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ABSTRACT

Symmetric standard elliptic integrals are considered when two or more parameters are

larger than the others. Distributional approach is used for deriving seven expansions of

these integrals in inverse powers of the asymptotic parameters. Some of these expan-

sions involve also logarithmic terms in the asymptotic variables. These expansions are

uniformly convergent when the asymptotic parameters are greater than the remaining

ones. The coefficients of six of these expansions involve hypergeometric functions

with less parameters than the original integrals. The coefficients of the seventh ex-

pansion involve again elliptic integrals, but with less parameters than the original

integrals. Convergence speed of any of these expansions increases for increasing dif-

ference between the asymptotic variables and the remaining ones. All the expansions

are accompanied by an error bound at any order of the approximation.
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1. Introduction

Elliptic integrals (EI) are integrals of the type
∫

R(x, y)dx, where R(x, y) is a rational
function of x and y, with y2 a polynomial of the third or fourth degree in x. When
the polynomial y2 has not a repeated factor and R(x, y) contains some odd power of y,
EI cannot, in general, be expressed in terms of elementary functions. Legendre showed
that all EI can be expressed in terms of three standard EI (Legendre’s normal EI) [13].
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The three complete EI of the first, second and third kind are particularly important
cases of the respective three standard EI. These integrals and the three standard EI are
special non-elementary functions that play an important role in several mathematical
and physical problems.

A survey of properties of the standard EI can be found, for example, in [[1], chap.
17], [2] or [[16], chap. 12]. However, as it has been shown by Carlson [5]-[9], for numerical
computations it is more convenient to use symmetric standard EI instead of Legendre’s
normal EI. (Legendre’s normal EI are connected with the symmetric standard EI by
means of simple formulas [[16], eq. 12.33].) A very complete table of the three symmetric
standard EI can be found in [5]-[9]. They are defined as follows,

RF (x, y, z) =
1
2

∫ ∞

0

dt√
(t + x)(t + y)(t + z)

,

RD(x, y, z) =
3
2

∫ ∞

0

dt√
(t + x)(t + y)(t + z)3

,

RJ(x, y, z, p) =
3
2

∫ ∞

0

dt√
(t + x)(t + y)(t + z)(t + p)

,

where we assume that the parameters x, y, z are nonnegative. We assume also that
they are distinct (otherwise these integrals reduce to elementary functions). If the fourth
argument of RJ is negative, the Cauchy principal value of RJ can be written in terms of
RF and RJ with all the arguments nonnegative [10]. Therefore, we will consider p > 0
and p 6= x, y, z (otherwise RJ reduces to RD).

On the other hand, the asymptotic approximation of EI has not been exhaustively
investigated: classical methods for approximation of integrals cannot be applied. Some
result concerning approximations of EI can be found for example in [2] and [12]. Al-
though the more recent results about the asymptotic behavior of these integrals have
been obtained by Carlson, Gustafson and Wong: RF , RD and RJ may be written as a
convolution and the method of regularization [[18], chap. 6, sec. 7] can be applied.

When one of the parameters of the integrals tends to zero or infinity, the first (and
sometimes the second too) term of the asymptotic expansion of RF , RD and RJ , as well
as a quite accurate bound for the first error term has been obtained by Gustafson [11].
Higher terms of the expansion and higher error bounds are not explicitly derived in that
work because of the complexity of the Mellin transforms involved in their calculation.
Using a very clever analytical trick [10], Carlson and Gustafson have sharpened the
bounds for the first error terms obtained in [11] in the case of one parameter going to
infinity. Besides, they supply in [10] very accurate bounds for the first error term of the
totally symmetric elliptic integral of the second kind. Moreover, for all the symmetric
EI, they consider also the case of several parameters going to infinity.

Complete convergent expansions of RF , RD and RJ (and not only first terms) have
been obtained by Carlson using also Mellin transforms techniques [3]. Although these
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expansions have an attractively simple structure, explicit computation of the terms of
the expansions is not straightforward and the upper bound on the truncation error is
not quite satisfactory [[3], sec. 5]. Carlson and Gustafson have solved this problem for
RF (x, y, z) in [4], where an algorithm for computing the coefficients of the convergent
expansion of RF (x, y, z) for large z in terms of Legendre functions and their deriva-
tives is derived. Moreover, accurate error bounds are given too at any order of the
approximation.

This problem has also been solved for RD(x, y, z) and RJ(x, y, z, p) when only one
of the parameters is large [14].

In this paper we try to solve the problem for the remaining cases not considered in
[4], [14]. That is, we consider complete convergent expansions for RF , RD and RJ when
two or more of their parameters x, y, z or p is large. Then, we face the challenge of
obtaining easy algorithms for computing the coefficients of these expansions and simple
expressions for the error bounds at any order of the approximation.

We use here the same principles used in [14]: distributional approach for obtain-
ing the expansions and error test for finding error bounds. In section 2, we make a
review of the asymptotic expansions of Stieltjes [[18], chap. 6, sec. 2] and generalized
Stieltjes transforms (see [[17], theorem 2 and example 1]): distributional approach is
used in lemmas 1-4 and theorems 1-4 for deriving complete expansions of a certain
family of integrals which contains RF , RD and RJ . On the other hand, using lemmas
5 and 6, we obtain simple expressions for the error bounds in the expansions of this
family of integrals in propositions 1-4. In section 3 we apply the results of section 2 for
deriving complete convergent expansions of RF (x, az, bz), RD(x, az, bz), RD(az, bz, x),
RJ(x, az, bz, p), RJ(x, y, az, bz), RJ(az, bz, cz, x) and RJ(x, az, bz, cz) for large z. They
are presented in corollaries 1-7 accompanied by error bounds at any order of the ap-
proximation. Numerical examples are shown as an illustration. A brief summary and a
few comments are postponed to section 4.

2. Distributional approach

The procedure for deriving convergent expansions of the integrals RF , RD and RJ

are based on the distributional approach. It requires the concepts of rapidly decreasing
functions and tempered distributions.

Definition 1. We denote by S the space of rapidly decreasing functions (infinitely dif-
ferentiable functions ϕ(t) defined on [0,∞) that, together with their derivatives, approach
zero more rapidly than any power of t−1 as t →∞).

Definition 2. We denote by <Λ, ϕ> the image of a tempered distribution Λ (a con-
tinuous linear functional defined over S) acting over a function ϕ ∈ S. Recall that we
can associate to any locally integrable function g(t) on [0,∞) a tempered distribution
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Λg defined by

< Λg, ϕ >=
∫ ∞

0

g(t)ϕ(t)dt.

Definition 3. For a locally integrable function f(t) on (0,∞), we denote by M [f ; w]
the Mellin transform of f(t) or its analytic continuation. It is defined by

M [f ; w] =
∫ ∞

0

tw−1f(t)dt (1)

when the integral converges.
Convergent expansions of RF (x, az, bz), RD(x, az, bz), RD(az, bz, x), RJ(x, az, bz, cz),

RJ(x, az, bz, p), RJ(az, bz, cz, p) and RJ(x, y, az, bz) for large positive z and uniformly
valid for positive a, b and c can be derived from [[17], theorem 2] (see also example 1
there) and [[18], chap. 6, sec. 2]. The results obtained in [17] have been proved by
using Mellin transform techniques, whereas the results of [[18], chap. 6, sec. 2] have
been obtained by using the distributional approach. But, as it is suggested by Wong
[[17], example 1], all the expansions derived in [17] can also be obtained by means of the
distributional approach. We carry out Wong’s proposal in the following four lemmas
and theorems. The first two lemmas are proved in [[18], chap. 6, lemmas 1 and 2].
Lemma 1. Let f(t) a locally integrable function on [0,∞), {ak} a sequence of complex
numbers and let f(t) satisfy, for n = 1, 2, 3, ...,

f(t) =
n−1∑

k=0

ak

tk+α
+ fn(t),

where fn(t) = O(t−n−α) as t →∞ and 0 < α < 1. Define

fn,n(t) =
(−1)n

(n− 1)!

∫ ∞

t

(u− t)n−1fn(u)du. (2)

Then, for any integer n ≥ 1 and for any function ϕ ∈ S we have

< f, ϕ >=
n−1∑

k=0

ak

(α)k
< t−α, ϕ(k) > +

n−1∑

k=0

M [f ; k + 1]
k!

