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1 Introduction

In 1932, A. C. Aitken [1] introduced a method which allowed for the simple
computation of the value of an interpolation polynomial at a given point, with
the main goal of “filling in” values in tables of functions. Aitken’s approach
was modified a little bit later by E. H. Neville [11] and nowadays the Aitken–
Neville scheme can be found in most textbooks on Numerical Analysis. An
extension to a more general situation has been provided by G. Mühlbach in
[10]. From a more geometric point of view the Aitken–Neville scheme can
be considered as repeated or iterated (which explains the title of [11]) linear
interpolation, or linear extrapolation, to be precise, since in many cases the
linear interpolant is evaluated “outside” the convex hull of the interpolation
points.

The geometric idea of repeated linear interpolation can be generalized in a
straightforward fashion to several variables by using a multiindexed set of in-
terpolation points xα, but it turns out that there is a restrictive geometric
condition that has to be satisfied by these points in order to make the geo-
metric Aitken–Neville scheme work. We repeat this condition, given in [15], in
Theorem 1. Intuitively it says that whenever a multiindex α can be expressed
as a convex combination of some other multiindices, then the associated point
xα must be representable as an affine combination of the respective points.
This condition is always satisfied in the univariate case, but a very strong one
in more than one variable.

In this paper, we relate Aitken–Neville configurations to another relevant con-
cept from multivariate polynomial, namely to generalized principal lattices
which are special point configurations satisfying the geometric characteriza-
tion due to Chung and Yao [7]. In [9] concrete examples of sets satisfying
the Chung and Yao condition are provided (more detailed information can be
found in the book [12]). Such sets are also generalized principal lattices and
Aitken-Neville sets.

It will turn out that any generalized principle lattice is an Aitken–Neville con-
figuration and thus permits evaluation by iterated linear interpolation. The
converse will be shown in this paper for dimension d = 2 and degree n ≥ 3,
but apparently in three or more variables there are difficulties beyond mere
technicalities of the proof, see Example 15. Moreover, we consider the divided
differences associated to Aitken–Neville configurations and derive a spline rep-
resentation for them. Here, as in [14], the divided difference means the leading
homogeneous form of the interpolation polynomials or, equivalently, the coef-
ficient vector of this homogeneous form.
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2 Notation and preliminaries

We consider polynomial interpolation in d variables by polynomials of a fixed
maximal total degree n; the exponents appearing in such polynomials are
multiindices and we denote by

Γk :=
{
α ∈ Nd

0 : k = |α| = α1 + · · ·+ αd
}

the set of all multiindices of length k. Here N0 denotes the set of all nonnegative
numbers. Associated with Γk is the 1× Γk matrix

xk = (xα : α ∈ Γk), k ∈ N0,

i.e., the row vector of all monomials of total degree k which spans Π0
k, the

vector space of all homogeneous polynomials of degree k, i.e.,

Π0
k =

{
xkc : c ∈ RΓk×1

}

and we can conveniently write any polynomial p as

p(x) =
n∑
k=0

xkpk, pk ∈ RΓk×1, k = 0, . . . , n,

for some n ∈ N0. The total degree of p is then given as

deg p = max {k : pk 6= 0} .

It is well–known, cf. [8], that any finite set of points X ⊂ Rd that allows for
unique interpolation from Πn has to fulfill certain constraints. The cardinality
#X of this set has to match the dimension of Πn, which is

(
n+d
d

)
, but there

is also the geometric condition on the points that requires them not to lie on
an algebraic hypersurface of degree n, a property which is easy to phrase but
hard to verify or to provide in general.

A particular class of interpolation points that not only allows for unique poly-
nomial interpolation from Πn but also provides a geometric way to evaluate
the interpolant at any given point x ∈ Rd was considered in [15] by means of an
extension of the classical Aitken–Neville scheme to several variables, using it-
erated linear interpolation as introduced in [1] and refined shortly afterwards
in [11]. To explain this idea, we need the notion of barycentric coordinates.
Given any vector V = (v0, . . . , vd) of d + 1 points vj ∈ Rd, we say that they
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are in general position if the Lagrange interpolation problem on V by polyno-
mials in Π1 has a unique solution. The linear interpolant of a function f can
be expressed by the Lagrange formula

p(x) =
d∑
j=0

f(vj)λj(x|V ),

where λj denotes the j-th barycentric coordinate with respect to V . We recall
that the barycentric coordinates, determined by

d∑
j=0

λj (x|V ) = 1, x =
d∑
j=0

λj (x|V ) vj

are the fundamental solutions of the affine interpolation problem at the ver-
tices of the simplex [V ], hence they exist if and only if the associated interpola-
tion problem is unisolvent in Π1. By Cramer’s rule, the barycentric coordinates
can be explicitly written in terms of determinants as

λj (x|V ) =
τj (x|V )

τ(V )
,

where

τ(V ) := det

 1 . . . 1

v0 . . . vd

 6= 0

and

τj (x|V ) := det

 1 . . . 1 1 1 . . . 1

v0 . . . vj−1 x vj+1 . . . vn

 .

We can describe, for any V = (v0, . . . , vk) ∈ Rk×d, the convex hull [V ] and the
affine hull 〈V 〉 as

{ k∑
j=0

λjvj : λj ≥ 0,
k∑
j=0

λj = 1
}

=: [V ] ⊂ 〈V 〉 :=
{ k∑
j=0

λjvj :
k∑
j=0

λj = 1
}
.

