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Abstract. The dependence of the Whittaker function My, ;,(z) on the parameter  is considered.
A convergent expansion in ascending powers and an asymptotic expansion in descending powers of
K are discussed. Some properties of the coefficients of the convergent expansion are shown.
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1. Introduction. The Whittaker function, closely related to the confluent hy-
pergeometric function, has taken an ever increasing significance due to its frequent
use in applications of mathematics to physical and technical problems. Most of its
known properties are collected in monographies [3], [6], and in general treatises on
special functions [2], [4, vol. 2]. Generally, M, ,(z) is considered as a function of
z, the parameters x and p taking fixed values. There are, however, interesting prob-
lems in nuclear, atomic, and molecular physics that requiere the use of M, ,(z) with
variable k. Whenever electrically charged quantum particles, like nuclei, electrons, or
ions, are involved, the interaction of the constituents of the physical system is taken
into account by means of a potential that becomes purely Coulombian at distances
larger than the range of the non-electric (nuclear, exchange, etc) forces. The solution
of the Schrodinger equation in the non-Coulombian region, usually obtained by nu-
merical integration, is obliged to match the Coulombian solution. This one can be
immediately expressed in terms of the Whittaker function M./, ,(z), the parameters
c and p being respectively related to the electric charges and the angular momentum
of the system, and the variable z corresponding to the product of the distance and
the square root of the energy. Both ¢ and u are kept fixed, whereas the energy, and
therefore z, is varied to achieve the matching of the Coulombian and non-Coulombian
wave functions at a given distance. This procedure determines the energies at which
bound states or resonances occur.

In this paper we study the dependence of M, ,(z) on the parameter x. A con-
vergent expansion in ascending powers of k, useful for small ||, is given in §2. The
coefficients of the expansion are analyzed in both cases of small and large values of
|z|. For large |k|, an asymptotic expansion is considered in §3.

The starting point is a convergent expansion of the Whittaker function in series
of Bessel functions given by Buchholz [3, Sect. 7, Eq. (16)]. It reads

1 — Jopn(2y/2K)
— 2u put 3 (2u) 2pt
(1.1) My, ,(z) =T2u+1)2%2 an (2) N

n=0

where the pg” ) (2) represent polynomials in 22, that we denominate Buchholz poly-

nomials. These are defined by

i\ (0+) i 1 sinv "' dv
12 () () = (12)" / iz _1 v
(1.2) P (2) 27 AP cotv v v pn+1’
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and generated by the function

(13)  exp (‘72 (cotht— %)) <Sir;ht>y_l _ gp@(z) (_9”

They can also be written in the form [1]

i o =S (1)

s=0

fs(y) gn—2s (Z)

as a sum of products of polynomials in v and in z, separately, easily obtainable by
means of the recurrence relations

s—1 s—r
v) _ (v) _ l-v 2s -1 4 |B2(sfr)| (v)
1. =1 = —
( 5) fO ’ fs 2 ;} r s—r fr ’
iz (1] m—1 4k+1|B2(k+1)|
(16) gO(Z) = 1, g?-n(Z) = *Z Z ( o ) kiﬂgm_gk_l(z),

where the Bs, denote the Bernoulli numbers [2, Table 23.2]. A property of the
Buchholz polynomials to be used later is contained in the following.
LEMMA 1.1. The Buchholz polynomials are bounded in the form

(1) POE <10 vae 0m),
where
(v) 1 i—z(cot vfl) sinv v
(1.8) I'(z,a) = e e’ v » |dv| < 00, Vz,veC.
|[v]=a

Proof. Tt follows trivially from the definition (1.2) of Buchholz polynomials, by
choosing the contour |v| = a. O

In what follows y € C'\ —3N, the set —3N = {—1,—-1,—3,-2,...,} being
excluded since M, ,(z) is irregular at those values of p. As it is well known, the
inclusion of a factor 1/T'(1 4 2u), to give a new function [3, Sect. 2, Eq. (7)]

My, u(2)

(1.9) My, u(2) = ma

eliminates that irregular behaviour and allows to extend p to all C.