< δ, ϕ(k) > +(−1)n < fn,n, ϕ(n) >,

where f , fn,n and t−α denote the tempered distributions associated to the locally inte-
grable functions f(t), fn,n(t) and t−α respectively and δ is the delta distribution in the
origin.
Lemma 2. Let f(t) as in lemma 1 but with α = 1. Then, for any integer n ≥ 1 and
for any function ϕ ∈ S we have

< f,ϕ >= −
n−1∑

k=0

ak

k!
< log(t), ϕ(k+1) > +

n−1∑

k=0

bk

k!
< δ, ϕ(k) > +(−1)n < fn,n, ϕ(n) >,
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where f , fn,n and log(t) denote the tempered distributions associated to the locally in-
tegrable functions f(t), fn,n(t) and log(t) respectively, δ is the delta distribution in the
origin and

bk =ak

k∑

j=1

1
j

+ lim
w→k+1

{
M [f ; w] +

ak

w − k − 1

}

=ak

k∑

j=1

1
j

+
∫ 1

0

tkfk(t)dt +
∫ ∞

1

tkfk+1(t)dt,

(3)

empty sums being understood as zero.
Lemma 3. Let f(t) as in lemma 1 with 0 < α ≤ 1. Define, for t ∈ [0,∞), z > 0, η > 0
and α + ρ > 1

ϕη(t) =
e−ηt

(t + z)ρ
∈ S.

Then, for k = 0, 1, 2, ... and n = 1, 2, 3, ..., the following identities hold,

lim
η→0

< f, ϕη >=
∫ ∞

0

f(t)
(t + z)ρ

dt,

lim
η→0

< δ, ϕ(k)
η >=

(−1)k(ρ)k

zk+ρ
,

where (ρ)k denotes the Pochhammer’s symbol,

lim
η→0

< t−α, ϕ(k)
η >=

(−1)kΓ(k + ρ + α− 1)Γ(1− α)
Γ(ρ)zk+ρ+α−1

, for 0 < α < 1,

lim
η→0

< log(t), ϕ(k+1)
η >=

(−1)k+1

zk+ρ
(ρ)k

(
log(z)− γ − ψ(k + ρ)

)
,

where γ is the Euler constant and ψ the digamma function and

lim
η→0

< fn,n, ϕ(n)
η >= (−1)n(ρ)n

∫ ∞

0

fn,n(t)
(t + z)n+ρ

dt.

Proof. The first identity is trivial by using the dominated convergence theorem. The
second one follows after a simply computation. On the other hand,

< t−α, ϕ(k)
η >=

(−1)k

(α)k

k∑

j=0

(
k
j

)
ηj(ρ)k−j

∫ ∞

0

e−ηt

tα(t + z)k+ρ−j
dt.

For 0 < α < 1, the integrand of each integral in the right hand side of the above equation
is absolutely dominated by the integrable function t−α(t + z)j−k−ρ ∀ η, t ≥ 0 and then,
finite. Therefore, using the dominated convergence theorem and after straight forward
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operations we obtain the third identity. The remaining identities may be proved in a
similar way (see [[14], lemma 2]). tu
Lemma 4. Let f(t) as in lemma 1 with 0 < α ≤ 1. Define, for t ∈ [0,∞), z > 0,
η, ρ, σ, a, b > 0 and α + ρ + σ > 1

ϕη(t) =
e−ηt

(t + az)ρ(t + bz)σ
∈ S.

Then, for k = 0, 1, 2, ... and n = 1, 2, 3, ..., the following identities hold,

lim
η→0

< f,ϕη >=
∫ ∞

0

f(t)
(t + az)ρ(t + bz)σ

dt,

lim
η→0

< δ, ϕ(k)
η >=

(−1)k

zk+ρ+σ

k∑

j=0

(
k
j

)
(ρ)j(σ)k−j

aρ+jbσ+k−j
,

lim
η→0

< t−α, ϕ(k)
η >=

(−1)kΓ(1− α)Γ(k + ρ + σ + α− 1)
Γ(k + ρ + σ)zk+ρ+σ+α−1

×
k∑

j=0

(
k
j

)
(ρ)j(σ)k−j

aρ+j+α−1bσ+k−j
F

(
1− α, k + σ − j

k + ρ + σ

∣∣∣∣ 1− a

b

)
, for 0 < α < 1,

where F

(
α, β
δ

∣∣∣∣ z

)
is the Gauss hypergeometric function,

lim
η→0

< log(t), ϕ(k+1)
η >=

(−1)k+1

(k + ρ + σ)zk+ρ+σ

k+1∑

j=0

(
k + 1

j

)
(ρ)j(σ)k+1−j

aρ+j−1bσ+k+1−j
×

[
(log(az)− γ − ψ(k + ρ + σ))F

(
1, k + 1 + σ − j
k + 1 + ρ + σ

∣∣∣∣ 1− a

b

)
+

F ′
(

1, k + 1 + σ − j
k + 1 + ρ + σ

∣∣∣∣ 1− a

b

)]
,

where F ′
(

α, β
δ

∣∣∣∣ z

)
is the derivative of the Gauss hypergeometric function with respect

to the parameter α and

lim
η→0

< fn,n, ϕ(n)
η >= (−1)n

n∑

j=0

(
n
j

)
(ρ)j(σ)n−j

∫ ∞

0

fn,n(t)
(t + az)j+ρ(t + bz)n−j+σ

dt.

Proof. The proof of the first, second and last equalities is similar to the proof of the
corresponding equalities in lemma 3. The proof of the third equality is also similar, but
considering the integrable function t−α(t+az)−i−ρ(t+ bz)i−j−σ with i ≤ j = 0, 1, 2, ...k

instead of t−α(t + z)j−k−ρ and using formula [[15], p. 303, eq. 24]. The proof of the
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fourth equality is similar to the proof of the fourth equality in lemma 3 (third equality
in [[14], lemma 2]) using the bound (t+az)ρ(t+bz)σ ≥ (t+cz)ρ+σ, where c =min{a, b}.
But it uses the derivative with respect to α of formula [[15], p. 303, eq. 24] instead of
[[15], p. 489, eq. 7], which is used in [[14], lemma 2]. tu
Theorem 1. Let f(t) a locally integrable function on [0,∞), {ak} a sequence of complex
numbers and let f(t) satisfy, for n = 1, 2, 3, ...,

f(t) =
n−1∑

k=0

ak

tk+α
+ fn(t), (4)

where fn(t) = O(t−n−α) as t → ∞ and 0 < α < 1. Then, for z > 0, α + ρ > 1 and
n = 1, 2, 3, ...,

∫ ∞

0

f(t)
(t + z)ρ

dt =
n−1∑

k=0

(−1)k

zk+ρ

[
πΓ(k + ρ + α− 1)akz1−α

Γ(k + α)Γ(ρ) sin(πα)
+

(ρ)kM [f ; k + 1]
k!

]
+ Rn(ρ; z),

(5)

where the remainder term satisfies

Rn(ρ; z) = (ρ)n

∫ ∞

0

fn,n(t)dt

(t + z)n+ρ
(6)

and fn,n(t) is defined in (2).
Proof. It follows from lemmas 1 and 3 using the reflection formula of the gamma
function. tu
Theorem 2. Let f(t) a locally integrable function on [0,∞), {ak} a sequence of
complex numbers and let f(t) have the following asymptotic expansion for large t and
n = 1, 2, 3, ...,

f(t) =
n−1∑

k=0

ak

tk+1
+ fn(t), (7)

where fn(t) = O(t−n−1) as t →∞. Then, for z, ρ > 0 and n = 1, 2, 3, ...,

∫ ∞

0

f(t)
(t + z)ρ

dt =
n−1∑

k=0

(−1)k

k!zk+ρ
(ρ)k

[
ak

(
log(z)− γ − ψ(k + ρ)

)
+ bk

]
+ Rn(ρ; z), (8)

where, for k = 0, 1, 2, ..., the coefficients bk are given by

bk =ak

k∑

j=1

1
j

+ lim
w→k+1

{
M [f ; w] +

ak

w − k − 1

}

=ak

k∑

j=1

1
j

+ lim
T→∞





∫ T

0

tkf(t)dt−
k−1∑

j=0

aj
T k−j

k − j
− ak log T



 ,

(9)
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empty sums being understood as zero. The remainder term is given by (6).
Proof. From lemmas 2 and 3 we obtain immediately formulas (6), (8) and the first line
in (9). Introducing

fk(t) = f(t)−
k−1∑

j=0

aj

tj+1

in the second line of (3) and after simple manipulations we obtain the second line in
(9). tu
Theorem 3. Let f(t) as in theorem 1. Then, for a, b, ρ, σ, z > 0, α + ρ + σ > 1 and
n = 1, 2, 3, ...,