To mimic the Aitken–Neville approach of iterated linear interpolation, [15]
started with a set of points

X =
{
xα : α ∈ Γ0

n

}
, (1)
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where the set

Γ0
n =

{
α = (α0, . . . , αd) ∈ Nd+1

0 : n = |α| := α0 + · · ·+ αd
}

of homogenized multiindices has the cardinality
(
n+d
d

)
which coincides with

dim Πn. We also assume that #X =
(
n+d
d

)
, that is, different multiindices

correspond to different points. Let us denote by εj ∈ Nd+1
0 , j ∈ {0:d} :=

{0, . . . , d}, the multiindex whose j-th component is 1 and all other components
are zero and define

V k
α := (xα+kεj : j ∈ {0:d}), α ∈ Γ0

n−k, k = 1, 2, . . . , n.

We shall require that the points V k
α are in general position, α ∈ Γ0

n−k, k =
1, 2, . . . , n, or, in other words, the interpolation problem at V k

α is unisolvent in
Π1. Given the samples f (xα) of a function f at X, the geometric generalization
of the Aitken–Neville algorithm recursively computes, for given x ∈ Rd the
values fkα(x), α ∈ Γ0

n−k, as

f 0
α(x) = f (xα) , (2)

fkα(x) =
d∑
j=0

λj
(
x|V k

α

)
fk−1
α+εj

(x), k = 1, . . . , n. (3)

The outcome of this procedure is a polynomial x 7→ fn0 (x) in Πn which, in
the univariate case, interpolates f at the prescribed sites of X. However, the
univariate Aitken–Neville scheme gives more: any intermediate interpolant
solves a well–structured subproblem of interpolation. Considering the subsets

Xk
α :=

{
xα+β : β ∈ Γ0

k

}
, α ∈ Γ0

n−k,

then the multivariate extension of this “sub–interpolation” would be

fkα
(
Xk
α

)
= f

(
Xk
α

)
, α ∈ Γ0

n−k, k = 0, . . . , n, (4)

including the interpolation property of fn0 . However, it cannot be expected
any more that for arbitrary point configurations in Rd, d ≥ 2, the iteration
(2), (3) would lead to interpolation properties as given in (4). There have
to be additional constraints on the geometry of the point set X which were
characterized as follows in [15].

Theorem 1 Let X = {xα : α ∈ Γ0
n} be a set such that all subsets V k

β are
unisolvent for Π1 for all k ∈ {1, . . . , n} and all β ∈ Γ0

n−k. For all f : X → R
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the iteration (2), (3) gives solutions to the interpolation problems as in (4) if
and only if for all J ⊂ {0:d}, all 0 ≤ k ≤ n and all β ∈ Γ0

n−k, we have that

γ ∈ [β + kεj : j ∈ J ] ⇒ xγ ∈
〈
xβ+kεj : j ∈ J

〉
. (5)

Observe that (5) means that the convex dependency structure of the multi-
indices must be reflected by the affine dependency structure of the associated
points, that is, whenever a multiindex can be written as a convex combination
of certain other multiindices, then the respective point is an affine combina-
tion of the points associated with these other multiindices. Since these are
precisely the points that allow for a multivariate extension of the geometric
Aitken–Neville scheme, the following definition makes sense.

Definition 2 A set X of
(
n+d
d

)
points in Rd is called an Aitken-Neville set of

order n if it can be so indexed as X = {xα : α ∈ Γ0
n} that for all k ∈ {1, . . . , n}

and all β ∈ Γ0
n−k, we have

V k
β is unisolvent for Π1 (6)

and

xγ ∈ 〈xβ+kεj : j ∈ J〉 for all γ ∈ [β + kεj : j ∈ J ], ∅ 6= J ⊂ {0:d}. (7)

Condition (6) means that all subsimplices V k
β whose vertices are xβ+kεj , j ∈

{0:d}, are nondegenerate and that the barycentric coordinates λj(x|V k
α ), j ∈

{0:d}, α ∈ Γ0
n−k, k = 1, . . . , n, in the Aitken-Neville recursion (3) are well-

defined, which is an obvious minimal requirement. Condition (7) implies, ac-
cording to Theorem 1, that the Aitken-Neville recursion (3) generates poly-
nomials fkα interpolating at all points of the set Xk

α.

Let us remark that Aitken-Neville sets are sets equipped with an index struc-
ture. This means that there might be several ways of indexing the same set of
points so that the set becomes an Aitken-Neville set. In Example 11, a set is
labelled to become an Aitken-Neville set. In fact, it can be easily shown that
the set in Example 11 can be labelled in essentially different ways.

Chung and Yao [7] introduced a geometric characterization (GC) of the uni-
solvent sets whose Lagrange polynomials are a product of first degree polyno-
mials.

Definition 3 A set X of
(
n+d
d

)
of points in Rd is a GCn set if for each x ∈ X,

there exists a set of n hyperplanes Hx,X such that their union contains X \{x}
and not x.

6



Let us show that Aitken-Neville sets of order n are GCn sets. First we need
to construct some hyperplanes which will be associated to each point x ∈ X.

Proposition 4 Let X be an Aitken-Neville set of order n. The sets

Hr
i := 〈xiεr+(n−i)εj : j ∈ {0:d} \ {r}〉, i = 0, . . . , n− 1, r ∈ {0:d}, (8)

are hyperplanes such that

γr = i =⇒ xγ ∈ Hr
i . (9)

PROOF. The set Hr
i is a hyperplane, dimHr

i = d − 1, because by (6) the
points

xiεr+(n−i)εj , j ∈ {0:d},

are in general position.

Observe that, if γ ∈ Γ0
n satisfies γr = i, then we can write it as

γ =
∑

j∈{0:d}\{r}

γj
n− i

(iεr + (n− i)εj) ∈ [iεr + (n− i)εj : j ∈ {0:d} \ {r}].

Then we have

γ ∈ [iεr + (n− i)εj : j ∈ {0:d} \ {r}]

and by (7), we see that Hr
i contains the point xγ as claimed. 2

Lemma 5 If X is an Aitken-Neville set and γr > i then xγ /∈ Hr
i .

