which are coincident with ri will be denoted by si.
If wij = 1, then the number of lines r0; r1; : : : ; ri−1; ri0; ri1; : : : ; ri; j−1, which contain uij but are not
coincident with ri will be denoted by tij. The same notation will be used, in the case wij = 0, to
denote the number of lines r0; r1; : : : ; ri−1 which are parallel, not coincident, with ri, plus the number
of indices (i; k) with k ¡ j and wik = 0.
Now, the linear functionals Lij are de�ned for f ∈ �M and (i; j) ∈ I in the form

Lijf:=



Dsi�ijD

tij
�if(uij) if wij = 1;

Dsi+tij∞;M;uij ;�iD
si
�ijf if wij = 0;

(11)

where �i=(−bi; ai); �ij=(−bij; aij) are directional vectors of the lines ri=aix+biy+ ci; rij=aijx+
bijy + cij, respectively.
As it can be easily deduced from the proof of our next theorem, the data of the type Dsi+tij∞;M;uij ;�iD

si
�ijf

can be replaced in (11) by Dtij∞;M−si ;uij ;�iD
si
�ijf.

We also associate to the system S a Newton basis B(S), the set of polynomials �ij; (i; j) ∈ I;
de�ned in the form

�ij:=




i−1∏
h=0

rh
j−1∏
k=0

rik if wij = 1;

i−1∏
h=0

rh
mi−1∏
k=0

rik
M−i−1∏
k=j

rik if wij = 0;

(12)

where empty products (when i=0 or j=0) equal 1. Observe that the degree of �ij is i+ j if wij=1,
and M − j + mi elsewhere.
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We shall see later that these polynomials are linearly independent and why we may call B(S) a
Newton basis.
The interpolation space V (S) of our problem is the space spanned by the polynomials �ij of B(S).

Consequently, it will be a subspace of �M .
We denote by P(S) the interpolation problem de�ned by the linear functionals Lij; (i; j) ∈ I on

the space V (S).
Let us now analyse the existence of solutions of this interpolation problem.

Theorem 1. Let S be an interpolation system satisfying conditions 1 and 2. Let P(S) be the
interpolation problem de�ned by the linear functionals Lij of (11) and the space V (S) spanned
by the polynomials �ij of (12). For each set of real numbers zij; (i; j) ∈ I; there exists a unique
polynomial p ∈ V (S) such that

Lijp= zij for all (i; j) ∈ I:
Moreover, the matrix

(Lij�hk)(i; j); (h; k)∈I (13)

is lower triangular, for the row indices (i; j) and column indices (h; k) ordered by (6).

Proof. Any polynomial p ∈ V (S) can be written in the form
p=

∑
(h; k)∈I

ahk�hk (14)

with �ij given by (12). Then the existence and uniqueness of solution of P(S) is equivalent to the
nonsingularity of the matrix (13). In order to show that this matrix is nonsingular, we shall prove
that it is lower triangular with nonzero diagonal elements:

Lhk�ij = 0 for all (h; k)¡ (i; j); Lij�ij 6= 0 for all (i; j) ∈ I: (15)

We �rst consider (h; k)6(i; j) with whk = 1. In this case the arguments of the proof of Theorem
1 of [5] still work to prove (15). That proof is based on the following results which are direct
consequences of the de�nitions and of the Leibniz rule for di�erentiation:
(a) If i; h ∈ {0; 1; : : : ; n}; then

@rh
@�i

= Ahi =− @ri
@�h

(16)

with Ahi 6= 0 except if ri and rh are parallel or coincident.
(b) If (i; j) ∈ I then

@ri
@�ij

=−@rij
@�i

= Bij 6= 0: (17)

(c) If w is any polynomial, then for any nonnegative integer s and (i; j) ∈ I one has
@sriw
@�si

= ri
@sw
@�si

; (18)
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@srsi w
@�sij

= s!Bsijw + riw1; (19)

@srs+1i w
@�sij

= riw2; (20)

where w1; w2 are also polynomials.
The main interest of these formulas is to prove that if ri vanishes then the left-hand sides of (18)

and (20) also vanish, while the left-hand side of (19) still depends on whether w vanishes or not.
(d) If v1; : : : ; vk are a�ne polynomials and w is an arbitrary polynomial, then for any nonnegative

integer s and any vector � ∈ R2 one has
@sv1 · · · vkw

@�s
=

k∑
t=0

t!
(
s
t

)
@s−tw
@�s−t

∑
h1 ;:::;ht

@vh1
@�

· · · @vht
@�

v1 · · · vk
vh1 · · · vht

;

where the summation
∑

h1 ;:::; ht ranges over all subsets of {1; 2; : : : ; k} having t di�erent elements
h1¡ · · ·¡ht . When t = 0 this summation reduces to v1 · · · vk .
Coming back to our present proof, if whk = 0 and wij = 1, then