∫ ∞

0

f(t)
(t + az)ρ(t + bz)σ

dt =
π

sin(απ)

n−1∑

k=0

(−1)kAkΓ(k + ρ + σ + α− 1)
Γ(k + α)Γ(k + ρ + σ)zk+α+ρ+σ−1

+

n−1∑

k=0

(−1)kBk

k!
M [f ; k + 1]

zk+ρ+σ
+ Rn(ρ, σ; z),

(10)

where the coefficients Ak and Bk are defined by

Ak ≡ ak

k∑

j=0

(
k
j

)
(ρ)j(σ)k−j

aρ+α+j−1bk+σ−j
F

(
1− α, k + σ − j

k + ρ + σ

∣∣∣∣ 1− a

b

)
, (11)

Bk ≡
k∑

j=0

(
k
j

)
(ρ)j(σ)k−j

aρ+jbk+σ−j
(12)

and the remainder term satisfies

Rn(ρ, σ; z) =
n∑

j=0

(
n
j

)
(ρ)j(σ)n−j

∫ ∞

0

fn,n(t)dt

(t + az)j+ρ(t + bz)n+σ−j
, (13)

where fn,n(t) is defined in (2).
Proof. It follows from lemmas 1 and 4 after straightforward computations and using
formula [[15], p. 303, eq. 24]. tu
Theorem 4. Let f(t) as in theorem 2. Then, for a, b, z, ρ, σ > 0 and n = 1, 2, 3, ...,

∫ ∞

0

f(t)
(t + az)ρ(t + bz)σ

dt =
n−1∑

k=0

(−1)k

k!zk+ρ+σ
[(Ak log(az) + A′k) + Bk] + Rn(ρ, σ; z), (14)

where

Bk = bk

k∑

j=0

(
k
j

)
(ρ)j(σ)k−j

aρ+jbk+σ−j
,
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the coefficients bk being defined in (9), and where, for k = 0, 1, 2, ..., the coefficients Ak

and A′k are defined by

Ak ≡ ak

k+1∑

j=0

(
k + 1

j

)
(ρ)j(σ)k+1−j

(k + ρ + σ)aρ+j−1bk−j+σ+1
F

(
1, k + 1 + σ − j
k + ρ + σ + 1

∣∣∣∣ 1− a

b

)
,

A′k ≡ak

k+1∑

j=0

(
k + 1

j

)
(ρ)j(σ)k+1−j

(k + ρ + σ)aρ+j−1bk−j+σ+1

[
F ′

(
1, k + 1 + σ − j
k + ρ + σ + 1

∣∣∣∣ 1− a

b

)
−

(ψ(k + ρ + σ) + γ)F
(

1, k + 1 + σ − j
k + ρ + σ + 1

∣∣∣∣ 1− a

b

)]
.

The remainder term is given by (13) in theorem 3.
Proof. The proof is similar to the proof of theorem 2, but using lemma 4 instead of
lemma 3. tu

A bound for the error term in the expansions given in the above theorems will be
obtained in the following propositions when the function f(t) has the form

f(t) =
m∏

k=1

1
(t + xk)µk

, (15)

where m ∈ N| , x1,...,xm are nonnegative parameters at least one different from zero and
µ1,...,µm > 0. Define

µ =
m∑

k=1

µk > 0.

For µ /∈ N| , the asymptotic expansion of f(t) in t = ∞ is given, for n = 1, 2, 3, ..., by (4)
with α ≡ µ− bµc,

f(t) =
n−1∑

k=0

ak

tk+µ−bµc + fn(t), (16)

where
a0 = a1 = ... = abµc−1 = 0 if bµc ≥ 1,

ak+bµc = lim
u→0

1
k!

dk

duk

(
u−µf(u−1)

)
for k = 0, 1, 2, ... (17)

and fn(t) = O(t−n−µ+bµc) as t → ∞. Then , we have the following lemma, proved in
[[14], lemma 3].
Lemma 5. For µ /∈ N| and ∀ t ∈ [0,∞), the remainder term fn(t) and the coefficients
an in the expansion (16)-(17) of the function f(t) defined in (15) verify

|fn(t)| ≤ |an|
tn+µ−bµc for n ≥ bµc, |fn(t)| ≤ |an−1|

tn+µ−bµc−1
for n ≥ bµc+ 1 (18)
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and sign(fn(t)) =sign(an) =sign((−1)n−bµc) for n ≥ bµc.
On the other hand, for µ ∈ N| , the asymptotic expansion in t = ∞ of the function

f(t) defined in (15) is given, for n = 1, 2, 3, ..., by (4) with α ≡ 1,

f(t) =
n−1∑

k=0

ak

tk+1
+ fn(t), (19)

where
a0 = a1 = ... = aµ−2 = 0 if µ ≥ 2,

ak+µ−1 = lim
u→0

1
k!

dk

duk

(
u−µf(u−1)

)
for k = 0, 1, 2, ... (20)

and fn(t) = O(t−n−1) as t → ∞. Then, we have the following lemma, proved in [[14],
lemma 4].
Lemma 6. For µ ∈ N| and ∀ t ∈ [0,∞), the remainder term fn(t) and the coefficients
an in the expansion (19)-(20) of the function f(t) defined in (15) verify

|fn(t)| ≤ |an|
tn+1

for n ≥ µ− 1, |fn(t)| ≤ |an−1|
tn

for n ≥ µ (21)

and sign(fn(t)) =sign(an) =sign((−1)n−µ+1) for n ≥ µ− 1.
Proposition 1. If the function f(t) of theorem 1 has the form (15) with µ /∈ N| then,
∀ z > 0 and n ≥ bµc, the error term Rn(ρ; z) in the expansion (5) (which holds for
α ≡ µ− bµc) satisfies

0 ≤ (−1)bµcRn(ρ; z) ≤ π|an|Γ(n + ρ + µ− bµc − 1)
Γ(ρ)Γ(n + µ− bµc)| sin(πµ)|zn+ρ+µ−bµc−1

, (22)

providing the expansion (5) of an asymptotic character for large z.
Proof. The parameter α in theorem 1 equals µ − bµc in lemma 5. Using
sign(fn(u)) =sign((−1)n−bµc) ∀u ∈ [0,∞) in (2) and (6) we obtain (−1)bµcRn(z) ≥ 0.
Introducing the first bound of (18) in the right hand side of (2) and performing the
change of variable u → t/u we obtain

|fn,n(t)| ≤ Γ(µ− bµc)
Γ(n + µ− bµc)

|an|
tµ−bµc

∀ t ∈ [0,∞). (23)

Introducing this bound in (6) and after the change of variable t → z(t−1− 1) we obtain
(22). tu
Proposition 2. If the function f(t) of theorem 2 has the form (15) with µ ∈ N| then, ∀
z > 0 and n ≥ µ, the error term Rn(ρ; z) in the expansion (8) satisfies the bounds

0 ≤ −(−1)µRn(ρ; z) ≤ πΓ(n + ρ− 1/2)
Γ(ρ)Γ(n + 1/2)

ān

zn+ρ−1/2
, (24)
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where ān =max{|an|, |an−1|}, and

|Rn(ρ; z)| ≤ [
nε|an−1|+ |an|

(
Sn(z, ε, ρ) + Tn(z, ε, ρ)

)] (ρ)n

n!zn+ρ
, (25)

where ε is an arbitrary positive number,

Sn(z, ε, ρ) = min

{
nz

[
(ε + z)n+ρ−1 − zn+ρ−1

]

ε(n + ρ− 1)(ε + z)n+ρ−1
, ψ(n + 1) + γ

}
(26)

and

Tn(z, ε, ρ) =
zn+ρ

(n + ρ)(ε + z)n+ρ
F

(
n + ρ, 1

n + ρ + 1

∣∣∣∣
z

ε + z

)

≤
(

z

ε + z

)ρ
(

log
(
1 +

z

ε

)
−

n−1∑

k=1

zk

k(z + ε)k

)
.