PROOF. Take k := γr − i and β := γ − kεr ∈ Γ0
n−k so that βr = i. Then by

(6) we have that dim〈xβ+kεj : j ∈ {0:d} \ {r}〉 = d− 1 and since

xβ+kεj ∈ H0
βr = H0

i , j ∈ {0:d} \ {r},

we have that

〈xβ+kεj : j ∈ {0:d} \ {r}〉 = Hr
i . (10)
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Recalling that xβ+kεj , j ∈ {0:d}, form a nondegenerate simplex, we deduce
that

xγ = xβ+kεr /∈ 〈xβ+kεj : j ∈ {0:d} \ {r}〉 = Hr
i .

2

Theorem 6 Any Aitken-Neville set of order n is a GCn set.

PROOF. If α 6= γ, α, γ ∈ Γ0
n, then there exists some j ∈ {0:d} such that

αj < γj. Let Hr
i be the hyperplanes defined by (8). For each xγ, γ ∈ Γ0

n, the
union of the n hyperplanes

Hr
i , i < γr, r ∈ {0:d}, (11)

contains all the points xα, α ∈ Γ0
n\{γ} by Proposition 4, but not xγ according

to Lemma 5. 2

3 Generalized Principal Lattices

A simple example of Aitken-Neville sets of order n are principal lattices of
order n of a nondegenerate d-simplex V , that is to say

X =
{
xα : λ(xα|V ) =

1

n
α, α ∈ Γ0

n

}
.

A generalization of planar principal lattices was introduced in [4,6]. General-
ized principal lattices were analyzed in the multivariate case in [5].

Definition 7 A generalized principal lattice of order n (GPLn) is a set X
that can be so indexed as X = {xα : α ∈ Γ0

n} that, for d + 1 families of
hyperplanes

Hr
i , i = 0, . . . , n, r ∈ {0:d},

containing altogether (d+ 1)(n+ 1) distinct hyperplanes,

{xα} =
d⋂
r=0

Hr
αr =

d⋂
r∈{0:d}\{l}

Hr
αr , ∀α ∈ Γ0

n, ∀l ∈ {0:d} (12)
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and

d⋂
r=0

Hr
αr ∩X 6= ∅ =⇒ α ∈ Γ0

n. (13)

We also remark that, as in the case of Aitken-Neville sets, a set can be indexed
in different ways to become a generalized principal lattice.

In this section we shall show that generalized principal lattices are Aitken-
Neville sets. We shall also analyze under which conditions the converse holds.
First we need to show a property of GPLn sets.

Lemma 8 If X is a GPLn set, then for all k ∈ {1, . . . , n}, β ∈ Γ0
n−k and

J ⊆ {0:d}, we have

dim〈xβ+kεj : j ∈ J〉 = #J − 1, 〈xβ+kεj : j ∈ J〉 =
⋂
r/∈J

Hr
βr . (14)

PROOF. We begin by showing that

d⋂
r=0

Hr
βr = ∅. (15)

Indeed, take any j ∈ {0:d} and note that the the definition of a generalized
principal lattice implies⋂

r∈{0:d}\{j}
Hr
βr =

⋂
r∈{0:d}\{j}

Hr
βr ∩H

j
βj+k

=
{
xβ+kεj

}
. (16)

If
⋂d
r=0 H

r
βr 6= ∅, then

⋂d
r=0H

r
βr∩X =

{
xβ+kεj

}
6= ∅ and by (13) we get β ∈ Γ0

n,

which contradicts the fact that |β| = n− k < n and verifies (15).

Now we prove (14) by induction on the cardinality of J , where the case #J = 1,
say J = {j}, is exactly (16). Let J ′ = J ∪ {j′}, j′ /∈ J , and assume that (14)
holds for J , then we have, by (15),

〈
xβ+kεj : j ∈ J

〉
∩
{
xβ+kεj′

}
=
⋂
r/∈J

Hr
βr ∩

⋂
r∈{0:d}\{j′}

Hr
βr =

d⋂
r=0

Hr
βr = ∅,

that is, xβ+kεj′
/∈
〈
xβ+kεj : j ∈ J

〉
. Therefore,

dim
〈
xβ+kεj : j ∈ J ′

〉
= dim

〈
xβ+kεj : j ∈ J

〉
+ 1 = #J = #J ′ − 1.
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Since, by Definition 7,

xβ+kεj ∈
⋂
r/∈J ′

Hr
βr , j ∈ J ′,

we deduce that
〈
xβ+kεj : j ∈ J ′

〉
⊆ ⋂r/∈J ′ Hr

βr , and since

#J ′ − 1 = dim
〈
xβ+kεj : j ∈ J ′

〉
≤ dim

⋂
r/∈J ′

Hr
βr ≤ d− (d+ 1−#J ′) = #J ′ − 1,

the identity
〈
xβ+kεj : j ∈ J ′

〉
=
⋂
r/∈J ′ Hr

βr follows and we have completed the
proof by induction. 2

Theorem 9 Any generalized principal lattice of order n is an Aitken-Neville
set of order n.

PROOF. By Lemma 8, if k ∈ {1, . . . , n} and β ∈ Γ0
n−k, then

〈xβ+kεj : j ∈ {0:d}〉 = Rd

and (6) follows. For any nonempty J ⊂ {0:d}, take γ ∈ Γ0
n such that γ ∈

[β + kεj : j ∈ J ]. By Definition 7, {xγ} =
⋂d
r=0H

r
γr and thus

xγ ∈
⋂
r/∈J

Hr
γr =

⋂
r/∈J

Hr
βr = 〈xβ+kεj : j ∈ J〉,

by Lemma 8. 2

Now we analyze under which conditions an Aitken-Neville set of order n is a
generalized principal lattice.