2. Expansion in ascending powers of x. The Bessel functions in the right
hand side of (1.1) can be written in terms of hypergeometric functions [2, Eq. 9.1.69]
to give
= ()

2.1 M, = oit3 —
( ) :#(Z) Z — 2”(2U + 1)n

oFy (21 + 1+ m; —2r),

the symbol (), being the usual Pochhammer one.
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PROPOSITION 2.1. The Whittaker function M, ,(z) has the following expansion
in ascending powers of K

1 (=r)™
(2.2) M, u(2) = 24T+ 1) 2% Y0 it (2) =i,
m=0
where we have denoted
m s (2p)
(2.3) F(z) = D" m i’ (%) m=0,12,....

D(p+1) "0 2"(2p + Vnpm

Proof. Substitution of ¢F} in the right hand side of (2.1) by its definition gives a
double series

o © (2w) _ m
(2.4) M, () = s Z npn (2) (—2kK) -
=t L2 2u+ 1), 2u+14n),m!
To invert the order of summations, we need to check that the iterated series of the
moduli converges. In the case of Ru > 0,we have

|25[™

(2.5) §:|2M+1+n ‘m,_oﬂmmu+npﬂx VzeC, Vn>0

whereas for 4 < 0 we can define

(2.6) (1) = min {[Frac(2Rp)], 1 — [Frac(2%y) |}
and state

= |zk|™ 1 |2l
2.7 < el*fl, Vze C, Vn>0.
N I e E M )

On the other hand, due to Lemma 1.1 with, for example, a = 2,

o0 ‘pf“)(Z) @ 0
2.8 L < 147@ 2
CH X, < e Z22n| @it Dol

[(2u >
< 1+
- nX:: n — 1
( )
:1+MI <%‘W<m vz e C.
45 (p)

Therefore, the order of summations in the right hand side of (2.4) can be inverted.
This leads to (2.2). O

The functions F,(,{‘ )(2) possess several interesting properties collected in the fol-
lowing Lemmas.

LEMMA 2.2. The functions z’“Fqu“)(z) are integer functions of z.

Proof. 1t is contained in the proof of Proposition 2.1. a

LEMMA 2.3. The functions Ff#) (2) obey the circuital relations

(2.9) EW (87 2) = (—1)amelan p(0)(2), q integer.
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Proof. The definition (2.3) and the fact that the Buchholz polynomials contain
only even powers of z make (2.9) evident. O

LEMMA 2.4. The first coefficient, FO(“) (2), of the expansion (2.2) is the modified
Bessel function I,,(z/2).

Proof. Tt follows immediately from the known relation [3, App. LA, Eq. (1a)],
6, Eq. (1.8.11)]

Mo, u(2) = 22 T(n+ 1) 22 I,(2/2). O
This Lemma, together with the definition (2.3), provides with a representation of
the modified Bessel function in terms of Buchholz polynomials,

(2/2) S piM(22)
P(v+1) &= 2n(2v + 1),

(2.10) I(z) =

or, alternatively, a sum rule for those polynomials,

oo (v) 2
or(2) v z
2.11 —_— = —+1;— ).
( ) —~ 2”(1/—|— 1)n OFl (2 + ) 16)

LEMMA 2.5. Let D, ) denote the modified Bessel differential operator,

2

d d
2 2 2
Diypy = z@—kzaf(z + p).

The coefficients Fé{‘) obey the differential equations

(2.12) Di g FW(22) = 2mzFY [(22),  m=0,1,2,....