(27)

For large z and fixed n, the optimum value for ε is given by

ε =
|an|

n|an−1| . (28)

Any of these bounds provide the expansion (8) of an asymptotic character for large z.
Proof. Similar to the proof of proposition 1, but using lemma 6 instead of lemma 5
(see [[14], proposition 2]). tu
Proposition 3. If the function f(t) of theorem 3 has the form (15) with µ /∈ N| then,
∀ z > 0 and n ≥ bµc, the error term Rn(ρ, σ; z) in the expansion (10) (which holds for
α ≡ µ− bµc) satisfies

0 ≤ (−1)bµcRn(ρ, σ; z) ≤ π|an|Γ(n + ρ + σ + µ− bµc − 1)
Γ(n + ρ + σ)Γ(n + µ− bµc)| sin(πµ)|zn+ρ+σ+µ−bµc−1

×
n∑

j=0

(
n
j

)
(ρ)j(σ)n−j

aρ+j+µ−bµc−1bn+σ−j
F

( bµc − µ + 1, n + σ − j
ρ + σ + n

∣∣∣∣ 1− a

b

)
≤

π|an|Γ(n + ρ + σ + µ− bµc − 1)
Γ(n + ρ + σ)Γ(n + µ− bµc)| sin(πµ)|

(ρ + σ)n

(cz)n+ρ+σ+µ−bµc−1
,

(29)
where c =min{a, b}, providing the expansion (10) of an asymptotic character for large
z.
Proof. The proof of the first inequality is the same as the proof of proposition 1:
introduce (23) in (13) and use [[15], p. 303, eq. 24]. On the other hand, if instead of
using [[15], p. 303, eq. 24], we bound the integrand in (13) by using t + a ≥ t + c and
t + b ≥ t + c and use the equality

n∑

k=0

(
n
k

)
(ρ)k(σ)n−k = (ρ + σ)n, (30)
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we obtain the second inequality in (29). tu
Proposition 4. If the function f(t) of theorem 4 has the form (15) with µ ∈ N| then, ∀
z > 0 and n ≥ µ, the error term Rn(ρ, σ; z) in the expansion (14) satisfies the bound

0 ≤ −(−1)µRn(ρ, σ; z) ≤ π|ān|Γ(n + ρ + σ − 1/2)
Γ(n + ρ + σ)Γ(n + 1/2)zn+ρ+σ−1/2

×
n∑

j=0

(
n
j

)
(ρ)j(σ)n−j

aρ+j−1/2bn+σ−j
F

(
1
2 , n + σ − j
ρ + σ + n

∣∣∣∣ 1− a

b

)
≤

π|ān|Γ(n + ρ + σ − 1/2)
Γ(n + ρ + σ)Γ(n + 1/2)

(ρ + σ)n

(cz)n+ρ+σ−1/2
,

(31)

where ān =max{|an|, |an−1|} and c =min{a, b}. Rn(ρ, σ; z) satisfies also the bound

|Rn(ρ, σ; z)| ≤ [nε|an−1|+ |an|(Sn(cz, ε, ρ + σ) + Tn(cz, ε, ρ + σ))]
(ρ + σ)n

n!(cz)n+ρ+σ
(32)

where Sn and Tn are given in (26) and (27) respectively and ε is an arbitrary positive
number. For large z and fixed n, the optimum value for ε is given by (28).

Any of these bounds provide the expansion (14) of an asymptotic character for large
z.
Proof. The proof of the first two inequalities in (31) is the same as the proof of the
inequalities (24) in proposition 2, but using (13) instead of (6). On the other hand,
using |fn(t)| ≤ ānt−n−1/2 (deduced in the proof of proposition 2 in [14]), and repeating
then the proof for the second bound in proposition 3 with µ = 3/2, we obtain the second
inequality in (31). For deriving the bound (32) we use in (13) (t+az)j+ρ(t+bz)n+σ−j ≥
(t + cz)n+σ+ρ for j = 0, 1, 2, ...n and ∀ t ≥ 0. Then, we obtain

|Rn(ρ, σ; z)| ≤
n∑

j=0

(
n
j

)
(ρ)j(σ)n−jRn(ρ + σ; cz),

where Rn(ρ; z) has been defined in (6). Using (30) and (25)-(27) we obtain (32). tu

3. Uniform expansions of the symmetric standard elliptic integrals

Convergent expansions of RF , RD and RJ for large values of two or three of their
parameters may be obtained as corollaries of theorems 1-4. Error bounds for the re-
mainder terms in these expansions follow from propositions 1-4. We derive the explicit
expansions and error bounds for the remainders in the following corollaries.
Corollary 1. A uniformly convergent expansion of RF (x, az, bz) for 0 ≤ x ≤ az ≤ bz

and 0 < az, is given, for n = 1, 2, 3, ..., by

RF (x, az, bz) =
1
2

√
π

abx

n−1∑

k=0

[
(k − 1)!AF

k (a, b)xk

Γ(k + 1/2)zk
+

(1/2)k

√
πbxk+1/2

k!akzk+1/2
F

(
k + 1/2, 1/2

1

∣∣∣∣ 1− b

a

)]
+ RF

n(x, az, bz),

(33)
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where AF
0 (a, b) = 0 and, for k = 1, 2, 3, ...,

AF

k (a, b) = −
k−1∑

j=0

(1/2)j(1/2)k−1−j

j!(k − 1− j)!ajbk−1−j
. (34)

For n = 1, 2, 3, ..., the remainder term RF
n(x, az, bz) verifies

0 ≤ −RF

n(x, az, bz) ≤
√

π(n− 1)!|AF
n(a, b)|xn

2
√

abxΓ(n + 1/2)zn
. (35)

Proof. After the change of variable t → zt−1, the integral 2
√

abxRF (x, az, bz) has the
form considered in theorem 1 with α = 1/2,

f(t) ≡ fF (t) =
1√

t(t + a−1)(t + b−1)
=

n−1∑

k=0

(−1)kAF

k

tk+1/2
+ fF

n (t), (36)

where fF
n (t) = O(t−n−1/2) as t → ∞, ρ = 1/2 and z replaced by z/x. Therefore, the

asymptotic expansion of 2
√

abxRF (x, az, bz) for large z follows from eq. (5) in theorem
1. Coefficients ak ≡ (−1)kAF

k (a, b) in eq. (4) are trivially given by formula (34). On
the other hand, the analytic extension of the Mellin transform of fF (t) can be obtained
from [[15], p. 303, eq. 24]. Introducing then M [fF (t); k + 1] in (5) we obtain (33).

Function fF (t) satisfies the conditions of proposition 1 with µ = 3/2. Therefore,
RF

n(x, az, bz) ≤ 0 and, for n = 1, 2, 3, ..., the bound (22) holds for 2
√

abxRF (x, az, bz)
setting ρ ≡ 1/2, µ = 3/2 and an ≡ (−1)kAF

n(a, b) given in (34).
Introducing the bound |AF

n+1| ≤ a−n in (35) we obtain, for n ≥ 1,

|RF

n(x, az, bz)| ≤ C(a, z)
xn

(az)n
√

n
, (37)

where C(a, z) is independent of n. Therefore, expansion (33) is uniformly convergent
for x ≤ az. tu

z

10

20

50

100

R  (1,z,2z)
F 1  order aprox.

st Relative error error bound
Relative

2  order aprox.
nd Relative error error bound

Relative

.3561342012

.1244765346

.1724885762

.4145837013 .164

.1854074678

.1311028777

.0749

.0532

.199

.0820

.0568

.3589736808

.1726159759

.1245093346

.00797

.000739

.000263

.00993

.000820

.000284

.2623854105 .2931549466 .117 .135 .2631384963 .00287 .00337

Table 1. Numerical example of the approximation (33). Second, third and sixth columns represent

RF (1, z, 2z), approximation (33) for n = 1 and approximation (33) for n = 2 respectively. Fourth

and seventh columns represent the respective relative errors −RF
n(1, z, 2z)/RF (1, z, 2z) in (33).