Theorem 10 Let X be an Aitken-Neville set of order n and let Hr
i be the

hyperplanes defined in (8). If

xγ ∈ Hr
i =⇒ γr = i, i = 0, . . . , n− 1, γ ∈ Γ0

n, γr ≤ i, (17)

then X is a generalized principal lattice generated by the hyperplanes Hr
i .

PROOF. We choose Hr
i , i < n, according to (8), which is a hyperplane by

Proposition 4. In addition, let Hr
n be an arbitrary hyperplane containing xnεr

and no other node of X.
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To prove the theorem, we first show that for all 1 ≤ k ≤ n, |β| = n − k,
J ⊂ {0:d}, we have

dim
⋂
r/∈J

Hr
βr = #J − 1, 〈xβ+kεj : j ∈ J〉 =

⋂
r/∈J

Hr
βr . (18)

We shall prove (18) by (decreasing) induction on #J , where the case #J =
d + 1 is an immediate consequence of the assumption that X is an Aitken–
Neville set. Taking into account that βr ∈ {0, . . . , n − 1} for any r ∈ {0:d},
we can apply Proposition 4 and obtain

xβ+kεj ∈
⋂

r∈{0:d}\{j}
Hr
βr ⊆

⋂
r/∈J

Hr
βr , ∀j ∈ J,

which implies that

〈xβ+kεj : j ∈ J〉 ⊆
⋂
r/∈J

Hr
βr .

Therefore, in order to show (18), it is sufficient to deduce that dim
⋂
r/∈J H

r
βr =

#J − 1. If #J = d, we conclude from the fact that (8) defines a hyperplane
that dimHr

βr = d− 1 and then (18) holds. Assume that J = J ′ ∪ {j}, j /∈ J ′,
and that (18) holds for all sets J whose cardinality is greater than #J ′. By
(10) and the induction hypothesis,

〈xβ+kεl : l ∈ {0:d} \ {j}〉 = Hj
βj
, 〈xβ+kεl : l ∈ J〉 =

⋂
r/∈J

Hr
βr .

Then we have⋂
r/∈J ′

Hr
βr = Hj

βj
∩
⋂
r/∈J

Hr
βr = 〈xβ+kεl : l ∈ {0:d} \ {j}〉 ∩ 〈xβ+kεl : l ∈ J〉.

By (6), the points xβ+kεl , l = {0:d} are in general position, and therefore

〈xβ+kεl : l ∈ {0:d} \ {j}〉+ 〈xβ+kεl : l ∈ J〉 = Rd.

Hence

dim
⋂
r/∈J ′

Hr
βr = dim(Hj

βj
∩
⋂
r/∈J

Hr
βr) = (d− 1) + (#J − 1)− d = #J ′ − 1

and formula (18) follows for J ′. So we have proved formula (18) by induction
on the cardinality of J .
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Now, let us show that for each l ∈ {0:d}⋂
r∈{0:d}\{l}

Hr
γr , γ ∈ Γ0

n, (19)

consists exactly of one point.

If γl > 0, then we can apply (18), taking J = {l}, k = 1, β := γ− εl. Then we
have that

⋂
r∈{0:d}\{l}H

r
γr =

⋂
r∈{0:d}\{l}H

r
βr and

{xβ+kεl} =
⋂

r∈{0:d}\{l}
Hr
βr .

So,
⋂
r∈{0:d}\{l}H

r
βr consists of exactly one point, which is xβ+εl = xγ.

If γl = 0 and γ = nεj for some j 6= l, then we recall that
⋂
r∈{0:d}\{l,j}H

r
0 is an

affine submanifold of dimension 1 because the hyperplanes Hr
0 , r ∈ {0:d}, are

the facets of a simplex whose vertices are V n
0 . By Proposition 4,

⋂
r∈{0:d}\{l,j}H

r
0

contains the points xnεl and xnεj . The choice of the hyperplanes Hj
n, j ∈ {0:d},

allows us to ensure that (19) consists of exactly one point.

In the remaining cases, γl = 0 and there exists some j with γj ∈ {1, . . . , n−1},
we take k = 1, β = γ − εj, J = {j, l}, and have by (18) that

〈xγ, xγ+εl−εj〉 =
⋂

r∈{0:d}\{j,l}
Hr
γr .

By Proposition 4, xγ ∈ Hj
γj

and, by the hypothesis (17), xγ+εl−εj /∈ Hj
γj

which
implies that⋂

r∈{0:d}\{l}
Hr
γr = {xγ} .

The hypothesis (17), the choice of Hr
n and Proposition 4 then yield

Hr
i ∩X = {xγ : γr = i}.

In particular, we have

xγ ∈
d⋂
r=0

Hr
γr 6= ∅. (20)

Finally, (17) also implies that (13) holds. 2
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The following example shows that not every Aitken-Neville set is a generalized
principal lattice.

Example 11 We take hyperplanes H0, . . . , Hd+1 in Rd, d > 1, in general
position and define yi,j by

{yi,j} :=
⋂
k 6=i,j

Hk, i 6= j ∈ {0:d+ 1}.

Then the set X := {yi,j : i 6= j} is a GC2 set usually called a natural lattice
of order 2 in Rd.

For any l ∈ {0:d+ 1},

Hi, i ∈ {0:d+ 1} \ {l}

are the facets of a nondegenerate simplex because H0, . . . , Hd+1 are in general
position. Therefore the points

yi,l, i ∈ {0:d+ 1} \ {l} (21)

are the vertices of a nondegenerate simplex.