Proof. Substitution of the expansion (2.2) in the Whittaker differential equation
gives a power series in x that must vanish for any x. Cancellation of the coefficient
of each power leads to (2.12). a

The method of depression of the order applied to the diﬁerential equation (2.12)
allows one to obtain F,S{‘ , by integration, in terms of F ) and F(“ )

PROPOSITION 2.6. The coefficients F,(#)( ) admit the integral representation

2"T'(n+3) 1 /2
(2.13) Ff,{‘)(z) = M —/ (arc cothv)™ 671 dv,
T2 (z /4 2mi Jq, (v2 — 1)1tz

the integration contour Cy being represented in Fig. 2.1.
Proof. From the definition (2.3),

(2p) 5
(2.14) Fy(z) = (2/4)" QMH mz 2nT 2u+1(+)n+m)

Now we use an integral representation for the reciprocal of the Gamma function [4,
vol. 1, Sect. 1.6, Eq. (2)],

1 1
2.15 = _— b= CuAttntm) gy t| <
QL) Fe T 2772'/026 o Jagt s
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Fic. 2.1. Contour for the integration in the right hand side of (2.13)

the integration contour being shown in Fig. 2.2, and the duplication formula for the
Gamma function [2, Eq. 6.1.18] to obtain

Z,u+m 0 2#) 1

p
Z : 2n 27ri

et~ @utltntm) gy

(2.16)  FW(z) =
Ca

The order of summation and integration can be inverted. This can be proved by
choosing a contour Cy such that |t| > |z|; then, remembering Lemma 1.1 with, for
example, a = 1, one realizes that

|pn (2)| t
ey [ e |
e
1(2“)(2,1)22%/ le’] ’t*(2“+1+m)‘ |dt] < o.
n=0 Co

By inverting the order of summation and integration in (2.16) and using

—(2p+1+m) |dt|

(u)

(2.18) p = exp (2coth (215) t) (%) - )

2t

that follows immediately from (1.3), it becomes

2p—1
ptm inh (2

(219) F(2) = T(u+1)— ! /eécoth(é)<s‘1‘ﬂl(2t)> 4~ @ut1tm) gy

(@]

772 2mi 5

The change of variable

(2.20) v = coth (%)

transforms (2.19) in (2.13). O
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F1G. 2.2. Integration contour used in (2.15)

THEOREM 2.7. For large values of |z| and in the sector |argz| < m/2, the
functions F4") (2) can be written in the form

= =3 () e,

where the functions I ,g“ )(z) admit asymptotic expansions

(2.21) EW (2

(2.22) I (2) ~ i nni (1)

nlzn

whose coefficients an, (1) can be obtained in the form

(2.23) an, k(1) = JZ: (J) (dj((wr%) ) difk—jj (r(u—anr%))'

Proof. First, we will show that (2.21) is a formal expression of F,gf) (2); then, we
will prove the asymptotic nature of the expansions (2.22) for large |z|.
The change of variable

(2.24) v=1+4+w/z,

transforms the integration contour Cj in the right hand side of (2.13) in the contour
C3 shown in Fig. 2.3. On the other hand, for v € Cy,

Gu()
_ ngnzﬂn(%(”%))) )
- w5 (1) (G 0eR)) mom

(2.25) (arccothv)™
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This allows us to write %" (z) in the form (2.21), with

(2.26](2) = 2%T(p+1/2)

1 o (1) ~(ut1/2) .
e [ () B (B
3

where we have used the abbreviation

2 w
. =—(14+—].
(2.27) B(z,w) = = ( + 2z)
Then, using the property
_ d* _
1/2 k 1/2
(228)  (Blzw)) " (n (Blzyw)* = (1) 5 (B w) ",
it becomes
(229 (z) = (-1)"2¥T(u+1/2)
1 w/2 7(2#+1) dk w /"‘+1/2 w 7(/“1’1/2)
— — | (= 14+ — dw.
omi Jo, O " dpF (2) ( +2z> v
By using the formal expansion
w \ —(u+1/2) _ i (—1)" 1 wA\"
(230) (]‘ + Z) - nz::ﬂ n (.u"i_i)n (2) ’

strictly valid only in the region |w/2z| < 1, and inverting the order of summation
and integration, one obtains the descending powers expansion (2.22) with coefficients
given by