Fifth and last columns represent the respective error bounds given by eq. (35).
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Corollary 2. A uniformly convergent expansion of RD(x, az, bz) for 0 ≤ x < az and
0 ≤ x < bz is given, for n = 1, 2, 3, ..., by

RD(x, az, bz) =
3
2z

√
π

ab3x

n−1∑

k=0

xk

zk

[
(k − 1)!AD

k (a, b)
Γ(k + 1/2)

+

Γ(k + 3/2)
√

xb3

k!ak+1z1/2
F

(
k + 3/2, 3/2

2

∣∣∣∣ 1− b

a

)]
+ R̄D

n (x, az, bz),

(38)

where AD
0 (a, b) = 0 and, for k = 1, 2, 3, ...,

AD

k (a, b) = −
k−1∑

j=0

(1/2)j(3/2)k−1−j

j!(k − 1− j)!ajbk−1−j
. (39)

For n = 1, 2, 3, ..., the remainder term R̄D
n (x, az, bz) verifies

0 ≤ −R̄D

n (x, az, bz) ≤ 3
√

π(n− 1)!|AD
n (a, b)|xn−1/2

2
√

ab3Γ(n + 1/2)zn+1
. (40)

Proof. After the change of variable t → zt−1, the integral (2
√

ab3xz/3)RD(x, az, bz)
has the form considered in theorem 1 with α = 1,

f(t) ≡ f̄D(t) =
√

t√
(t + a−1)(t + b−1)3

=
n−1∑

k=0

(−1)kAD

k

tk+1/2
+ f̄D

n (t), (41)

where f̄D
n (t) = O(t−n−1/2) as t → ∞, ρ = 1/2 and z replaced by z/x. Therefore, the

asymptotic expansion of (2
√

ab3xz/3)RD(x, az, bz) for large z follows from eq. (5) in
theorem 1. Coefficients ak ≡ (−1)kAD

k (a, b) in eq. (4) are trivially given by formula
(39). On the other hand, the analytic extension of the Mellin transform of f̄D(t) can be
obtained from [[15], p. 303, eq. 24]. Introducing then M [f̄D(t); k + 1] in (5) we obtain
(38).

Function f̄D(t) satisfies the conditions of proposition 1 with µ = 3/2. Therefore,
R̄D

n (x, az, bz) ≤ 0 and, for n = 1, 2, 3, ..., the bound (22) holds for (2
√

ab3xz/3)RD(x, az, bz)
replacing z by z/x and setting ρ ≡ 1/2, µ = 3/2 and an ≡ (−1)nAD

n (a, b) given in (39).

Introducing the bound |AD
n | ≤ ns1−n, where s =min{a, b}, in (40) we obtain, for

n ≥ 1,

|R̄D

n (x, az, bz)| ≤ C(s, z)
xn
√

n

(sz)n
, (42)

where C(s, z) is independent of n. Therefore, expansion (38) is uniformly convergent
for x < sz. tu
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z

10

20

50

100

R  (1,z,2z)
D 2  order aprox.

st Relative error error bound
Relative

3  order aprox.
nd Relative error error bound

Relative

.0255837279

.0009708928

.0026456597

.0262739405 .0270

.0026519429

.0009717047

.00237

.000836

.0345

.00267

.000910

.0256376739

.0026457578

.0009708991

.00211

.0000371

.00000653

.00269

.0000417

.00000710

.0097457248 .0098379248 .00946 .0113 .0097493258 .000369 .000442

Table 2. Numerical example of the approximation (38). Second, third and sixth columns represent

RD(1, z, 2z), approximation (38) for n = 2 and approximation (38) for n = 3 respectively. Fourth

and seventh columns represent the respective relative errors −RD
n (1, z, 2z)/RD(1, z, 2z) in (38).

Fifth and last columns represent the respective error bounds given by eq. (40).

Corollary 3. A uniformly convergent expansion of RD(az, bz, x) for 0 < x < az ≤ bz

is given, for n = 1, 2, 3, ..., by

RD(az, bz, x) =− 3
√

π

abx

n−1∑

k=0

[
k!AF

k+1(a, b)xk

Γ(k + 1/2)zk+1
+

(3/2)k

√
πbxk+1/2

2k!ak+1zk+3/2
F

(
k + 3

2 , 1
2

1

∣∣∣∣ 1− b

a

)]
+ RD

n (az, bz, x),

(43)

where, for k = 0, 1, 2, ..., AF

k (a, b) are given in (34). For n = 1, 2, 3, ..., the remainder
term RD

n (az, bz, x) verifies

0 ≤ RD

n (az, bz, x) ≤ 3
√

πn!|AF
n+1(a, b)|xn

√
abxΓ(n + 1/2)zn+1

. (44)

Proof. After the change of variable t → zt−1, the integral (2
√

abx3/3)RD(az, bz, x) has
the form considered in theorem 1 with α = 1/2,

f(t) ≡ fD(t) =
√

t√
(t + a−1)(t + b−1)

= −
n−1∑

k=0

(−1)kAF

k+1

tk+1/2
+ fD

n (t), (45)

where fD
n (t) = O(t−n−1/2) as t → ∞, ρ = 3/2 and z replaced by z/x. Therefore, the

asymptotic expansion of (2
√

abx3/3)RD(az, bz, x) for large z follows from eq. (5) in
theorem 1. Coefficients ak in eq. (4) are trivially given by ak ≡ −(−1)kAF

k+1(a, b). On
the other hand, the analytic extension of the Mellin transform of fD(t) can be obtained
from [[15], p. 303, eq. 24]. Introducing then M [fD(t); k + 1] in (5) we obtain (43).

Function fD(t) satisfies the conditions of proposition 1 with µ = 1/2. Therefore,
RD

n (az, bz, x) ≥ 0 and, for n = 1, 2, 3, ..., the bound (22) holds for (2
√

abx3/3)RD(az, bz, x)
setting ρ ≡ 3/2, µ = 1/2 and an ≡ (−1)n+1AF

n+1(a, b).
Introducing the bound |AF

n+1| ≤ a−n in (44) we obtain, for n ≥ 1,

RD

n (az, bz, x) ≤ C(a, z)
xn
√

n

(az)n
, (46)
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where C(a, z) is independent of n. Therefore, expansion (43) is uniformly convergent
for x < az. tu

z

10

20

50

100

R  (z,2z,1)
D 1  order aprox.

st Relative error error bound
Relative

2  order aprox.
nd Relative error error bound

Relative

.1454172243

.0186361617

.0354313796

.1215280884 -.164

.0343225435

.0183480551

-.0313

-.0155

.219

.0359

.0171

.1428666794

.0354078421

.0186331086

-.0175

-.000664

-.000164

.0231

.000758

.000180

.0804778214 .0740326848 -.0801 .0988 .0801348017 -.00426 .00522

Table 3. Numerical example of the approximation (43). Second, third and sixth columns represent

RD(z, 2z, 1), approximation (43) for n = 1 and approximation (43) for n = 2 respectively. Fourth

and seventh columns represent the respective relative errors −RD
n (z, 2z, 1)/RD(z, 2z, 1) in (43).

Fifth and last columns represent the respective error bounds given by eq. (44).

Corollary 4. A uniformly convergent expansion of RJ(x, az, bz, cz) for 0 ≤ x < az ≤ bz

and x < cz is given, for n = 1, 2, 3, ..., by

RJ(x, az, bz, cz) =
3
√

π

2c
√

abxz

n−1∑

k=0

xk

zk

[
(k − 1)!AJ

k(a, b, c)
Γ(k + 1/2)

+

Γ(k + 1/2)
√

x

k!πck
√

z
Bk(a, b, c)

]
+ RJ

n(x, az, bz, cz),

(47)

where AJ
0(a, b, c) = 0 and, for k = 1, 2, 3, ...,

AJ

k(a, b, c) =
k∑

j=1

cj−kAF

j (a, b), (48)

where AF
j (a, b) are given in (34) and the coefficients Bk(a, b, c) verify the recurrence

Bk(a, b, c) = Bk−1(a, b, c) +
π
√

bck

ak
F

(
k + 1/2, 1/2

1

∣∣∣∣ 1− b

a

)
, (49)

where
B0(a, b, c) =

2
3
c
√

abRJ(0, a, b, c). (50)

For n = 1, 2, 3, ..., the remainder term RJ
n(x, az, bz, cz) verifies

0 ≤ −RJ

n(x, az, bz, cz) ≤ 3
√

π(n− 1)!|AJ
n(a, b, c)|xn−1/2

2c
√

abΓ(n + 1/2)zn+1
. (51)

Proof. After the change of variable t → zt−1, the integral (2
√

abxcz/3)RJ(x, az, bz, cz)
has the form considered in theorem 1 with α = 1/2,

f(t) ≡ fJ

1 (t) =
√

t√
(t + a−1)(t + b−1)(t + c−1)

=
n−1∑

k=0

(−1)kAJ

k

tk+1/2
+ fJ

n(t), (52)
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where fJ
n(t) = O(t−n−1/2) as t → ∞, ρ = 1/2 and z replaced by z/x. Therefore, the

asymptotic expansion of (2
√

abxcz/3)RJ(x, az, bz, cz) for large z follows from eq. (5) in
theorem 1. Coefficients ak ≡ (−1)kAJ

k(a, b, c) in eq. (4) are trivially given by formula
(48). On the other hand, after straightforward operations we obtain that the analytic
extension of the Mellin transform of fJ

1 (t) verify the recurrence

M [fJ

1 ; k + 1] = M [
√

t(t + a−1)−1(t + b−1)−1; k]− c−1M [fJ

1 ; k].