Lhk�ij = D
sh+thk
∞;M;uhk ;�hD

sh
�hk�ij: (21)

Since Condition 2 implies that h¡ i, the polynomial �ij contains at least sh + 1 times the factor rh
and consequently Dsh�hk�ij contains this factor once at least. When we replace (x; y) in D

sh
�hk�ij(x; y) by

uhk + ��h to compute (21) we get the null polynomial and therefore Lhk�ij =0. The same argument
can be used for the case wij = 0; whk = 0 with h¡ i.
Consequently, it only remains to prove the case h= i with k6j and whk = 0.
As it has been noted after Eq. (12), the degree of �ij is M − j+mi, hence the degree of Dsh�hk�ij

is M − j + mi − sh.
For the a�ne polynomial rl(x; y), associated to the line rl, the result of replacing the variable

(x; y) by uhk + ��h is a univariate polynomial of exact degree 1 in �, if rl has not the direction of
rh, but it is a constant di�erent from zero when rl is parallel, not coincident, with rh. Obviously, it
is zero when rl and rh are coincident lines. On the other hand, by de�nition of thk there are exactly
thk − (k −mh) lines rl; l¡h, parallel, not coincident with rh. Due to all these facts and taking into
account that in the present case h= i, one has

deg(Dsi�ik�ij(uik + ��i)) =M − j + k − si − tik : (22)

Now we have two possibilities. If k ¡ j, then the coe�cient of �M−si−tik is zero and consequently

Lik�ij = D
si+tik
∞;M;uik ;�iD

si
�ik�ij = 0:

Otherwise, if k = j, (22) becomes

deg(Dsi�ij�ij(uij + ��i)) =M − si − tij: (23)

By applying Leibniz rule to compute Dsi�ij�ij we easily see that it is a sum with only one summand
with no factor coincident with ri, namely

K
′∏
l

rl
mi−1∏
�=0

ri�
M−i−1∏
�=j

ri�; (24)
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where
∏′
l rl is the product of the factors r0; r1; : : : ; ri−1 excluding the si ones which are coincident

with ri. K is a constant factor which, according to (17) is not 0. Hence, only this summand will
remain when we replace (x; y) by uij + ��i in Dsi�ij�ij(x; y) to compute D

si
�ij�ij(uij + ��i).

The degree of (24) is M − j + mi − si. On the other hand, in that product there are exactly
tij − (j − mi) factors corresponding to lines rl parallel (not coincident) with ri and all the rest
corresponding to lines with directions di�erent from that of ri. By computing Dsi�ij�ij(uij + ��i) we
get a univariate polynomial of exact degree M − j + mi − si − (tij − (j − mi)) =M − si − tij in �.
Therefore, Lij�ij = D

si+tij
∞;M;uij ;�iD

si
�ij�ij 6= 0:

As a consequence of Theorem 1, we get that B(S) is a basis of V (S) and moreover that it is a
Newton basis in the sense that (15) holds.
Sometimes we have a bivariate function f whose asymptotic behavior along some lines is known

in the following sense:

lim
�→∞

f(u0 + �v)
�M

= A0;

lim
�→∞

f(u0 + �v)−∑k−1
i=0 (1=i!)�

M−iAi
�M−k =

Ak
k!
; k¿1

for some �nite Ai; 06i6k.
If we want to approximate that function (for example a rational function) by an interpolating

polynomial, we can denote Di∞;M;u0 ;vf:=Ai and use these data as asymptotic data. For such a function,
if the problem of �nding a polynomial p satisfying

Lijp= Lijf ∀(i; j) ∈ I
has a unique solution we can say that p interpolates f (in the sense of the data Lij).

Remark 1. Observe that, for any (i; m(i)) with wi;m(i) = 1, the role of ri;m(i) is only to indicate the
point ui;m(i) used in Li;m(i), but ri;m(i) does not appear as a factor in any of the polynomials �hk . On
the other hand if wij = 0 the lines rik ; k¿j are taken transversal to ri only in order that Theorem
1 hold but neither the directions of these lines nor the positions of the points uik are essential and
can be chosen arbitrarily.