In an Aitken-Neville set of order 2, the multiindices 2εi ∈ Γ0
2, i = 0, . . . , d,

correspond to the vertices of a simplex. Let us choose

x2εi := yi,d+1, i ∈ {0:d},

as the vertices corresponding to multiindices 2εi ∈ Γ0
2. The point yij in the one-

dimensional affine manifold 〈yi,d+1, yj,d+1〉 must correspond to the multiindex
εi+εj, i 6= j ∈ {0:d}. Therefore, we associate to each yi,j, i < j, the multiindex

α(i, j) =
{

2εi, if j = d+ 1,
εi + εj, if j < d+ 1,

in Γ0
2 and relabel the points in X

xα(i,j) := yij, i < j.

Using this notation, we have

xα =


⋂
αr=0

Hr if α = 2εi,⋂
αr=0

Hr ∩Hd+1 otherwise.
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We now show that X is an Aitken-Neville set, where the validity of (6) is
easily verified by direct computations.

In order to check (7), first take k = 2, β = 0, and assume that γ ∈ [2εj : j ∈ J ],
hence γr = 0 for r /∈ J . Since x2εj ∈

⋂
r∈{0:d}\J Hr, for all j ∈ J and

dim〈x2εj : j ∈ J〉 = #J − 1 = dim
⋂

r∈{0:d}\J
Hr

we deduce that

〈x2εj : j ∈ J〉 =
⋂

r∈{0:d}\J
Hr

and

xγ ∈
⋂

{r:γr=0}
Hr ⊆

⋂
r∈{0:d}\J

Hr = 〈x2εj : j ∈ J〉.

Now assume that k = 1, β = εl, and consider γ ∈ [εl + εj : j ∈ J ]. Then we
have two cases l /∈ J and l ∈ J .

The case l ∈ J is similar to the case β = 0 discussed above. We have that
γr = 0, for any r /∈ J . Taking into account that xεl+εj ∈

⋂
r∈{0:d}\J Hr and that

dim
⋂

r∈{0:d}\J
Hr = #J − 1 = dim〈xεl+εj : j ∈ J〉,

we have

xγ ∈
⋂

r∈{0:d},γr=0

Hr ⊆
⋂

r∈{0:d}\J
Hr = 〈xεl+εj : j ∈ J〉.

If l /∈ J , then γr = 0, for any r /∈ J ∪ {l} and xγ ∈ Hd+1. Taking into account
that xεl+εj ∈

⋂
r∈{0:d}\(J∪{l}) Hr ∩Hd+1 and that

dim
⋂

r∈{0:d}\(J∪{l})
Hr ∩Hd+1 = #J − 1 = dim〈xεl+εj : j ∈ J〉,

we obtain

xγ ∈
⋂

{r:γr=0}
Hr ∩Hd+1 ⊆

⋂
r∈{0:d}\(J∪{l})

Hr = 〈xεl+εj : j ∈ J〉.
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So, we have shown that X is an Aitken-Neville set. Let us now show that X
cannot be a generalized principal lattice.

First we observe that if X is a generalized principal lattice, then the hyper-
planes Hr

0 , r ∈ {0:d}, contain exactly (d + 1)d/2 nodes. From the definition
of the set X as a natural lattice of degree 2, we see that the only hyperplanes
containing (d+ 1)d/2 nodes are H0, . . . , Hd+1. Reordering the hyperplanes, if
necessary, we can assume that

Hr
0 = Hr, r ∈ {0:d}.

The hyperplane Hr
1 must contain d(d − 1)/2 nodes in X \ Hr

0 and must be
different from the hyperplanes Hj

0 , j ∈ {0:d}. Then we find that

Hr
1 = Hd+1, r ∈ {0:d}.

This contradicts the definition of generalized principal lattices, since all hy-
perplanes Hr

1 , r ∈ {0:d} must be distinct.

As a consequence of Theorem 10, the property (17) has to be violated by X
which, however, can be seen directly here because xεi+εj ∈ Hk

1 for any distinct
i, j and any k.

Although this example shows that there exists an Aitken–Neville set of order 2
that violates (17), condition (17) nevertheless holds in the plane for all degrees
greater than 2.

Theorem 12 Let X be an Aitken-Neville set of order n > d = 2 and let Hr
i

be the hyperplanes defined in (8). Then (17) holds.

We will split the proof of this theorem into several parts. They will all be kept
multivariate and so it will become clear from the proof where the restrictions
n > d and d = 2 become relevant and why it is unlikely that Theorem 12 holds
for three and more dimensions. The following Lemmas show that condition
(17) can be weakened by proving that γr 6= i implies that xγ 6∈ Hr

i .

While the situation γr > i has already been considered in Lemma 5, the case
γr < i is more intricate and will be resolved in the following results.

Lemma 13 If X is an Aitken-Neville set, γr < i and γj > i − γr for some
j ∈ {0:d} \ {r} then xγ 6∈ Hr

i .

15



PROOF. Since

β := γ + (i− γr) (εr − εj) =

(
1− i− γr

γj

)
γ +

i− γr
γj

(γ + γj(εr − εj))

is a strictly convex combination of multiindices, it follows that there exists
λ ∈ R so that

xβ = λxγ + (1− λ)xγ+γj(εr−εj)

where λ 6∈ {0, 1} since the points form an Aitken–Neville set and therefore
have to be distinct. Since βr = i, hence xβ ∈ Hr

i , the assumption xγ ∈ Hr
i

would yield that

xγ+γj(εr−εj) =
1

1− λ
xβ −

λ

1− λ
xγ ∈ Hr

i .

But since (γ + γj(εr − εj))r = γr + γj > i we then obtain a contradiction to
Lemma 5. 2

Lemma 14 If X is an Aitken-Neville set, n > d > 1, i ≤ n − d + 1, γr < i
and γj ≤ i− γr for all j ∈ {0:d} \ {r}, then xγ 6∈ Hr

i .