Then, using formula [[15], p. 303, eq. 24] and defining Bk(a, b, c) ≡ (−c)kM [fJ
1 ; k + 1]

we obtain the recurrence (49) and therefore expansion (47).
Function fJ

1 (t) satisfies the conditions of proposition 1 with µ = 3/2. There-
fore, RJ

n(x, az, bz, cz) ≤ 0 and then, replacing z by z/x, the bound (22) holds
for (2

√
abxcz/3)RJ(x, az, bz, cz) for n = 1, 2, 3, ..., setting ρ ≡ 1/2, µ = 3/2 and

an ≡ (−1)nAJ
n(a, b, c) given in (48). From this we obtain (51).

Introducing the bound |AJ
n| ≤ ns1−n, where s =min{a, c}, in (51) we obtain, for

n ≥ 1,

|RJ

n(x, az, bz, cz)| ≤ C(s, z)
xn
√

n

(sz)n
, (53)

where C(s, z) is independent of n. Therefore, expansion (47) is uniformly convergent
for x < sz. tu

z

10

20

50

100

R (1,z,3z,2z)
J 2  order aprox.

st Relative error error bound
Relative

3  order aprox.
nd Relative error error bound

Relative

.0220288446

.0008303642

.0022659947

.0225580167 .0240

.0022707974

.0008309844

.00212

.000747

.0306

.00238

.000811

.0220681536

.0022660661

.0008303689

.00178

.0000315

.00000554

.00227

.0000353

.00000603

.0083692419 .0084398219 .00843 .0101 .0083718630 .000313 .000374

Table 4. Numerical example of the approximation (47). Second, third and sixth columns repre-

sent RJ(1, z, 3z, 2z), approximation (47) for n = 2 and approximation (47) for n = 3 respectively.

Fourth and seventh columns represent the respective relative errors−RJ
n(1, z, 3z, 2z)/RJ(1, z, 3z, 2z)

in (47). Fifth and last columns represent the respective error bounds given by (51).

Corollary 5. A uniformly convergent expansion of RJ(x, az, bz, p) for 0 < p < az ≤ bz

and 0 ≤ x < az is given, for n = 1, 2, 3, ..., by

RJ(x, az, bz, p) =
3
2

n−1∑

k=0

[
AJ

k(x, p)Bk(a, b)
zk+1/2

+
2(−1)kxk+1/2Ck(a, b)Γ(1/2− k)

p
√

πabzk+1
×

F

(
k + 1, 1

3/2

∣∣∣∣ 1− x

p

)]
+ RJ

n(x, az, bz, p),

(54)

where AJ
0(x, p) = 0 and, for k = 1, 2, 3, ..., the coefficients AJ

k(x, p), Bk(a, b) and Ck(a, b)
are given by

AJ

k(x, p) = −
k−1∑

j=0

(1/2)j

j!
xjpk−j−1, (55)
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p

10

20

50

100

R (1,z,2z,2)
J 2  order aprox.

nd Relative error error bound
Relative

3  order aprox.
rd Relative error error bound

Relative

.1046014390

.0141558976

.0265906526

.1169052834 .118

.0268538035

.0142046739

.00990

.00345

.167

.0118

.00390

.1067522930

.0265998397

.0141567487

.0206

.000346

.0000601

.0291

.000410

.0000680

.0591144006 .0614960026 .0403 .0522 .0593224077 .00352 .00455

Table 5. Numerical example of the approximation (54). Second, third and sixth columns rep-

resent RJ(1, z, 2z, 2), approximation (54) for n = 2 and approximation (54) for n = 3 respectively.

Fourth and seventh columns represent the respective relative errors−RJ
n(1, z, 2z, 2)/RJ(1, z, 2z, 2)

in (54). Fifth and last columns represent the respective error bounds given by eq. .

Bk(a, b) =
k∑

j=0

Γ(j + 1/2)Γ(k − j + 1/2)
j!(k − j)!ajbk−j+1/2

F

(
1/2, k − j + 1/2

k + 1

∣∣∣∣ 1− a

b

)
(56)

and

Ck(a, b) =
k∑

j=0

(
k
j

)
(1/2)j(1/2)k−j

ajbk−j
. (57)

For n = 1, 2, 3, ..., the remainder term RJ
n(x, az, bz, p) verifies

0 ≤ −RJ

n(x, az, bz, p) ≤3π|AJ
n(x, p)|

2n!zn+1/2

n∑

j=0

(
n
j

)
(1/2)j(1/2)n−j

ajbn−j+1/2
×

F

(
1/2, n− j + 1/2

n + 1

∣∣∣∣ 1− a

b

)
≤ 3π|AJ

n(x, p)|
2(cz)n+1/2

,

(58)

where c =min{a, b}.
Proof. The integral (2/3)RJ(x, az, bz, p) has the form considered in theorem 3 with
α = 1/2,

f(t) ≡ fJ

2 (t) =
1√

t + x(t + p)
=

n−1∑

k=0

(−1)kAJ

k

tk+1/2
+ fJ

n(t), (59)

where fJ
n(t) = O(t−n−1/2) as t → ∞ and ρ = σ = 1/2. Therefore, the asymptotic

expansion of (2/3)RJ(x, az, bz, p) for large z follows from eq. (10) in theorem 3. Coef-
ficients ak ≡ (−1)kAJ

k(x, p) in eq. (4) are trivially given by formula (55). The Mellin
transform M [fJ

2 ; k + 1] in eq. (10) can be obtained from [[15], p. 303, eq. 24] and
coefficients Bk(a, b) and Ck(a, b) follow from (11) and (12) respectively.

Function fJ
2 (t) satisfies the conditions of proposition 3 with µ = 3/2. Therefore,

RJ
n(x, az, bz, p) ≤ 0 and, for n = 1, 2, 3, ..., the bound (29) holds for (2/3)RJ(x, az, bz, p)

setting ρ ≡ σ = 1/2, µ = 3/2 and an ≡ (−1)nAJ
n(x, p) given in (55).

Introducing the bound |AJ
n+1| ≤ (3/2)nsn/n!, where s =max{x, p}, in (58) we ob-

tain, for n ≥ 1,

|RJ

n(x, az, bz, p)| ≤ C(c, s, z)
sn
√

n

(cz)n
, (60)
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where C(c, s, z) is independent of n. Therefore, expansion (54) is uniformly convergent
for s < cz. tu
Corollary 6. A uniformly convergent expansion of RJ(az, bz, cz, p) for 0 < p ≤ az ≤
bz ≤ cz is given, for n = 1, 2, 3, ..., by

RJ(az, bz, cz, p) =
3

2
√

abcz

n−1∑

k=0

pk

zk+1

[
ĀJ

k(a, b, c)
(

log
(

z

p

)
− γ − ψ(k + 1)

)
+

Bk(a, b, c)
]

+ RJ

n(az, bz, cz, p),

(61)

where, for k = 0, 1, 2, ..., the coefficients ĀJ

k(a, b, c) are given by

ĀJ

k(a, b, c) =
k∑

j=0

k−j∑

l=0

(1/2)l(1/2)j(1/2)k−j−l

j!l!(k − j − l)!albjck−j−l
(62)

and the coefficients BJ

k(a, b, c) are given by

BJ

k(a, b, c) = ĀJ

k(a, b, c)
k∑

j=1

1
j

+ (−1)kCJ

k (a, b, c),

empty sums being understood as zero and where CJ

k (a, b, c) are given by the recurrence

Ck+3 = − 1
2(k + 3)

[
(2k + 5)

(
1
a

+
1
b

+
1
c

)
Ck+2+

2(k + 2)
a + b + c

abc
Ck+1 +

2k + 3
abc

Ck

]
,

(63)

with first terms

C0 = 2 log

(
2
√

abc

∆

)
+

4
√

abc

3
RJ(a + ∆, b + ∆, c + ∆, ∆),

C1 = λ(1− C0)− 1
c
−

√
c

ab
RF (a, b, c) +

c2 + ab− (a + b)c
3
√

abc
RD(a, b, c) (64)

and

C2 =
β

2
− a2 + b2 + ab

2a2b2
− λ

2
C1 +

1
4

(
1
a2

+
1
b2

+
1
c2

)
C0 +

√
c(a + b)
2
√

a3b3
RF (a, b, c)−

1
6

[√
ab

c3
+

√
c

a3b3

(
cb + ca− a2 − b2 − ab

)
]

RD(a, b, c),

(65)
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where
∆ ≡

√
ab +

√
ac +

√
bc,

λ ≡ 1
2

(
1
a

+
1
b

+
1
c

)

and

β ≡ 1
8

(
3

(
1
a2

+
1
b2

+
1
c2

)
+ 2

a + b + c

abc

)
.