3. Construction of the solution

As another consequence of Theorem 1, we derive that the solution p of the interpolation problem
P(S) can be constructed by recurrence. For p written in form (14), the fact that matrix (13) is
lower triangular implies that

Lijp=
∑

(h; k)6(i; j)

ahkLij�hk (25)
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and, therefore, the coe�cients ahk can be computed using the following recurrence relations:

a00 :=
z00

L00�00
;

aij :=
zij −∑

(h; k)¡(i; j) ahkLij�hk
Lij�ij

: (26)

The similarity between this recurrence relation and the one for de�ning univariate divided di�erences
justi�es the name Newton basis which we give to B(S). Analogously, formula (14) can be called a
Newton interpolation formula for the problem P(S) and the coe�cients aij of (14) de�ned by the
recursion (26) can be seen as divided di�erences associated to this problem, playing a similar role
to that of univariate divided di�erences.
We want to remark a particular case of special interest for us. If one has

wij = 0⇒ Lij�hk = 0 ∀(h; k)¡ (i; j) with whk = 1; (27)

then the row indexed with (i; j) in matrix (13), namely (Lij�hk)(h; k)∈I ; has zeros on all columns
indexed by (h; k) with whk = 1 and, as always, also on all columns with (h; k)¿ (i; j). So, we can
write

aij =
zij −∑

{(h; k)¡(i; j);(h; k)∈I;whk=0} ahkLij�hk
Lij�ij

: (28)

Note that the sum includes only terms with (h; k)¡ (i; j) satisfying whk = 0.
If (27) holds for all (i; j) with wij=0, all the coe�cients aij corresponding to asymptotic conditions

can be computed �rst, independently of the other ones and the problem can be easily reduced to a
standard Hermite–Birkho� interpolation problem of the type considered in [5].
In the sequel, we shall say (as usually is said) that two lines have the same direction if they are

either parallel or coincident.

Proposition 2. Condition (27) holds for a given (i; j) with wij = 0 if for all (h; k)¡ (i; j) with
whk = 1 and h + k¿M − tij there exist at least h + k − M + tij + si + 1 straight lines in the set
{r0; r1; : : : ; rh−1; rh0; : : : ; rh; k−1} having the same direction as ri.

Proof. For (i; j) and (h; k) with wij = 0 and whk = 1, one has

Lij�hk = D
si+tij
∞;M;uij ;�iD

si
�ij r0 · · · rh−1rh0 · · · rh; k−1: (29)

Here M is de�ned by (8).
The degree of the polynomial

Dsi�ij r0 · · · rh−1rh0 · · · ; rh; k−1
is not greater than h+k−si and, by (3), Lij�hk is the result of multiplying by (si+tij)! the coe�cient
of �M−si−tij in the univariate polynomial obtained replacing (x; y) in Dsi�ij r0 · · · rh−1rh0 · · · rh; k−1 by
uij + ��i.
Obviously, if h + k − si ¡M − si − tij, that coe�cient is 0. Hence, for (h; k)¡ (i; j) satisfying

h+k ¡M−tij we get Lij�hk=0 as in (27), and for this reason those indices (h; k) are not mentioned
in the statement of Proposition 2.
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If h+ k¿M − tij we have to analyse Dsi�ij�hk more in detail. It is a sum with each summand the
product of a real number by h+ k− si of the h+ k factors r0; r1; : : : ; rh−1; rh0; rh1; : : : ; rh; k−1: If at least
h+ k −M + tij + si +1 of these h+ k factors decrease their degree when we restrict the variable to
a straight line of the direction of �i, it is easy to deduce that each summand of the sum mentioned
above is a univariate polynomial of degree not greater than

h+ k − si − (h+ k −M + tij + 1) =M − si − tij − 1
and consequently the same happens for the whole sum.
Hence Lij�hk = D

si+tij
∞;M;uij ;�i(D

si
�ij�hk) = 0, that is (27).

A particularly simple and important case happens when

n=M; m(i) =M − i; i = 0; : : : ; M; (30)

that is, equivalently, when I = {(i; j) | i+ j6M}. In this case one has #I = (M+22 ), which is exactly
the dimension of �M and therefore V (S) = �M . Conversely, it is straightforward to see that the
unique choice of I which produces V (S) =�M in our approach is (30).

4. Interpolation spaces and vanishing asymptotic conditions

Let S be an interpolation system (9) indexed by a set I given by (5). Let I∗:={(i; j) ∈ I |wij=0}
and de�ne Î :=I \ I∗ and

V̂ (S):={p ∈ V (S) |Lijp= 0; ∀(i; j) ∈ I∗}: (31)

From Theorem 1, we know that the interpolation problem P(S) always has a unique solution. In
particular there exists a unique p ∈ V (S) such that

Lijp= zij; ∀(i; j) ∈ Î ;
Lijp= 0; ∀(i; j) ∈ I∗: (32)

This is equivalent to saying that the problem P̂(S) of �nding a function p ∈ V̂ (S) such that
Lijp = Lijf, for all (i; j) ∈ Î has always a unique solution. Moreover, p can be found recursively
by (26), which means that p is written as a linear combination of the basis of V (S). This seems
not natural because p belongs to the subspace V̂ (S) of V (S).
Trying to �nd a basis of V̂ (S) one could be tempted to think of the set {�ij | (i; j) ∈ Î}, but in

general, there are no reasons for the space spanned by it

W (S) = span{�ij | (i; j) ∈ Î}
to coincide with V̂ (S). They are just subspaces of the same dimension #Î of V (S) which are
coincident only under some extra condition.