PROOF. Suppose that xγ ∈ Hr
i and choose any β ∈ Γ0

n with βr = i −
1 ≤ n − d as well as βj ≥ 1 for j ∈ {0:d} \ {r}, which is possible because∑
j∈{0:d}\{r} βj = n − βr ≥ d. It is easily verified that β can be expressed as

the convex combination

β =
1

i− γr
γ +

∑
j∈{0:d}\{r}

βj − γj/ (i− γr)
n− i

(iεr + (n− i)εj) (22)

from which it follows that either γ = β if γr = i − 1 or that the convex
combination (22) is a strict one. In both cases this implies that xβ ∈ Hr

i .

If there exists j ∈ {0:d} \ {r} such that βj > 1, which is definitely the case
when i < n − d + 1, then i − βr = 1 < βj for some j 6= r immediately gives
a contradiction to Lemma 13. If, on the other hand, βj = 1, j ∈ {0:d} \ {r},
hence i = n − d + 1, the points xβ+εr−εj , j ∈ {0:d} \ {r}, belong to Hr

i as
well and since β is a convex combination of β + εr − εj and β + k(εj − εr),
k = 1, . . . , n − d, we can again apply the above affine combination argument
to find that

xβ+k(εj−εr) ∈ Hr
i , j ∈ {0:d} \ {r}, k = 1, . . . , n− d.
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This set of points is non–empty for n > d. Specifically, this implies for k =
n− d = i− 1 = βr that

xβ+(n−d)(εj−εr) ∈ Hr
0 ∩Hr

i , j ∈ {0:d} \ {r}, (23)

and since X is an Aitken–Neville set, the points from (23) span a hyperplane
contained in Hr

0 ∩Hr
i which implies Hr

0 = Hr
i , thus xβ ∈ Hr

0 . But this contra-
dicts Lemma 13 since βr = i− 1 > 0. 2

These lemmas complete the proof of Theorem 12. Choose any γ such that
γr 6= i. The case that i < γr is covered by Lemma 5, the cases where γr < i ≤
n−d+1 are treated successively in Lemmas 13 and 14. For d = 2, this includes
all values of i from 0 to n−1 and proves Theorem 12. Note that the assumption
n > d in the statement of Theorem 12 was needed only in Lemma 14 and even
there only for the case i = n − d + 1. However, the condition is definitely
necessary since Example 11 shows that even in the simplest case n = d = 2
there are Aitken-Neville configurations for which (17) does not hold.

The other question left open by Theorem 12 is what happens in the case
n > d ≥ 3 where the values i = n − d + 2, . . . , n − 1 are not covered by the
above lemmas. We conjecture that in these cases Theorem 12 is not valid.
The reason for this conjecture lies in the nature of the above proofs: whenever
a point xγ was located on some hyperplane Hr

i with i 6= γr, the simplex
generated by the vertices iεr + (n− i)εj, j ∈ {0:d} \ {r}, and γ also contained
at least one other multiindex β which we used to construct a contradiction.
Now this “coupling” between the hyperplane Hr

i and the additional point need
not be present for the hyperplanes Hr

i , i = n−d+2, . . . , n−1 as the following
example shows.

Example 15 Consider the hyperplaneHr
i = 〈iεr + (n− i)εj : j ∈ {0:d} \ {r}〉

with i > n− d + 1 and the multiindex γ = (n− d + 1)εl +
∑
j∈{0:d}\{r,l} εj for

some l 6= r. Let β be any convex combination of the form

β = λrγ +
∑

j∈{0:d}\{r}
λj(iεr + (n− i)εj), λ0, . . . , λd ≥ 0,

d∑
j=0

λj = 1.

Then we can write

β = ((n− d+ 1)λr + (n− i)λl)εl + i(1− λr)εr +
∑

j∈{0:d}\{r,l}
(λr + (n− i)λj)εj.

But now β cannot be a multiinteger in Γ0
n which is the index of a point

xβ 6= xγ that also belongs to Hr
i . This follows since xβ ∈ Hr

i would require
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that 0 < βr < i and 0 < λr < 1, but taking into account that

βj = λr + (n− i)λj ≥ 1, j ∈ {0:d} \ {r, l},

we obtain the contradiction

d− 1≤
∑

j∈{0:d}\{r,l}
βj =

∑
j∈{0:d}\{r,l}

(λr + (n− i)λj)

= (n− i) (1− λl) + (i− n+ d− 1)λr < d− 1.

Finally, we interpret Theorem 10 in the context of lattice transformations.
Recall that a lattice transformation, as introduced in [7], consists of a point
mapping Φ and a hyperplane mapping Ψ which preserves the incidence relation
between points and hyperplanes of the lattice:

x ∈ H ⇐⇒ Φ(x) ∈ Ψ(H). (24)

While originally Chung and Yao required neither of the maps to be injective,
it can be seen quite easily that (24) already implies that Φ and Ψ are even
bijections. While any two generalized principal lattices of the same order can
be connected by a lattice transformation, one can also show that a lattice
transformation preserves the structure of generalized principal lattices, i.e.,
maps GPLn to GPLn, provided that for r ∈ {0:d} one has

dim
⋂

j∈{0:d}\{r}
Ψ(Hj

αj
) = 0, α ∈ Γ0

n, αj ≤ n− 1, j ∈ {0:d} \ {r}. (25)

On the other hand, this property (25) was exactly what was verified in the
proof of Theorem 10.