For n = 1, 2, 3, ..., the remainder term RJ
n(az, bz, cz, p) is positive and a bound for

(2p
√

abcz/3)RJ
n(az, bz, cz, p) is given by the right hand side of (24) or (25) putting

ρ ≡ 1 and an ≡ ĀJ
n(a, b, c) given in (62). In particular, two error bounds are given by

0 ≤RJ

n(az, bz, cz, p) ≤ 3πAn

2
√

abc

pn−1/2

zn+1
,

RJ

n(az, bz, cz, p) ≤ 3
2
√

abc

[
1 + ψ(n + 1) + γ + log

(
1 +

nz|ĀJ
n−1|

|pĀJ
n|

)]
pn|ĀJ

n|
zn+3/2

,

(66)

where An ≡max{|ĀJ
n|, |ĀJ

n−1|}.
Proof. After the change of variable t → zt−1, the integral (2p

√
abcz/3)RJ(az, bz, cz, p)

has the form considered in theorem 2 with

f(t) ≡ fJ

3 (t) =
√

t√
(t + a−1)(t + b−1)(t + c−1)

=
n−1∑

k=0

(−1)kĀJ

k

tk+1
+ fJ

n(t), (67)

where fJ
n(t) = O(t−n−1) as t → ∞, ρ = 1 and z replaced by z/p. Therefore, the

asymptotic expansion of (2p
√

abcz/3)RJ(az, bz, cz, p) for large z follows from eq. (8) in
theorem 2. Coefficients ak ≡ (−1)kĀJ

k(a, b, c) in eq. (7) are trivially given by formula
(62). On the other hand, coefficients Bk(a, b, c) follow from (9), where

CJ

k (a, b, c) = lim
T→∞





∫ T

0

tkfJ

3 (t)dt−
k−1∑

j=0

(−1)jĀJ

j

T k−j

k − j
− (−1)kĀJ

k log T



 (68)

We define, for s > 0,

αk(a, b, c, s, T ) ≡ √
s

∫ T

0

tk+1/2

√
(t + a−1)(t + b−1)(t + c−1)(t + s)

dt

and

Ik(a, b, c, T ) ≡
∫ T

0

tk+1/2

√
(t + a−1)(t + b−1)(t + c−1)

dt = lim
s→∞

αk(a, b, c, s, T ).
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Integrals αk(a, b, c, s, T ) satisfy the recurrence

2T k+3/2
√

s(T + a−1)(T + b−1)(T + c−1)(T + s) = (2k + 7)αk+4+

2(k + 3)(a−1 + b−1 + c−1 + s)αk+3 + (2k + 5)
a + b + c + s(ab + bc + ac)

abc
αk+2+

2(k + 2)
1 + s(a + b + c)

abc
αk+1 + (2k + 3)

s

abc
αk.

Taking the limit s →∞ we obtain that the integrals Ik(a, b, c, T ) satisfy the recurrence

Ik+3 =
1

2(k + 3)

[
2T k+3/2

√
(T + a−1)(T + b−1)(T + c−1)−

(2k + 5)(a−1 + b−1 + c−1)Ik+2 − 2(k + 2)
a + b + c

abc
Ik+1 − 2k + 3

abc
Ik

]
.

(69)

On the other hand, from the differential equation 2(t+a−1)(t+b−1)(t+c−1)(fJ
3 /
√

t)′+(
3t2 + 2(a−1 + b−1 + c−1)t + (a + b + c)/abc

)
fJ
3 /
√

t = 0, we obtain, for k = 0, 1, 2, ...,

(2k+3)ĀJ

k+2−2(k+1)(a−1+b−1+c−1)ĀJ

k+1+(2k+1)
a + b + c

abc
ĀJ

k−
2k

abc
ĀJ

k−1 = 0. (70)

If we expand the term
√

(T + a−1)(T + b−1)(T + c−1) in (69) in inverse powers of T and
use the recurrence (70) and the definition (68), we obtain the recurrence (63). Coefficient
C0 can be obtained from [[10], eq. (42)]. Integrating by parts I1(a, b, c, T ), expanding
the integrated term in inverse powers of T and after straightforward operations and
using the definition (68) we obtain

C1 = −λ(C0 + 1) +
1
2

(
1
a2

J(a, b, c) +
1
b2

J(b, c, a) +
1
c2

J(c, a, b)
)

,

where

J(a, b, c) ≡
∫ ∞

0

√
t

(t + a−1)3(t + b−1)(t + c−1)
dt.

Now, using [[15], p. 73, eqs. 9 − 11] and [[16], p. 329, eqs. (12.33)], we obtain (64).
Equation (65) follows from I2(a, b, c, T ) after similar steps.

Function fJ
3 (t) satisfies the conditions of proposition 2 with µ = 1. Therefore,

RJ
n(az, bz, cz, p) ≥ 0 and, for n = 1, 2, 3, ..., the bounds (24) and (25) hold for

(2p
√

abcz/3)RJ(az, bz, cz, p) setting ρ = µ = 1 and an ≡ (−1)nĀJ
n(a, b, c) given in

(62). In particular, the second line of (66) follows after introducing (28) in inequality
(25).

Introducing the bound |ĀJ
n| ≤ (3/2)n/(ann!) in the first line of (66) we obtain, for

n ≥ 1,

RJ

n(az, bz, cz, p) ≤ C(a, p, z)
√

npn

(az)n
, (71)
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where C(a, p, z) is independent of n Therefore, expansion (61) is uniformly convergent
for p < az. tu

z

10

20

50

100

R (z,2z,3z,1)
J 1  order aprox.

st Relative error error bound
Relative

2  order aprox.
nd Relative error error bound

Relative

.0478543705

.0027989048

.0067712980

.0430650136 -.100

.0066394802

.0027718749

-.0195

-.00966

.129

.0235

.0114

.0474540374

.0067690999

.0027986796

-.00837

-.000325

-.0000805

.0132

.000453

.000108

.0210080906 .0199714360 -.0493 .0617 .0209648222 -.00206 .00306

Table 6. Numerical example of the approximation (61). Second, third and sixth columns repre-

sent RJ(z, 2z, 3z, 1), approximation (61) for n = 1 and approximation (61) for n = 2 respectively.

Fourth and seventh columns represent the respective relative errors−RJ
n(z, 2z, 3z, 1)/RJ(z, 2z, 3z, 1)

in (61). Fifth and last columns represent the respective error bounds given by eq. (25).

Corollary 7. A uniformly convergent expansion of RJ(x, y, az, bz) for 0 ≤ x ≤ y < az

and 0 < y < bz is given, for n = 1, 2, 3, ..., by

RJ(x, y, az, bz) =
3
2

n−1∑

k=0

1
zk+3/2

[−AF

k+1(x
−1, y−1) (Ck(a, b) log(az) + Dk(a, b))+

Ek(a, b)BJ

k(x, y)] + RJ

n(x, y, az, bz),
(72)

where, for k = 0, 1, 2, ..., the coefficients AF

k (x−1, y−1) are given in (34) and the coeffi-
cients BJ

k(x, y) are given by the recurrence

BJ

k+2 =−
[
xyAF

k+1 − (x + y)AF

k+2 + 2AF

k+3

k + 2
+

AF

k+3

k + 1

]
+

2k + 3
2k + 4

(x + y)
[
AF

k+2

k + 1
+ BJ

k+1

]
− k + 1

k + 2
xyBJ

k ,

(73)

where

BJ

0 = −2 log
(√

x +
√

y

2

)
, BJ

1 =
√

xy − (x + y) log
(√

x +
√

y

2

)
. (74)

The coefficients Ck, Dk and Ek are given by

Ck(a, b) =
k+1∑

j=0

(1/2)j(k + 1)
j!(k + 3/2)aj−1/2bk−j+2

F

(
1, k + 2− j

k + 5/2

∣∣∣∣ 1− a

b

)
,

Dk(a, b) =
k+1∑

j=0

(1/2)j(k + 1)
j!(k + 3/2)aj−1/2bk−j+2

[
F ′

(
1, k + 2− j

k + 5/2

∣∣∣∣ 1− a

b

)
−

(
ψ

(
k +

3
2

)
+ γ

)
F

(
1, k + 2− j

k + 5/2

∣∣∣∣ 1− a

b

)]
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and

Ek(a, b) =
k∑

j=0

(1/2)j

j!aj+1/2bk+1−j
. (75)