Proposition 3. Under the notation above; if condition (27) holds for all (i; j) ∈ I∗; then one has
W (S) = V̂ (S) and {�ij | (i; j) ∈ Î} is a basis of V̂ (S). In this case the solution p of the problem
P̂(S) can be written

p=
∑

(h; k)∈I∗
ahk�hk

and constructed by (26) with the indices (i; j); (h; k) always in I∗.
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Proof. As it has been seen in Section 3, under condition (27) all the coe�cients aij with (i; j) ∈ I∗
can be computed �rst and since in our present problem the interpolation conditions are given by (32)
those coe�cients are all 0. Since the numbers zij in (32) are arbitrary, this means that in this case
W (S) = V̂ (S) and {�ij | (i; j) ∈ Î} is a basis of V̂ (S). The rest of the proposition is straightforward.

In a recent paper [2], we have studied the particular case of at most one asymptotic condition per
direction.

5. Examples

Let us consider some simple examples. Let

I = {(0; 0); (0; 1); (0; 2); (1; 0); (1; 1); (2; 0)};
r0 = x−y; r1 = x−y+1; r2 = x−y+2; r00 = r10 = r20 = x; w00 =w10 =w20 = 1; w01 =w02 =w11 = 0.
The lines r01; r02; r11 can be chosen arbitrarily.
Here M = 2, the space is �2, the Newton basis is

{1; x; x(x − 1); x − y; (x − y)x; (x − y)(x − y + 1)}
and the interpolation data

L00p= p(0; 0); L01p= D0∞;2; (1;1); (1;1)p; L02p= D1∞;2; (2;2); (1;1)p

L10p= p(0; 1); L11p= D1∞;2; (1;2); (1;1)p; L20p= p(0; 2):

Let us take z00 =f(0; 0); z01 = z02 =0; z10 =f(0; 1); z11 =0; z20 =f(0; 2): Then the solution of the
problem can be found recursively by (26) in the following order: a00 =f(0; 0); a0;1 = 0= a02; a10 =
f(0; 0)− f(1; 0); a11 = 0; a20 = (f(0; 2)− 2f(0; 1) + f(0; 0))=2:

p(x; y) =f(0; 0) + (f(0; 0)− f(1; 0))(x − y)

+
f(0; 2)− 2f(0; 1) + f(0; 0)

2
(x − y)(x − y + 1):

We observe that (27) holds and therefore, since z01=z02=z11=0, we could have deduced in advance
that a01 = a02 = a11 = 0 and obtained immediately a00; a10 and a20. The solution p belongs to the
subspace of �2 which satis�es L01 =L02 =L11 = 0, that is, the space of quadratic polynomials which
become constant (degree 0) when restricted to any line parallel to x − y = 0.
Analogously, we can consider for example the case when r0 = r1 = x− y; r2 = x− y+ 2 with all

the rest of the lines the same as above. Now L10p= (@=@y)p(0; 0) and

L11p= D1∞;2; (1;1); (1;1)
@
@y
p:

The rest of the data and the space are the same as above, and the solution is

p(x; y) = f(0; 0)− @f
@y
(0; 0)(x − y) + f(0; 2)− 2

@f
@y (0; 0)− f(0; 0)
4

(x − y)2:
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Let us come back to the �rst example and just replace w01 = 0 by w01 = 1. The Newton basis
and space remain, but two of the interpolation data change: now one has L01p=p(1; 1) and L02p=
D0∞;2; (2;2); (1;1)p. Assume, as in the �rst example, that we take z02 = 0. The coe�cients of p can be
constructed recursively again, but observe that in this case (27) does not hold because L11x 6= 0.
The solution is

p(x; y) =f(0; 0) + (f(1; 1)− f(0; 0))x + (f(0; 0)− f(1; 0))(x − y)
+ (f(1; 1)− f(0; 0))(x − y)x

+
f(0; 2)− 2f(0; 1) + f(0; 0)

2
(x − y)(x − y + 1):

It belongs to the space of quadratic polynomials which are of degree one when restricted to any
line parallel to x−y=0 and in particular, become constant when restricted to the line x−y+1=0.
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