4 The divided difference

In this section we want to derive a spline representation for the divided dif-
ference associated with any Aitken–Neville set. In general, the notion of a
multivariate divided difference is far from being agreed upon, just see [2,3] as
well as [8] and the references therein. Here we follow the point of view taken
in [14] as well as in [13] that defines the divided difference as the leading term
of the interpolation polynomial, interpreted either as a multiindexed vector or
as a multilinear form. To be more specific, we assume that X is an Aitken–
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Neville set of order n and write the intermediate interpolation polynomials
as

fkα(x) =
k∑
j=0

xjf j(α), α ∈ Γ0
n−k, k = 0, . . . , n,

where f j(α) ∈ RΓk is the vector containing the coefficients of the leading form
of the interpolant fkα. Since fkα depends on Xk

α and the values of f there, we
can thus define the divided difference as in [14] by

∆
(
Xk
α

)
f := fk(α), α ∈ Γ0

n−k, k = 0, . . . , n. (26)

A recurrence relation for the divided difference has been derived in [14] by
dualizing the recurrence (3). To formulate it, we denote for any set V of d+ 1

points in Rd by τjk(V ) the determinant obtained by deleting in

 1 . . . 1

v0 . . . vd


the jth column and the kth row, j = 0, . . . , d, k = 1, . . . , d.

Theorem 16 The divided difference ∆
(
Xk
α

)
f satisfies the recurrence rela-

tion

∆
(
Xk
α

)
β
f =

d∑
j=0

d∑
`=1

(−1)j+`
τj`
(
V k
α

)
τ (V k

α )
∆
(
Xk−1
α+εj

)
β−ε`

f, α ∈ Γ0
n−k, β ∈ Γk.(27)

We will use this recurrence to derive a spline representation of the divided
difference and show how it behaves when the points coalesce in a uniform
way. To that end, we fix an arbitrary point u ∈ Rd. We shall use the notation
un to indicate that u is a point which appears n times in a sequence.

Theorem 17 For any Aitken–Neville set X and any u ∈ Rd the associated
divided difference takes the form

∆ (X)β f =
∑
γ∈Γ0

n

µβ,γ

∫
[xγ ,un]

Dn
xγ−uf, β ∈ Γn, (28)

where the coefficients µβ,γ satisfy the identity

∑
γ∈Γ0

n

µβ,γD
n
xγ−u =

1

β!
Dβ, β ∈ Γn, (29)
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and can be recursively computed as

µβ,η(α) =
d∑
`=1

d∑
j=0

(−1)j+`
τj`
(
V k+1
α

)
τ (V k+1

α )
µβ−ε`,η−εj (α + εj) . (30)

A special property of the divided difference is the fact that it becomes a
derivative in the case of multiple points. Indeed, this property motivates the
extension of divided differences to the limit situation. In the multivariate case,
however, we must be more careful with such limits, taking care that all points
tend to the limit with “the same speed”. To that end, we consider, for h > 0,
the interpolation set

X(h) := u+ h (X − u) =
{
u+ h (xγ − u) : γ ∈ Γ0

n

}

that clearly satisfies X = X(1) and define the divided difference at un as

∆ (un) f = lim
h→0

∆ (X(h)) f.

This notion makes sense and is even independent of the “initial” Aitken–
Neville set as the following result shows.

Theorem 18 For any Aitken–Neville set X, any u ∈ Rd and any f ∈ Cn
(
Rd
)

we have that

∆ (un) f = lim
h→0

∆ (X(h)) f =
(

1

α!
Dα(u) : α ∈ Γn

)
. (31)

The remainder of this section is dedicated to proving Theorems 17 and 18,
which will be done by simultaneously establishing them for the Aitken–Neville
subsets Xk

α, α ∈ Γ0
n−k, of increasing orders k = 0, 1, . . . , n. More precisely, we

show that there exist coefficients µβ,γ, β ∈ Γk, γ ∈ Γ0
k, such that

∆
(
Xk
α

)
β
f =

∑
γ∈Γ0

k

µβ,γ(α)
∫

[xα+γ ,uk]

Dk
xα+γ−uf, β ∈ Γk, α ∈ Γ0

n−k, (32)

and

∑
γ∈Γ0

k

µβ,γ(α)Dk
xα+γ−u =

1

β!
Dβ, β ∈ Γk, α ∈ Γ0

n−k. (33)
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Since the case k = 0 is trivial, let us begin with k = 1. Here we take into
account that for ` = 1, . . . , d

d∑
j=0

(−1)j+`τj`
(
V k
α

)
= det



1 . . . 1

xα+kε0,1 . . . xα+kεd,1

...
. . .

...

xα+kε0,`−1 . . . xα+kεd,`−1

1 . . . 1

xα+kε0,`+1 . . . xα+kεd,`+1

...
. . .

...

xα+kε0,d . . . xα+kεd,d



= 0,

and obtain from the recurrence relation (27) for α ∈ Γ0
n−1 and ` = 1, . . . , d

that

∆
(
X1
α

)
ε`
f =

d∑
j=0

(−1)j+`
τj` (V 1

α )

τ (V 1
α )

∆
(
X0
α+εj

)
0
f =

d∑
j=0

(−1)j+`
τj` (V 1

α )

τ (V 1
α )

f
(
xα+εj

)

=
d∑
j=0

(−1)j+`
τj` (V 1

α )

τ (V 1
α )

(
f
(
xα+εj

)
− f(u)

)

=
d∑
j=0

(−1)j+`
τj` (V 1

α )

τ (V 1
α )

∫
[xα+εj ,u]

Dxα+εj−uf

=:
d∑
j=0

µε`,εj(α)
∫

[xα+εj ,u]

Dxα+εj−uf,

yielding (32) in the case k = 1. To see that this representation is invari-

ant under dilation, we first note that τj`
(
V k
α − u

)
= τj`

(
V k
α

)
as well as

τ
(
V k
α − u

)
= τ

(
V k
α

)
and then conclude that for h > 0 we have that

τ
(
V k
α (h)

)
= τ

(
V k
α (h)− u

)
= τ

(
h
(
V k
α − u

))
= hdτ

(
V k
α

)
.