For n = 1, 2, 3, ..., the remainder term RJ
n(x, y, az, bz) is positive and a bound for

(2/3)RJ
n(x, y, az, bz) is given by the right hand side of (31) or (32) putting ρ ≡ 1/2,

σ = 1 and an ≡ (−1)n+1AF
n+1(x

−1, y−1) given in (34). In particular, two error bounds
are given by

0 ≤RJ

n(x, y, az, bz) ≤ 3
√

πn!An

Γ(n + 1/2)(cz)n+1
,

RJ

n(x, y, az, bz) ≤
(

3
2

)

n

[
1 + ψ(n + 1) + γ + log

(
1 +

nz|AF
n|

|AF
n+1|

)] |AF
n+1|

n!(cz)n+3/2
,

(76)

where An =max{|AF
n|, |AF

n+1|} and c =min{a, b}.
Proof. The integral (2/3)RJ(x, y, az, bz) has the form considered in theorem 4 with

f(t) ≡ fJ

4 (t) =
1√

(t + x)(t + y)
=

n−1∑

k=0

(−1)k+1AF

k+1

tk+1
+ fJ

n(t), (77)

where fJ
n(t) = O(t−n−1) as t → ∞, ρ = 1/2 and σ = 1. Therefore, the asymptotic

expansion of (2/3)RJ(x, y, az, bz) for large z follows from eq. (14) in theorem 4. Coef-
ficients ak in eq. (7) are trivially given by ak ≡ (−1)k+1AF

k+1(x
−1, y−1).

For calculating Bk ≡ Ek(a, b)BJ

k(x, y) we consider the second line in (9). Define, for
k = 0, 1, 2, ...,

IJ

k (x, y, T ) ≡
∫ T

0

tkfJ

4 (t)dt ≡
∫ T

0

tk√
(t + x)(t + y)

dt.

and

σJ

k(x, y) ≡ lim
T→∞



IJ

k (x, y, T ) +
k−1∑

j=0

(−1)jAF

j+1

T k−j

k − j
+ (−1)kAF

k+1 log(T )



 . (78)

Integrals IJ

k (x, y, T ) satisfy the recurrence

IJ

k+2 =
1

2(k + 2)
[
2T k+1

√
(T + x)(T + y)− (2k + 3)(x + y)IJ

k+1 − 2(k + 1)xyIJ

k

]
. (79)

On the other hand, from the differential equation 2(t+x)(t+y)(fJ
4 )′+(2t+x+y)fJ

4 = 0,
we obtain, for k = 0, 1, 2, ...,

2(k + 1)AF

k+2 − (2k + 1)(x + y)AF

k+1 + 2kxyAF

k = 0. (80)
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Now we substitute IJ

k+2(x, y, T ) in the definition (78) of σJ

k+2(x, y) by the right hand
side of (79), expand the term

√
(T + x)(T + y) in inverse powers of T and use recurrence

(80). We obtain

2(k + 2)σJ

k+2 =(−1)k+1
(
2xyAF

k+1 − 2(x + y)AF

k+2 + 2AF

k+3

)−
(2k + 3)(x + y)σJ

k+1 − 2(k + 1)xyσJ

k ,

from which (73) follows easily by using the second line in (9) and the recurrence (80).
Integrals IJ

0 (x, y, T ) and IJ
1 (x, y, T ) may be calculated by using formula [[15], p. 53, eqs.

3,8]. Then, from the second line in (9) and using AF
1 = −1 and AF

2 = −(x + y)/2 we
obtain (74).

Function fJ
4 (t) satisfies the conditions of proposition 4 with µ = 1. There-

fore, RJ
n(x, y, az, bz) ≥ 0 and, for n = 1, 2, 3, ..., the bounds (31) and (32) hold for

(2/3)RJ(x, y, az, bz) setting ρ = 1/2, σ = µ = 1 and an ≡ (−1)n+1AF
n+1(x, y) given in

(34). In particular, the second line of (76) follows after introducing (28) in inequality
(32).

Introducing the bound |AF
n| ≤ yn in the first line of (76) we obtain, for n ≥ 1,

RJ

n(x, y, az, bz) ≤ C(y, c, z)
√

nyn

(cz)n
, (81)

where C(y, c, z) is independent of n Therefore, expansion (72) is uniformly convergent
for y < cz.

tu

p

10

20

50

100

R (1,2,.9z,z)
J 2  order aprox.

nd Relative error error bound
Relative

3  order aprox.
rd Relative error error bound

Relative

.0867349930

.0058043457

.0135949951

.0819312420 -.0554

.0135663149

.0058013266

-.00211

-.000520

.1243

.00395

.000929

.0857670728

.0135938404

.0058042849

-.0112

-.0000849

-.0000105

.0296

.000184

.0000214

.0399899363 .0394496318 -.0135 .0276 .0399355289 -.00136 .00325

Table 7. Numerical example of the approximation (72). Second, third and sixth columns repre-

sent RJ(1, 2, .9z, z), approximation (72) for n = 2 and approximation (72) for n = 3 respectively.

Fourth and seventh columns represent the respective relative errors−RJ
n(1, 2, .9z, z)/RJ(1, 2, .9z, z)

in (72). Fifth and last columns represent the respective error bounds given by eq. (32).

4. Conclusions

Following Wong’s proposal [[17], example 1], the distributional approach has been
used in theorems 1-4 for deriving alternative proofs for the asymptotic expansion
of special cases of the integrals considered in theorems 1 and 2 in [17]. Using
these results we have derived convergent expansions of RF (x, az, bz), RD(az, bz, x),
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RD(x, az, bz), RJ(x, az, bz, cz), RJ(x, az, bz, p), RJ(az, bz, cz, p) and RJ(x, y, az, bz) for
x, y, p < az, bz, cz in corollaries 1-7 respectively.

Functions f(t) in the integrand of RF , RD and RJ (and, in general, functions f(t)
given in (15)) belong to a special kind of functions: the remainder terms in their asymp-
totic expansions in inverse powers of t satisfy the error test. This fundamental property
is used in propositions 1-4 for deriving an accurate error bound for the remainder in
the asymptotic expansions given in theorems 1-4 at any order of the approximation. In
particular, it has been derived for the expansions of RF , RD and RJ in corollaries 1-7.
These bounds show that the expansions are convergent when the asymptotic variables
are greater than the remaining ones and that the convergence rate increases as this
difference between the asymptotic variables and the remaining ones increases.

Expansions given in corollaries 1-7 are generalizations of the corresponding first
order approximations given by Carlson and Gustafson [10]. Nevertheless, complete
expansions for RF , RD and RJ for the asymptotic parameters considered in corollaries
1-7 were also obtained by Carlson [3]. But the calculation of the coefficients given in
[3] is not straightforward and the error bounds supplied there are not quite satisfactory.
The advantage of the approach presented here is that it supplies a simple algorithm for
the calculation of the coefficients of these expansions and more accurate error bounds
at any order of the approximation. This algorithm is explicitly given in corollaries 1-7.

The error bound supplied in corollary 5 for n = 1 is slightly less accurate than the
error bound given in [10] for the first order approximation of RJ(x, az, bz, p). The same
comparison holds between corollary 6 for n = 1 and the second order approximation of
RJ(az, bz, cz, p) given in [10] and between corollary 7 for n = 1 and the approximation
of RJ(x, y, az, bz) given in [10]. On the other hand, for large z, the error bound supplied
in corollary 3 for n = 1 is slightly more accurate than the error bound given in [10]
for the second order approximation of RD(az, bz, x) given there. When considering first
order approximations for RF (x, az, bz), RD(x, az, bz) and RJ(x, az, bz, cz), a comparison
between the error bounds given in corollaries 1,2 and 4 and the error bounds given in
[10] is more complicated because they are concerned with different approximations.

This work, jointly with [14], present the twelve possible convergent expansions of
the symmetric standard elliptic integrals. Coefficients in these expansions are given in
terms of elementary functions or in terms of hypergeometric functions or symmetric
standard elliptic integrals depending on less parameters. Considerably accurate error
bounds are supplied also at any order of the approximation.
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