(_1)1622/1,71/ 5 o1 dF w\ #t+1/2
2:81) anat) = CLZT [ gty (N Y
(2.31) an,k(p) o Cge w dp* 9 (h+3) w
By expanding the derivative in the integrand and using the identity
1 . i 2n—u+1/2
(2.32) —/ eV 22 (In(w/2)) dw = (—1)7 — (—1> ,
i Jo, dp? \T'(p—n+ 3)

one can write (2.31) in the form (2.23).
Now we want to prove that the expansions (2.22) are asymptotic. Let us consider
the remainder

LG gy ns()
2.33 Ry = =k =) (-
(2.33) S vy n:o( )
that, in view of (2.29) and (2.31), can be written in the form

—1)k92u o dF w\ pt+1/2
3

where we have abbreviated

(2.35) (2, ) = (1 N g)—m“/z) - i (—nl!)" (n+1), (ﬂ>"

2z
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F1G. 2.3. Contour for the integral in (2.26)

We need to prove that
(2.36) lim [z Ry k| < o0, vV N, k.

|z| =00
In order to make the integration contour in (2.34) independent of |z|, we deform it to
get the contour C4 shown in Fig. 2.4. Now we want to interchange the limit operation
in (2.36) and the integration in (2.34). We can use the general convergence theorem if
we show that the modulus of the integrand is bounded, in some neighbourhood of in-
finity, by a function not depending on |z| and integrable over C4. Such neighbourhood
could be {z € C, |z| > 1} and the function can be chosen to be, for instance,

k
1 k w k=1
(2:37) Gelw) =™ | iz ZZ( z )‘lnz‘ a(w),
—0
where
(2.38) gi(w) = |w|N+1 max{h; 1, ks, 2(w)},
with the abbreviations
— 1 |d )
(2.39) hiji= ) o] d_ul( +3)n|
n=N+1
N |w|” d!
(240)  hy,2(w) = X317 20| R 1y 2] 4 27)! + 3 ST de(’“L Dnl
n=0

provided the contour C4 be deformed in such a way that all its points w satisfy |w| > 1
and |w + 2z| > 1. One is led in this way to

(-1
211

k
w — - k w\ k-1 . dl
/Ce 12 (2w) 1/22 < ) > <1n§) lim 2N+ <d—wf](\f‘)(zw)> dw.
4 1=0

(2.41) lim 2N Ry, =

|z| —o0
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Fic. 2.4. Integral contour used in (2.41)

Now, in order to calculate the limit, we write for |z| > |w|

(2.42) ](\'If‘)(z,w) = Z (=1)" (1t D (w )n

n! 22
n=N+1
It is immediate to see that
1d(u+ L " =0, for n <1,
(2.43)| - (Md lz)n (22) <¥(| |+r+1+2) Vo>l
n: 7 z = 2”(n—l)' Ho PRAE = b

where 4 is the center of a ball of radius 7, V;.(1g) C C'\ —1 N, containig y. Denoting
by by, the corresponding expressions in the right hand side of (2.43), we have, obviously,

(2.44) i by < o0,

n=N+1

Therefore, we can use once more the general convergence theorem in the right hand
1
side of (2.41) to introduce the lim), _ and dd—“, symbols inside the sum in the ex-

pression of fz(\#) given by (2.42). Then,

! (_1)N+1 w\ N+ L
; N+1 (1) _ w 1
(245)  lim 2N e) = () e+ D,
that substituted in (2.41) proves (2.36). O

Remark 1. The expansion given by the precedent theorem for FU(“ ) (z) is nothing
but the known Hankel expansion [2, Eq. 9.7.1] of the modified Bessel function I,,(2/2),
as it should be.

Remark 2. If one substitutes the expressions (2.21), with the expansions (2.22),

for the F{"” (z) in the differential relations (2.12), one obtains a recurrence relation
for the coefficients ap, (1), namely

(246)  an k(1) = (1* = (n=3)*) an-1,1(n)
+k(2n — Dan—1,5—1(p) — k(k — Dan—1, 5s—2(n), n=123,....
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This recurrence, however, does not allow to determine the coefficients ag, ,(1). These
should be obtained directly from (2.23).