In the same way, we also find that τj`
(
V k
α (h)

)
= hd−1τj`

(
V k
α

)
. Substituting

this into the integral representation we thus find that
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∆
(
X1
α(h)

)
ε`
f =

d∑
j=0

(−1)j+`
τj` (V 1

α )

hτ (V 1
α )

∫
[(1−h)u+hxα+εj ,u]

Dh(xα+εj−u)
f

=
d∑
j=0

µε`,εj(α)
∫

[(1−h)u+hxα+εj ,u]

Dxα+εj−uf.

Therefore, the limit h→ 0 exists for any f ∈ C1
(
Rd
)

and satisfies

lim
h→0

∆
(
X1
α(h)

)
ε`
f =

d∑
j=0

µε`,εj(α)Dxα+εj−uf(u).

On the other hand, the interpolation operator of order n is a projection on Πn,
hence the interpolant to any monomial of degree n reproduces this monomial.
Consequently, there is a duality between monomials and the divided difference
which we record for our purposes as follows.

Lemma 19 Let X be an Aitken–Neville set of order n. Then we have that

∆ (X)β (·)α = δα,β, α, β ∈ Γn. (34)

Applying Lemma 19 in the case n = 1, we now obtain

δ`,m = ∆
(
X1
α

)
ε`

(·)εm = lim
h→0

∆
(
X1
α(h)

)
ε`

(·)εm =

 d∑
j=0

µε`,εjDxα+εj−u(·)
εm

 (u)

independently of u, hence,

d∑
j=0

µε`,εjDxα+εj−u = Dε` , ` = 1, . . . , d,

which is (29) in the case k = 1.

The inductive step from k to k + 1 proceeds along the same lines, it is only
slightly more complicated in a technical way. Again we employ (27) which
enables us to use the induction hypothesis to obtain for α ∈ Γ0

n−k−1 and
β ∈ Γk+1

∆
(
Xk+1
α

)
β
f =

d∑
j=0

d∑
`=1

(−1)j+`
τj`
(
V k+1
α

)
τ (V k+1

α )
∆
(
Xk
α+εj

)
β−ε`

f
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=
d∑
`=1

d∑
j=0

(−1)j+`
τj`
(
V k+1
α

)
τ (V k+1

α )

∑
γ∈Γ0

k

µβ−ε`,γ (α + εj)
∫

[xα+γ+εj ,u
k]

Dk
xα+γ+εj−u

f

=
d∑
`=1

d∑
j=0

(−1)j+`
τj`
(
V k+1
α

)
τ (V k+1

α )

×

∑
γ∈Γ0

k

µβ−ε`,γ (α + εj)
∫

[xα+γ+εj ,u
k]

Dk
xxα+γ+εj−u

f − Dβ−ε`f(u)

(β − ε`)!

 ,
with the standard convention that all terms with negative entries in any mul-
tiindex are zero. According to (29), we can write

1

(β − ε`)!
Dβ−ε` =

∑
γ∈Γ0

k

µβ−ε`,γ (α + εj)D
k
xα+γ+εj−u

and

1

(β − ε`)!
Dβ−ε`f(u) =

∑
γ∈Γ0

k

µβ−ε`,γ (α + εj)
∫

[uk+1]

Dk
xα+γ+εj−u

which we substitute into the above identity to obtain

∆
(
Xk+1
α

)
β
f =

d∑
`=1

d∑
j=0

(−1)j+`
τj`
(
V k+1
α

)
τ (V k+1

α )

×
∑
γ∈Γ0

k

µβ−ε`,γ (α + εj)

 ∫
[xα+γ+εj ,u

k]

Dk
xα+γ+εj−u

f −
∫

[uk+1]

Dk
xα+γ+εj−u

f


=

d∑
`=1

d∑
j=0

(−1)j+`
τj`
(
V k+1
α

)
τ (V k+1

α )

∑
γ∈Γ0

k

µβ−ε`,γ (α + εj)
∫

[xα+γ+εj ,u
k+1]

Dk+1
xα+γ+εj−u

f

=
∑

η∈Γk+1
0

d∑
`=1

d∑
j=0

(−1)j+`
τj`
(
V k+1
α

)
τ (V k+1

α )
µβ−ε`,η−εj (α + εj)

∫
[xα+η ,uk+1]

Dk+1
xα+η−uf

=:
∑

η∈Γk+1
0

µβ,η(α)
∫

[xα+η ,uk+1]

Dk+1
xα+η−uf,

from which we can read off the recurrence (30).

This proves our desired identity (32) for k + 1.
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Now we can prove by induction that the coefficients µβ,γ(α, h) in the divided
differences of order k for the rescaled sets Xk

α(h) satisfy

µβ,γ(α, h) = h−kµβ,γ(α), α ∈ Γ0
n−k, β ∈ Γk, γ ∈ Γ0

k, h > 0, (35)

a fact that we already verified for k = 1. Substituting this identity into the
recurrence (30) immediately shows by the same argument as used for k = 1
that (35) also holds for k replaced by k + 1.

Using (35), we get

∆
(
Xk+1
α (h)

)
β
f =

∑
γ∈Γk+1

0

µβ,γ(α, h)hk+1
∫

[hxα+γ+(1−h)u,uk+1]

Dk+1
xα+η−uf

=
∑

γ∈Γk+1
0

µβ,γ(α)
∫

[hxα+γ+(1−h)u,uk+1]

Dk+1
xα+η−uf

so that also

lim
h→0

∆
(
Xk+1
α (h)

)
β
f =

∑
γ∈Γk+1

0

µβ,γ(α)Dk+1
xα+η−uf(u). (36)

Combined with Lemma 19 this also extends (33) to the case k + 1. This
completes the proof of Theorem 17. Theorem 18, on the other hand, is just a
combination of (32) and (33) with Lemma 19.

Acknowledgement: We appreciate very much the suggestions and discus-
sions with Carl de Boor which helped us to improve the paper.
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