Remark 3. The thesis of the theorem can be checked by substituting the expression
(2.21) for i (2) in (2.2), grouping equal powers of In z and reordering the sums. One
obtains in this way the familiar asymptotic expansion of the Whittaker function.

Remark 4. Use of Lemma 2.3 allows one to evaluate M, ,(z) in sectors different
from |argz| < 7/2 with the aid, for large |z|, of (2.21).

3. Expansion in descending powers of x. For large values of |x|, an expan-
sion in descending powers can be obtained from (1.1). With the notation

(3.1) t=2y/zr,

we can write, obviously,

(21
(3:2) M, () = T2u+ )t <Z P (), 0+ B, 0) + RN> ,

n=0
where H, 51) and H, 52) represent the Hankel functions and
© (ZH)( 2)

(3.3) Rv= Y p”t—n

n=N+1

J2H+n(t)-

Now we can use the asymptotic expansions [7, §7.2, Egs. (3) and (4)]

(34)HD(1) = \/gew—v%—%) <Z E;;;: (V*mmﬂ: 2)2m +O(t—q—1)>7

1

q
—i(f—p T T 1 (me+—)2m o
(35) ngz) (t) = —e (t -3 E (QZt)m ] 2 +O(t q 1)) ’

simultaneously valid for all ¥ when z is confined to the sector |argt| < m. Then,

(1)
(B6My p(z) = LCAED 4y ( it-pm—%) (Z L) | p-n- 1)>

— (i)

(2)
femiltmnm=%) (Z n 2y - 1)) +\/2TrtRN),

with the notation

2 —n+2m+ 1)2 _
. 7 = 2#) n m( 2/)2(n—m)
(3.7) 5 (2) Z Din P st :

20 —n+2m+ )
. T(2) - E 2#) m 2)2(n=—m)

To prove the asymptotic character of the expansion (3.6), we need the following,.
LEMMA 3.1. The Bessel functions satisfy the inequality

J2ptn (t)
oS

(3.9)

0
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for sufficiently large values of n, n > 1 — 2Rpu.

Proof. Using the analytic continuation property [2, Eq. 9.1.35] of the Bessel
functions and their integral representation [2, Eq. 9.1.22], and, for pure imaginary
t, the relation [2, Eq. 9.6.3] between Bessel and modified Bessel functions and the
integral representation [2, Eq. 9.6.20], one can easily check that

(3.10) | Jopin(t)] < 3elSUFBISHIT, forn > 1 —2%Rpu.

This makes (3.9) evident. O

Finally we can enunciate the following.

PROPOSITION 3.2. For fized z and large values of |k|, and therefore large values
of |t|, t being given in (3.1), the Whittaker function admits the asymptotic expansion

T A . A C TN 1
n=0

N p(2)
> )]

n=0

the polynomials T,(Ll)(z) and Ty(LQ)(Z) being respectively given in (3.7) and (3.8).
Proof. We need only to prove that the remainder Ry in the expansion (3.2),
appearing also in the right hand side of (3.6), is

(3.12) Ry = €SOV,

that is,

(3.13) i [VHEN |
[t|— o0 el

By using (3.3), the left hand side of (3.13) reads

oM (2) Jopan(t)
tn—N-1 elSt :
n=N-+1

(3.14) lim

[t|—o0

According to Lemmas 1.1, with a = 2, and 3.1, we have, for |t| > |z| and n > ng >
max{N + 1,1 — 2Ru},

P (2) Jouin(t)
n—N-1 elSt|

S 1
< 31(2“)(2*,2)|Z|N+1e5“”“”— =,

(3.15) o

and, of course,

(3.16) i Cn, < 00.

n=no

Then, using the general convergence theorem,

Ry

N+1-n Jopin(t)
oISt

lim
|t]—o0 eS|

< > ()

n=N+1

|t] —o0

(3.17) lim ‘tN“

< 3 ‘pf,i)l(z)‘ SISHIT < oo,

This completes the proof of the proposition. O
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